作为一名教学工作者,常常需要准备教案,教案是教学活动的依据,有着重要的地位。那么大家知道正规的教案是怎么写的吗?为大家精心整理了初中数学《矩形》教案(优秀10篇),您的肯定与分享是对小编最大的鼓励。
本节课主要讲解的是矩形的性质与判定,本节课一共分为5个环节。在环节一知识回顾,由平行四边形入手,通过直观观察平行四边形与矩形内角的异同以及观察平行四边形与矩形的形状特点,这是落实核心价值观直观想象的过程,学生建立逻辑关系——平行四边形形状与边角大小之间的关系(直观想象是显性的,逻辑推理是隐形的)。在环节二探索活动一,利用橡皮筋套木框改变橡皮筋的松紧长短程度从而改变平行四边形的形状,观察平行四边形演变为矩形的过程,这是通过直观形象产生疑惑,有想法,进而升华为逻辑推理——改变平行四边形的对角线长短关系引起角的变化,这个变化过程中当一个角是直角时将平行四边形演变为矩形,这是落实显性的直观形象与隐性的逻辑推理的过程。
在环节三探索活动二,利用小芳画矩形的过程引入矩形的第二种判别方法,同样小芳画的过程是学生进行直观形象的过程,小芳画出来的学生观察确实是一个矩形,进而反问学生为什么是?这就是逻辑推理过程了,也是数学抽象的过程了,通过数学逻辑证明,得出确实是,从而抽象出——三个角都是直角的四边形是矩形。这个环节落实的数学学科核心素养显性的是直观想象,隐性的是逻辑推理,深入挖掘出数学抽象也是在这节课落实的素养。在环节四议一议中,只利用一根绳子,是否能判断出平行四边形、矩形、菱形?这是一个开放性的问题,也就是脱离角是否可以判断四边形的形状?直观形象这是首先落实到的核心素养,进而学生考虑四边形只考虑边的特点,不考虑角,是否可以判断,逻辑推理过程在这个过程中落实的淋漓尽致,其实质数学抽象——将绳子与边结合起来,这也是这个环节不可小视的核心素养。
经过本节课的讲解,深感落实数学学科核心素养在数学课堂中的重要作用,直观想象是本节课最显性的核心素养,而逻辑推理是在直观想象后升华的部分,数学抽象很多人或许会忽视,但会发现,在数学学科中,数学抽象虽然看不到也讲解不到,但在知识的升华过程中数学抽象才会产生质的飞跃,脱离现实数据抽象出数学真知。
一、教学目标
1、理解并掌握矩形的判定方法。
2、使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1、重点:矩形的判定。
2、难点:矩形的判定及性质的综合应用。
三、例题的意图分析
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的。
四、课堂引入
1、什么叫做平行四边形?什么叫做矩形?
2、矩形有哪些性质?
3、矩形与平行四边形有什么共同之处?有什么不同之处?
4、事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法。
矩形判定方法1:对角钱相等的平行四边形是矩形。
矩形判定方法2:有三个角是直角的四边形是矩形。
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了。因为由四边形内角和可知,这时第四个角一定是直角。)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形;(×)
(2)有四个角是直角的`四边形是矩形;(√)
(3)四个角都相等的四边形是矩形;(√)
(4)对角线相等的四边形是矩形;(×)
(5)对角线相等且互相垂直的四边形是矩形;(×)
(6)对角线互相平分且相等的四边形是矩形;(√)
(7)对角线相等,且有一个角是直角的四边形是矩形;(×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形。 (√)
指出:
(1)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论。
例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积。
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值。
解:∵四边形ABCD是平行四边形,∴ AO= AC,BO= BD。
∵ AO=BO,∴ AC=BD。
∴ ABCD是矩形(对角线相等的平行四边形是矩形)。
在Rt△ABC中,∵ AB=4cm,AC=2AO=8cm,∴ BC=(cm)。
例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H。求证:四边形EFGH是矩形。
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明。
证明:∵四边形ABCD是平行四边形,∴ AD∥BC。
∴ ∠DAB+∠ABC=180°。
又AE平分∠DAB,BG平分∠ABC,∴ ∠EAB+∠ABG= ×180°=90°。
∴ ∠AFB=90°。
同理可证∠AED=∠BGC=∠CHD=90°。
∴四边形EFGH是平行四边形(有三个角是直角的四边形是矩形)。
六、随堂练习
1、(选择)下列说法正确的是()。
(A)有一组对角是直角的四边形一定是矩形
(B)有一组邻角是直角的四边形一定是矩形
(C)对角线互相平分的四边形是矩形
(D)对角互补的平行四边形是矩形
2、已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD到点E,使得DE=CD。连结AE,BE,则四边形ACBE为矩形。
七、课后练习
1、工人师傅做铝合金窗框分下面三个步骤进行:
⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:
⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;
2、在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数。
本节课是关于矩形的学习。这是图形的学习。在进行本节书的学习的时候,老师要结合以前小学学过的长方形和正方形一起来讲。让学生在原来的基础上,更好地理解新学的知识。把新旧知识结合起来,更有利于学生的理解和在实际练习中的应用。
关于矩形的判定教学的反思是:在进行该章节的学习的时候,最好让学生自作立体图形,让学生在制作图形中懂得矩形与以前学过的那些图形有什么区别和联系,加深他们的学习能力及理解能力。让学生通过自己动手的同时学会思考问题,在思考问题的过程中,加深对数学学习的兴趣。
关于矩形的判定的课件设计:
一 教学目的:让学生明白如何去进行判定。通过几个图形的演示,学生能够明白这些图形之间的区别和联系。
二 教学重难点:通过什么方法来判定一个图形是矩形。
三 教学过程:
1、引入:让学生观看大屏幕上的图形,指出这些图形有什么特点。先叫学生思考,也鼓励他们进行讨论,然后让学生代表把自己的看法说出来。
2、让学生把课本上的知识内容进行阅读思考,然后得出结论:如何去判断一些图形是什么图形?
3、知识点讲解:什么是矩形呢?
条件:
1、有一个角是直角。
2、这个图形是平行四边。
3、这个图形的对角线相等。
4、对角线要相等。
5、这个图形中有三个内角是直角。
6、对角线相等并且互相平分。对于这些判断的条件,要求学生要仅仅地记住。在讲完这些条件的时候,老师也给出很多相关的相似的或者不同的图形让学生进行判断,以加深对这些图形的认识和掌握。
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件。
2.提高对矩形的性质和判别在实际生活中的应用能力。
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。2.通过对矩形的探索学习,体会它的内在美和应用美。
教学重点:矩形的性质和常用判别方法的理解和掌握。
教学难点:矩形的性质和常用判别方法的综合应用。
教学方法:分析启发法
教具准备:像框,平行四边形框架教具,多媒体课件。
教学过程设计:
一。情境导入:
演示平行四边形活动框架,引入课题。
二.讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)
结论:有一个内角是直角的平行四边形是矩形。
八年级数学上册教案2.探究矩形的性质:
(1).问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答。)
结论:矩形的`四个角都是直角。
(2).探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状。
①.随着∠α的变化,两条对角线的长度分别是怎样变化的?
②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳。)
结论:矩形的两条对角线相等。
(3).议一议:(展示问题,引导学生讨论解决。)
①.矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由。
②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4).归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”。)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形。
例解:(性质的运用,渗透矩形对角线的“化归”功能。)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米。求BD与AD的长。
(引导学生分析、解答。)
探索矩形的判别条件:(由修理桌子引出)
(1).想一想:(学生讨论、交流、共同学习)
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形。
(理由可由师生共同分析,然后用幻灯片展示完整过程。)
(2).归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形。
对角线相等的平行四边形是矩形。
三.课堂练习:(出示P98随堂练习题,学生思考、解答。)
四.新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结。)
五.作业设计:P99习题4.6第1、2、3题。
板书设计:
4.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
三。矩形的判别条件:
例1
课后反思:在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
《矩形的判定》一课,是在学习了《平行四边形的判定》以后提出的。因为有了学习《平行四边形的判定方法》做为基础,所以本节课采用了“类比学习”的方法,引导学生通过“类比学习”的方法进行新知的探索与学习。在设计中,通过平行四边形的演示活动引出主题“矩形”,运用回忆的方法,对“矩形的定义及性质”进行了预备知识检测,再对矩形的判定方法进行猜想与验证,紧接下来设计了几道练习题让学生学以致用,最后用一流程图进行了小结。
在设计中,我一直想要抓住发展学生数学思维,让学生有足够的时间去思索猜想新知验证新知,课堂上也看到了学生们在积极认真的思考问题,但是因部分学生的基础比较差,对于探索证明的方法还是有些欠缺,加上课堂上关于逻辑思维的证明引导的不够充分彻底,不能够为学生做好充分的铺垫,所以部分学生感觉推理困难,这是最遗憾的地方。在学生应用判定定理做习题中,也没有能够有足够的时间汇总巡视学生做题中出现的共性问题进行讨论,只是做个别指导。等等的问题,在今后教学中,自己一定要更加的注意这些问题的`出现并想办法解决,让教学中的“遗憾”少一些。
一、教学目标:
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形; ()
(2)有四个角是直角的四边形是矩形; ()
(3)四个角都相等的四边形是矩形; ()
(4)对角线相等的四边形是矩形; ()
(5)对角线相等且互相垂直的四边形是矩形; ()
(6)对角线互相平分且相等的四边形是矩形; ()
(7)对角线相等,且有一个角是直角的四边形是矩形; ()
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()
(9)两组对边分别平行,且对角线相等的四边形是矩形. ()
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2 (补充)已知 ABCD的'对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵ 四边形ABCD是平行四边形,
AO= AC,BO= BD.
∵ AO=BO,
AC=BD.
ABCD是矩形(对角线相等的平行四边形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
BC= (cm).
例3 (补充) 已知:如图(1), ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD是平行四边形,
AD∥BC.
DAB+ABC=180.
又 AE平分DAB,BG平分ABC ,
EAB+ABG= 180=90.
AFB=90.
同理可证AED=BGC=CHD=90.
四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).
六、随堂练习
1.(选择)下列说法正确的是( ).
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形
(C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形
2.已知:如图 ,在△ABC中,C=90, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
七、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;
⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
2.在Rt△ABC中,C=90,AB=2AC,求A、B的度数.
通过本课的教学,我深刻体会到课堂教学活动中教师与学生的和谐配合对提高课堂教学效率有着非常大的作用。在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教师在巡视过程中做适当的评价和提示,以弥补学生学习能力的不足之处,从而达到化解“难点”的目的。
在课堂教学过程中,真诚交流意味着教师对学生的殷切的期望和由衷的赞美。期望每一个学生都能学好,由衷地赞美学生的成功,让学生在整堂课中能在不断出现的问题及不断被自己“聪明”的解决问题的成功喜悦中进行学习,享受学习的乐趣。
学生充分讨论,并以积极的心态互相评价、相互反馈、互相激励,只有这样才能有利于发挥集体智慧,开展合作学习,从而获得好的教学效果。数学教学过程中,对于学生的提问,教师不必作直接的详尽的解答,只对学生作适当的启发提示,让学生自己去动手动脑,找出答案,以便逐步培养学生自主学习的能力,养成他们良好的自学习惯。课上教师应该做到三个“不”:学生能自己说出来的,教师不说;学生能自己学会的,教师不讲;学生能自己做到的,教师不教。尽可能地提供多种机会让学生自己去理解、感悟、体验,从而提高学生的数学认识,激发学生的数学情感,促进学生数学水平的提高。
本节课的题目是《矩形的判定》,是在学习了矩形的性质之后的一节课,采用了“先学后教、当堂训练”的教学模式,主要是遵循教育教学规律,坚守课程标准,以新课程理念:学生为主体、老师是主导,还课堂给学生的思路,充分发挥学生的能动性;再一个利用电教信息技术,优质资源班班通,引进优教班班通上的微课资源,让孩子们就享受到了名师的服务,提高了学习效率。
首先是回顾旧知识矩形的性质,然后提出问题:、“除了使用定义可以判定矩形外,还有别的办法吗?”,然后看微课“矩形的判定名师讲解”,最后根据学生掌握的情况,讲析两道例题(让学生分析思路,找到解决办法,板书后再和规范书写对照),教师参与点评更正,最后当堂练习,再次发现问题,解决问题,最后小结。
由于采用的教学模式是先学后教当堂训练,这样的讲具有很强的针对性,做到了有的放矢;由于始终让学生做主体,抓住了学生的注意力,独立思考、小组交流、分享成果,使得学习氛围积极、不拖沓,逐步形成了主动探究的习惯,同时也激发了学生的学习兴趣;判定的选择使用,让孩子们多了份理性思考,提升了学生的数学素养。
不足的地方有二:
1、学生的综合应用能力和分析问题的能力都还有待于进一步训练。比如可以让多个学生来谈自己的思路,包括成熟的,也包括不成功的;还可以让小组多交流,小组内展示,等多种方式去挖掘学生的潜力。
2、技术应用不够熟练和使用的手段少,这个问题完全可以再使用几何画板、触控一体机上的鸿合软件等呈现给学生,让他们去发现的图形所蕴藏的数学规律。这样会更直观,印象更深。
教学目标:
1.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
2.通过矩形判定的教学渗 透矛盾可以互相转化的唯物辩证法思想
教法设计:观察、启发、总结、提高,类比探讨,讨 论分析,启 发式.
教学重点:矩形的判定.
教学难点:矩形的 判定及性质的综合应用.
教具学具准备:教具(一个活动的平行四边形)
教学步骤:
一.复习提问:
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
二.引入新课
设问:1.矩形的判定.
2.矩形是有一个角是直角的平行四 边形,在判定一个四边形是不是矩 形 ,首先看这个四边形是不是平行四边 形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这 体现了定义作用的双重性、性质和判定).除此之外,还有其它 几种判定矩形的方法,下面就来研究这 些方法.
方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程。)
矩形判定方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生 一道写出证明过程。)
归纳矩形判定方法(由学生小 结):
(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
2 .矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
3.矩形知识的综合应用。(让学生思考,然后师生共同完成)
例:已知 的对角线 , 相交于
,△ 是等边三角形, ,求这个平行
四边形的面积(图2).
分析解题思路:(1)先判定 为矩形.(2)求 出 △ 的直角边 的长.(3)计算 .
三.小结:(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线 相等.判定方法3的两个条件是:①是四边形,②有三个直 角.
矩形的判定方法有哪些?
一个角是直角的平行四边形
对角线相等的平行四边形-是矩形。
有三个角是直角的四边形
(2)要注意不要不加考虑地把性质定理的'逆命题作为矩形的判定定理.
补充例题
例1:已知:O是矩形A BCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,AE=BF=CG=DH,
求证:四边形EFGH为矩形
分析:利用对角线互相平分且相等的四边形是矩形可以证明
证明:∵ABCD为矩形
AC=BD
AC、BD互相平分于O
AO=BO=CO=DO
∵AE=BF=CG=DH
EO=FO=GO=HO
又HF=EG
EFGH为矩形
例2:判断
(1)两条对 角线相等四边形是矩形()
(2)两条对角线相等且互相平分的四边形是矩形()
(3)有一个角是 直角的四边形是矩形( )
(4)在矩形内部没有和四个顶点距离相等的点()
分析及解答:
(1)如图(1)四边形ABC D中,AC=BD,但ABCD不为矩形,
(2)对角线互相平分的四边形即平行四边形,对角线相等的平行四边形为矩形
(3)如图(2),四边形ABCD中,B=90,但ABCD不为矩形
(4)矩形 对角线的交点O到四个顶点距离相等,如图(3),
教学目标
1.使学生掌握分组后能运用提公因式和公式法把多项式分解因式;
2.通过因式分解的综合题的教学,提高学生综合运用知识的能力。
教学重点和难点
重点:在分组分解法中,提公因式法和分式法的综合运用。
难点:灵活运用已学过的因式分解的各种方法。
教学过程设计
一、复习
把下列各式分解因式,并说明运用了分组分解法中的什么方法。
(1)a 2-ab+3b-3a;(2)x 2-6xy+9y 2-1;
(3)am-an-m 2 +n 2;(4)2ab-a 2-b 2 +c 2 .
解(1) a 2-ab+3b-3a
=(a 2-ab)-(3a-3b)
=a(a-b)-3(a-b)
=(a-b)(a-3);
(2)x 2-6xy+9y 2-1
=(x-3y) 2-1
=(x-3y+1)(x-3y-1);
(3)am-an-m 2 +n 2
=(am-an)-(m 2-n 2 )
=a(m-n)-(m+n)(m-n)
=(m-n)(a-m-n);
(4)2ab-a 2-b 2 +c 2
=c 2-(a2+b2-2ab)
=c 2-(a-b) 2
=(c+a-b)(c-a+b).
第(1)题分组后,两组各提取公因式,两组之间继续提取公因式。
第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式
继续分解因式。
第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式。
第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式
,第四项与这一组再运用平方差公式分解因式。
把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运
用提公因式或分式法进行因式分解。在添括号时,要注意符号的变化。
这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式。
二、新课
例1把分解因式。
问:根据这个多项式的特点怎样分组才能达到因式分解的目的?
答:这个多项式共有四项,可以把其中的两项分为一组,所以有两种分解因式的方法。
解方法一
方法二
;
例2把分解因式。
问:观察这个多项式有什么特点?是否可以直接运用分组法进行因式分解?
答:这个多项式的各项都有公式因ab,可以先提取这个公因式,再设法运用分组法继续分解因式。
解:
=
=
=
=
例3把45m2-20ax2+20axy-5ay2分解因式。
分析:这个多项式的各项有公因式5a,先提取公因式,再观察余下的因式,可以按:一、三”分组原则进行分组,然后运用公式法分解因式。
解45m2-20ax2+20axy-5ay2=5a(9m2-4x2+4xy-y2)
=5a[9m2-(4x2-4xy+y2)]
=5a[(3m2)-(2x-y) 2]
=5a(3m+2x-y)(3m-2x+y).
例4把2(a2-3mn)+a(4m-3n)分解因式。
分析:如果去掉多项式的括号,再恰当分组,就可用分组分解法分解因式了。
解2(a2-3mn)+a(4m-3n)=2a2-6mn+4am-3an
=(2a2-3an)+(4am-6mn)
=a(2a-3n)+2m(2a-3n)
=(2a-3n)(a+2m).
指出:如果给出的。多项式中有因式乘积,这时可先进行乘法运算,把变形后的多项式按照分组原则,用分组分解法分解因式。
三、课堂练习
把下列各式分解因式:
(1)a2+2ab+b2-ac-bc;(2)a2-2ab+b2-m2-2mn-n2;
(3)4a2+4a-4a2b+b+1;(4)ax2+16ay2-a-8axy;
(5)a(a2-a-1)+1;(6)ab(m2+n2)+mn(a2+b2);
答案:
(1)(a+b)(a+b-c);(2)(a-b+m+m)(a-b-m-n);
(3)(2a+1)(2a+1-2ab+b);(4)a(x-4y+1)(x-4y-1);
(5)(a-1) 2 (a+1);? (6)(bm+an)(am+bn).
四、小结
1.把一个多项式因式分解时,如果多项式的各项有公因式,就先提出公因式,把原多项式变为这个公因式与另一个因式积的形式。如果另一个因式是四项(或四项以上)的多项式,再考虑用分组分解法因式分解。
2.如果已知多项式中含有因式乘积的项与其他项之和(或差)时(如例3),先去掉括号,把多项式变形后,再重新分组。
五、作业
1.把下列各式分解因式:
(1)x3y-xy3;(2)a4b-ab4;
(3)4x2-y2+2x-y;(4)a4+a3+a+1;
(5)x4y+2x3y2-x2y-2xy2;(6)x3-8y3-x2-2xy-4y2;
(7)x2+x-(y2+y);(8)ab(x2-y2)+xy(a2-b2).
2.已知x-2y=-2b=-4098,求2bx2-8bxy+8by2-8b的值。
答案:
1.(1)xy(x+y)(x-y);(2)ab(a-b)(a2+ab+b2);
(3)(2x-y)(2x+y+1);(4)(a+1) 2 (a2-a+1);
(5)xy(x+2y)(x+1)(x-1);(6)(x2+2xy+4y2)(x-2y-1);
(7)(x-y)(x+y+1);(8)(ax-by)(bx+ay).
2.原式=2b(x-2y+2)(x-2y-2)当x-2y=-2,b=-4098时,原式的值=0.
课堂教学设计说明
1.突出“通法”的作用。
对于含四项的多项式,可以根据所给的多项式的特点,常采取“二、二”分组或“一、三”分组的方法进行因式分解,这是运用分组法把多项式分解因式的通法,是带有规律性和程序性的解题思路,学生应切实掌握。安排例1的目的是:引导学生运用分组的通法把一个含有六项的多项式分解因式,促使学生能举一反三,触类旁通。
2.加强各种方法的纵横联系。
把分组分解法与提公因式法和公式法之间结合为一体,进行纵横联系,综合运用,考察学生掌握因式分解的方法和技能的状况是这节课教学设计的目标。通过讨论例3,引导学生综合应用三种方法把多项式分解因式,以开发学生解题思路的变通性和灵性活,对于启迪学生的思维和开阔学生的视野起到重要作用。
3.打通相反的思维过程。
因式分解与整式乘法是相反的变形,也是相反的思维过程,学生在学习多项式的因式分解时,也应当适当联系整式的乘法。安排例4,目的是引导学生认识到,在把多项式因式分解时,如果给出的多项式出现了有因式乘积的项,但又不能提取公因式,这时就需要进行乘法运算,把变形后的多项式重新分组,再分解因式,从而启发学生在学习数学时,应善于对数学知识和方法融汇贯通习惯于正向和逆向思维。
探究活动
系数为1的型的二次三项式同学们已经会分解因式了,那么二次项系数不是1的二次三项式怎么分解呢?如:
1.;2. .
有兴趣的同学可以模仿型式子的因式分解试着把上面两式分解因式,你能总结出规律吗?
答案:
1. ; 2. .
规律:二次项系数不是1的二次三项式分解因式时,若满足下列条件,则可将其分解为:
可分解为,即
可分解为,即
,,,满足,即
按斜线十字交叉相乘的积之和若与一次项系数相等,则可分解因式,
第一个因式由第一行的两个数组成
第二个因式由第二行的两个数组成
分解结果为: