九年级数学总复习教案(六年级数学总复习资料)

作为一名教学工作者,编写教案是必不可少的,借助教案可以提高教学质量,收到预期的教学效果。那么写教案需要注意哪些问题呢?这里给大家分享一些关于最新九年级数学教案,方便大家学习。下面是小编精心为同学们整理的九年级数学总复习教案【优秀10篇】,希望可以启发、帮助到同学们。

中学数学九年级教学设计 篇一

【教学内容分析】:本课选自我校生活数学校本教材“折扣”其中的一课。折扣是我们的生活中经常使用的一个概念,与人们的生活联系密切。因此,本节课通过创设学生熟悉的商场商品打折的生活情境引入探究的内容,组织学生通过自主探究、归纳总结等学习活动,理解、掌握折扣多少与最终价格之间关系的规律,并借助模拟商场销售等的活动进一步巩固知识。

【学情分析】:A类学生:4名。理解能力较强,数学基础好,课堂上注意力集中,收集、整理、归纳总结数学信息的能力较强,可以根据老师的要求进行简单的比较和分析。本组学生已经掌握将折扣转换成小数的方法,并且会计算折扣后的价格, 100以内整数及小数大小的比较已经掌握。另外,生活中本组学生都有过自己购买商品的经历,也购买过打折商品,但不会比较价格。

B类学生:3名。理解能力稍差,新知识需要时间去消化,要经过反复的练习和强化才能够将新知识学会。会将折扣转换成小数,但在计算时时常会出错,需老师提醒。100以内整数及小数大小的不是很熟练,经提示在计算折扣后进行价格的比较,但价格与折扣之间的关系学生掌握不了,学生通常不具备总结、理解规律的能力,所以需在老师的提示下直接使用规律进行比较,新知识还需反复练习、强化。本组学生在生活中自己购买商品的机会较少,没有自己购买过打折商品。

【教学目标】:

知识与能力:A组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。

B组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。

过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。

情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。

【教学重点】:计算折扣后的物品价格。

【教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。

【重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。

【教学准备】:课件

【教学过程】:

一、 复习导入

【设计意图:通过练习,帮助学生复习折扣与小数的换算,为学习计算打折的。物品价格做铺垫。】

3折=0.3 5折=0.5 8折=0.8 6折=0.6

2.5折=0.25 3.8折=0.38 7.2折=0.72

AB组学生进行折扣与小数的转换。

二、 折扣的计算

【设计意图:通过设置购物的情境,帮助学生学习计算打折物品的价格,为学生学习比较选择价格相同、折扣不同的物品做铺垫。】

1、 计算折扣

棉鞋原价:650元,现4折出售,需要多少元钱?

1折扣换算为小数:4折 = 0.4

2列算式:650×0.4=260 (元)

2、 练一练:

《百科全书》原价150元,现7折出售,需要多少元钱?

老师引导学生做练习。

预设生成:学生列算式时 ,容易直接列成150×7=1050 (元)

解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。

3、 巩固练习:

登山鞋原价480元,现7.5折出售,需要多少元?

三:折扣的比较

【设计意图:通过观察比较,和提示性的提问,让学生自己发现折扣数和价格之间的关系,并总结出折扣数越小的,价格越低,越便宜。】

课件展示:老师要买一件羽绒服,相同的羽绒服,原价500元,三个不同的商场有不同的折扣,请同学帮助选择。

羽绒服原价500元

商场一: 商场二: 商场三:

8折 7折 9折

请学生说出列式并快速计算得数。

商场一: 500×0.8=400(元)

商场二: 500×0.7=350(元)

商场三: 500×0.9=450(元)

比较得出最便宜的商场,商场二。

1、折扣是整数的比较:

商场二打7折是最便宜的,哪个商场是最贵的呢?

商场三

那么商场三是打几折呢?

9折

比较一下折扣和最后的价格,你会发现什么呢?

结论:相同价格的物品,折扣数越小,价格越低,越便宜。

总结:那么发现了这个规律后,我们再来比较这件羽绒服在三个不同的商场里,哪个商场价格更低呢?(挡住列式计算的部分,让学生直接说出)

预设生成:

A组:不能发现折扣与最终价格之间的关系。

B组:计算后,学生比较不出谁更便宜。

解决措施:

A组:进一步进行提示,把问题提的更具体。

B组:教师帮助学生将数字放在一起进行比较。

2、折扣是小数的比较:

【设计意图:两个比较接近的折扣的比较,同时包括小数的比较,运用之前找到的规律找出便宜的商品。】

出示题目:老师在给自己的孩子选书包,也遇到了同样的问题,再请同学们帮助老师选择一下。

书包原价100元

商场一: 商场二:

8折 8.8折

谈话:刚刚通过比较我们知道了在原价相同的情况下,折扣数越小,价格就越低,越便宜的这个规律,那么这次有没有同学能直接告诉老师哪个商场的书包更便宜些呢?

学生回答(A组的学生会很快理解并正确比较,B组的学生可能接受起来会很困难,下面会进行验证,强化这个规律。)

验证:

商场一: 100×0.8=80(元)

商场二: 100×0.88=88(元)

比较总结:通过比较得出商场一的书包便宜,同时也验证了我们刚才的发现:折扣数越小,价格越低。(请A组学生进行总结)

预设生成:

A组:找到的规律不能马上加以应用,不能直接说出哪个商场更便宜。

B组:不理解规律的内容。

解决措施:

A组:老师指出黑板上总结出的规律对学生进行提示。

B组:再次进行计算,比较两个商场的价格,然后再次总结这个规律帮助学生记忆。

3、课堂练习:

【设计意图:在课件上进行选择商品,复习本课所涉及的各种不同的折扣的比较,而且渗透选择商品的多种渠道。】

(1)不用计算,说出每组商品中,谁的价格更便宜。

课件展示:1羽毛球原价450元,申格体育7折,前前体育9折。

2保温杯原价120元,大润发6折,沃尔玛6.6折。

3《武器大全》原价25.50元,新华书店:9折,中央书店:8折,当当网:7.2折。

(2)游戏:模拟商店

【设计意图:通过模拟选购商品,再次强化学生对本节课知识的掌握。】

课件出示两个商场,同时出示原价相同的几种商品,但折扣不同,发给学生“任务单”,让学生实际来进行选择,选择后说一说选择谁的商品?是怎样选的?

四、 拓展延伸

出示一件毛衣,两个商场的原价不同,折扣数也不同,让学生判断哪家商场棉服的价格便宜。

五、课堂小结:

这节课我们学习折扣的计算以及总结归纳的规律,同学们学习的积极性很高。现在选择商品的渠道有很多,比如我们去商场购买,去超市购买,或者是去网上购买,这样就要求同学们要掌握在相同的商品中选择最便宜的商品的技能,这样我们才不会多花冤枉钱。这节课上到这里,下课。

板书设计:

一、 折扣的计算 二、折扣的比较

4折=0.4 500×0.8=400(元)

650×0.4=260 (元) 500×0.7=350(元)

500×0.9=4500(元)

相同价格的物品,折扣数小的,价格就低。

家庭指引:

A组:本组学生平时有购买商品的经验,本节课已经掌握运用折扣进行比较,那么在实际生活中尽量去应用,购买商品时要精打细算,不花冤枉钱。

B组:本组学生对规律性的认识还不熟练,生活中可以让学生通过计算去比较价格,家长可以通过反复的练习帮助他们强化认识。

九年级数学总复习教案 篇二

- 九年级数学《概率》(第1课时)教学设计

教学目标

1、知识与技能目标

了解必然事件、不可能事件、随机事件的特点。

2、过程与方法目标

经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中提炼出本质特征并加以抽象概括的能力,并会判断必然事件、不可能事件、随机事件。 3、情感与态度目标

学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学; 教学重难点

重点:随机事件的特点。

难点:判断现实生活中哪些事件是随机事件。 教法、学法和辅助手段

情境引人,游戏探索,游戏体验,拓展新知。 学

参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。 教学辅助手段

红、白球若干,不透明盒子两个,骰子若干。 教学过程:

一、创设情境,导入新课:

师:同学们,你们买过彩票吗?中过奖吗?

师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。 学生写好后,展示开奖结果。

师:有中奖的吗?请举手,我为中奖的同学准备了奖品。 (为个别中了奖的同学发奖品,安慰没有中奖的同学) 师:买一注彩票一定能中奖还是可能中奖? 生:可能中奖。

师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗? (少数同学在算,很多同学不知道怎样算)

师:让我们一起走进九年级数学(上)《概率初步》的学习,《概率初步》会告诉我们怎样计算。我们今天就学习第一节《随机事件》。请打开教材。(多媒体展示课题) 二、探索新知

1、(分组活动)问题1:

5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题: (1)小军首先抽到的号共有几种可能? (2)抽到的序号小于6吗? (3)抽到的序号会是0吗? (4)抽到的序号会是1吗?

问题2 掷一个质地均匀的正方体骰子,骰子的六个面上分

别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上, (1)可能出现哪些点数? (2)出现的点数大于0吗? (3)出现的点数会是7吗? (4)出现的点数会是4吗?

1、学生猜测以上问题的结果,并判断以下三事件是什么事件:(师点评) (1)出现的点数大于0。 (2)出现的点数是7。 (3)出现的点数是4。 三、

抢答游戏,应用新知 例1、判断以下事件是什么事件。 ①

袋中只有5个红球,能摸到红球。 ②

打开电视机,正在播动画片

袋中有3个红球,2个白球,能摸到白球。

将一小勺白糖放入

水中,并用筷子不断搅拌,白糖溶解。 ⑤

测量某天的最低气温,结果为-150℃ ⑥

任意掷一枚硬币,正面向上。

一个鸡蛋在没有任何防护的情况下,从六层楼的阳台掉下来, 砸在水泥地面上,没有摔破。

例2、袋子中装有5个黑球和16个白球,这些球的形状、大小、质地等完全相同,再看不到球的条件下随机从袋中摸出一个球。 (1)这个球是白球还是黑球?

(2)如果两种球都有可能被摸出,那么摸出黑球和白球的可能性一样大吗? (3)你能摸出红球吗? 四、拓展新知

思考:小明和小刚在玩掷骰子游戏,二人各执一枚骰子。当两枚骰子的点数之和为奇数,小刚得1分,否则小明得1分,这个游戏对双方公平吗? 师引导学生进行分析,共同完成本题。 五、反思小结,回味新知 1、这节课你学到了什么?

2、你体会到了什么?

3、最让你难忘的是什么 六、布置作业

作业:教科书习题25.1第1题。 教学设计说明 (一)设计思想:

1.贴近生活,让学生在体验中感悟学习。2. 创设情境,让学生在兴趣中自主学习。3.开放课堂,让学生在活动中探索学习

可编辑

九年级的数学教案 篇三

《外国诗两首》教案

教学目标

知识目标

1.了解莱蒙托夫、休斯的经历及其创作。

2.领略诗歌深厚的文化底蕴。

能力目标

1.理解诗中的艺术形象,感受诗人的爱国思乡情怀。

2.品味诗歌语言,展开丰富的联想和想象,体会诗歌的内涵。

3.体会诗歌或平实中见真情,或深邃中显自豪的特点。

德育目标

培养学生爱国情感和健康高尚的审美情操。

教学重点、教学难点

1.了解诗歌的深厚文化背景。

2.理解诗中的艺术形象及诗人由此抒发的思想情感。

3.由于民族文化背景不同,准确地把握诗人的意念和情绪并深入诗中的意境。

课时安排2课时

教学过程

第1课时

一、创设情境,导入新课

1.密哈依尔·莱蒙托夫(1814~1841)十九世纪俄 国继普希金之后的伟大诗人。十四岁开始写诗,1837年他为普希金因决斗而死写的《诗人之死》一诗名震文坛。由于反抗专 制统治,因此屡遭流放和入狱,最后死于预谋的决斗,年仅二十七岁。

莱蒙托夫在短短十三年的创作生涯里,一共写下了四百多首抒情诗,名篇有《帆》《浮云》《祖国》,长诗二十余部,以《恶魔》《童僧》为代表,还有剧本《假面舞会》和杰出的长篇小说《当代英雄》等。

2.休斯(1902~1967)美国黑人诗人、小说家,美国黑人文艺复兴运动的,被誉为“黑人桂冠诗人”。

二、出示自学指导,学生根据自学指导自学课文

1.教师范读全诗。

2.利用书上注释读懂诗歌,学生自由诵读。

3.学生诵读全诗。

4.思考、合作探讨。

(1)《祖国》一诗充分显示了诗人在描摹自然景物上的卓越才能。诗中构置了哪些充满浓郁诗意的画画?

(2)诗人所抒发的爱国之情主要是通过描写俄罗斯的夜色及夜色中人们的活动来表现出来的。这样写有什么好处?

三、讨论交流,针对重点难点,教师适当讲解。

1.教师范读全诗。学生听读课文录音,揣摩诗歌内在旋律。

教师提示:诗句“我爱祖国,但用的是奇异的爱情”是解读诗意的关键。诗人把对祖国的感情比喻为“爱情”,统摄全诗。

2.学生自由诵读,认真领会诗句、诗段所表达的意思,思考:从诗歌内容看,诗人对祖国奇异的“爱情”指什么?

诗人没有用豪言壮语去盛赞祖国的光荣历史、英雄业绩,也没有去歌颂名山大川,无尽宝藏,而是以平实的笔调描写俄罗斯原野的景色和农家生活。平实中见真情,奇异的“爱情”表现在诗人把自己对祖国的爱和对俄罗斯大自然、对普通百姓的爱糅合,化为一体;即对俄罗斯山河景物和淳朴乐观的人民的热爱。

3.学生诵读全诗。多媒体演示俄罗斯风情图片,学生直观感受山川之美。以俄罗斯抒情名曲《卡秋莎》为伴奏音乐,师生有感情诵读全诗。

4.回答思考、合作探讨中的两个问题。

(1)诗人对俄罗斯山河风景和人民生活热烈讴歌。冷漠沉静的草原,随风晃动的森林,奔腾的激流,村间的小路,苍黄的田野,闪光的白桦,苍茫的夜色,颤抖的灯光,远近相映、声色兼备,把俄罗斯山河的雄壮之美和秀丽之美交织在一起,构成一幅绚丽变幻而朦胧流动的画面。打谷场丘堆满丰收的谷物,农家茅舍覆盖着稻草,小窗上的浮雕窗板,更有节日夜晚,农人醉酒笑谈、尽情舞蹈的场面,恰似一幅绝妙的民俗图,洋溢着俄罗斯的生活气息。

(2)诗歌在对原野景色和农家生活的描述中,隐含着诗人对祖国的真挚感情,即“真实地、神圣地、理智地理解对祖国的爱”(比勃罗留波夫语),这种爱是真实的,也是最本色的。

5.学生熟读全诗。

九年级数学全章教案 篇四

本节课主要内容是学习二次根式的定义和性质,重点是对二次根式的性质1和性质2的理解及应用,难点是性质1和性质2的区别与联系,上完本节课后,我的反思如下:

1.由于本节课是九年级上册第二十一章的内容,是一节新授课,而且所有学生没有教科书,因此如何在没有教科书的前提下,让学生理解并掌握本节内容,对我来说也是一次新的尝试,在备课时我就按照目标让学生明白、过程让学生经历、结论让学生讨论、规律让学生总结的指导原则进行认真备课,尤其对例题与练习题也进行了精心的挑选,按照由易到难由简入繁的顺序安排,并且认真制作了课件,便于学生对重点内容的理解和难点的解决。

2.在实际授课中,在让学生明白了本节学习目标后,通过以下步骤让学生认识、理解、并掌握本节知识:(1)让学生回顾了算术平方根与平方根的概念,并且通过一个思考栏目的四道题,得出二次根式的定义后又复习了算术平方根具有双重非负性;(2)通过练习掌握如何判断一个式子是否是二次根式的条件,并经过例1掌握二次根式在实数范围内有意义的条件;(3)通过练习让学生得出二次根式的两个性质,体会从特殊到一般的思维过程,进而掌握公式的一般推导方法;本节课大部分时间都是引导学生边学边做,让学生经历了整个学习过程。

3.在学习过程中,突出了引导学生自己得出结论,特别是二次根式的两个性质,在做完思考题之后,学生自己就初步得出了结论,而且通过其他学生的补充越来越完善。

4.让学生自己找出性质1和性质2的区别与联系,虽然不够系统和完整,但通过这样的训练,培养了学生总结规律的能力。

5.在实际教学中,仍然存在着对课堂时间把握不精确的问题,出现了前松后紧的现象,以致有深度的练习没时间完成,结束的也比较仓促。在今后教学中,应注意时间的掌控。

6.在引导学生探索求知和互动学习方面还有欠缺。新的教学理念要求教师在课堂教学中注意引导学生探究学习,在我的课堂教学中,对学生探索求知进行了引导,并且鼓励大家自己得出结论,但在互动方面做的还不够,大部分学生都是独立思考,很少与同学合作交流,今后的教学中应多培养学生合作交流的意识,这样有助于他们今后的生活和学习。

通过这次公开课,使我的教学技能得到了很好的锻炼,我在今后的教学中,将继续学习好的一面,对不足之处进行改善,争取使自己的教学水平得到提高。

九年级数学全章教案 篇五

1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点。

2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形。

重点

中心对称的概念及性质。

难点

中心对称性质的推导及理解。

复习引入

问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:

1.以O为旋转中心,旋转180°后两个图形是否重合?

2.各对应点绕O旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合。

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

探索新知

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:

(1)作△ABC一顶点为对称中心的对称图形;

(2)作关于一定点O为对称中心的对称图形。

第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示。

从图(1)中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段。

下面,我们就以图(2)为例来证明这两个结论。

证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;

(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点。

同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点。

因此,我们就得到

1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

2.关于中心对称的两个图形是全等图形。

例题精讲

例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称。

分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到。

解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示。

(2)同样画出点B和点C的对称点E和F.

(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形。

例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).

课堂小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2.关于中心对称的两个图形是全等图形及其它们的应用。

作业布置

教材第66页练习

九年级数学全章教案 篇六

了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用。

复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用。

重点

中心对称图形的有关概念及其它们的运用。

难点

区别关于中心对称的两个图形和中心对称图形。

一、复习引入

1.(老师口问)口答:关于中心对称的两个图形具有什么性质?

(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

关于中心对称的两个图形是全等图形。

2.(学生活动)作图题。

(1)作出线段AO关于O点的对称图形,如图所示。

(2)作出三角形AOB关于O点的对称图形,如图所示。

延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示。

二、探索新知

从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合。

上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示。

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合。

因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。

(学生活动)例1从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形。

老师点评:老师边提问学生边解答的特点。

(学生活动)例2请说出中心对称图形具有什么特点?

老师点评:中心对称图形具有匀称美观、平稳的特点。

例3求证:如图,任何具有对称中心的四边形是平行四边形。

分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分。

证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形。

三、课堂小结(学生归纳,老师点评)

本节课应掌握:

1.中心对称图形的有关概念;

2.应用中心对称图形解决有关问题。

四、作业布置

教材第70页习题8,9,10.

九年级的数学教案 篇七

一、锐角三角函数

1、正弦:在rt△abc中,锐角∠a的对边a与斜边的比叫做∠a的正弦,记作sina,即sina=∠a的对边/斜边=a/c;

2、余弦:在rt△abc中,锐角∠a的邻边b与斜边的比叫做∠a的余弦,记作cosa,即cosa=∠a的邻边/斜边=b/c;

3、正切:在rt△abc中,锐角∠a的对边与邻边的比叫做∠a的正切,记作tana,即tana=∠a的对边/∠a的邻边=a/b。

①tana是一个完整的符号,它表示∠a的正切,记号里习惯省去角的符号“∠”;

②tana没有单位,它表示一个比值,即直角三角形中∠a的对边与邻边的比;

③tana不表示“tan”乘以“a”;

④tana的值越大,梯子越陡,∠a越大;∠a越大,梯子越陡,tana的值越大。

4、余切:定义:在rt△abc中,锐角∠a的邻边与对边的比叫做∠a的余切,记作cota,即cota=∠a的邻边/∠a的对边=b/a;

5、一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:

若∠a为锐角,则①sina=cos(90°∠a)等等。

6、记住特殊角的三角函数值表0°,30°,45°,60°,90°。

7、当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。0≤sinα≤1,0≤cosα≤1。

同角的三角函数间的关系:

tanα·cotα=1,tanα=sinα/cosα,cotα=cosα/sinα,sin2α+cos2α=1

二、解直角三角形

1、解直角三角形:在直角三角形中,由已知元素求未知元素的过程。

2、在解直角三角形的过程中用到的关系:(在△abc中,∠c为直角,∠a、∠b、∠c所对的边分别为a、b、c,)

(1)三边之间的关系:a2+b2=c2;(勾股定理)

(2)两锐角的关系:∠a+∠b=90°;

(3)边与角之间的关系:

sina=a/c;

cosa=b/c;

tana=a/b。

sina=cosb

cosa=sinb

sina=cos(90°-a)

sin2α+cos2α=1

九年级数学优秀教案 篇八

教学目标

1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。

2、会用配方法解二次项系数为1的一元二次方程。

重点难点

重点:会用配方法解二次项系数为1的一元二次方程。

难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。

教学过程

(一)复习引入

1、a2±2ab+b2=?

2、用两种方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)创设情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。

2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方。将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。

(四)讲解例题

例1(课本P.11,例5)

[解](1)x2+2x-3(观察二次项系数是否为“l”)

=x2+2x+12-12-3(在一次项和二次项之后加上一次项系数一半的平方,再减去这个数,使它与原式相等)

=(x+1)2-4。(使含未知数的项在一个完全平方式里)

用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。

例2引导学生完成P.11~P.12例6的'填空。

(五)应用新知

1、课本P.12,练习。

2、学生相互交流解题经验。

(六)课堂小结

1、怎样将二次项系数为“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步骤是什么?

(七)思考与拓展

解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

说一说一元二次方程解的情况。

[解](1)将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。

(2)用配方法可解得x1=x2=-。

(3)用配方法可解得x1=,x2=

一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。

课后作业

课本习题

九年级数学全章教案 篇九

1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。

2.通过复移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。

3.旋转的基本性质。

重点

旋转及对应点的有关概念及其应用。

难点

旋转的基本性质。

一、复习引入

(学生活动)请同学们完成下面各题。

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。

2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质。

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。

2.再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)

3.第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

下面我们来运用这些概念来解决一些问题。

例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。

(2)经过旋转,点A和点B分别移动到点E和点F的位置。

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。

3.△ABC和△A′B′C′形状相同和大小相等,即全等。

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用。

四、作业布置

教材第62~63页习题4,5,6.

九年级的数学教案 篇十

第一部分

二种语言类型:口语、书面语。

二种论证方式:立论、驳论。

二种说明语言:平实、生动。

二种说明文类型:事理说明文、事物说明文。

二种环境描写:自然环境描写--烘托人物心情,渲染气氛。

社会环境描写--交代时代背景。

二种论据形式:事实论据、道理论据。

第二部分

三种感情 色彩:褒义、贬义、中性。

小说三要素:人物(根据能否表现小说主题思想确定主要人物)情节(开端/发展/__/结局)环境(自然环境/社会环境。)

议论文三要素:论点、论据、论证。

议论文结构三部分:提出问题(引论)、分析问题(本论)、解决问题(结论)。

三种说明顺序:时间顺序、空间顺序、逻辑顺序。

语言运用三原则:简明、连贯、得体。

第三部分

四种文学体裁:小说、诗歌、戏剧、散文。

四种论证方法:举例论证、道理论证、比喻论证、对比论证。

句子的四种用途:陈述句、疑问句、祈使句、感叹句。

小说情节四部分:开端、发展、__、结局。

记叙的四种顺序:顺叙、倒叙、插叙、补叙。

引号的四种用法:①表引用②表讽刺或否定

③表特定称谓④表强调或着重指出

第四部分

五种表达方式:记叙、描写、说明、抒情、议论。

破折号的五种用法:①表注释②表插说③表声音中断、延续④表话题转换⑤表意思递进

第五部分

六种说明方法:举例子、打比方、作比较、列数字、分类别、下定义。

六种逻辑顺序:①总←→分②现象←→本质③原因←→结果④慨括←→具体⑤部分←→整体⑥主要←→次要

记叙文六要素:时间、地点、人物、事件的起因、经过和结果。

六种人物的描写方法:肖像描写、语言描写、行动描写、心理描写、细节描写、神态描写。

六种病句类型:①成分残缺②搭配不当③关联词语使用不恰当④前后矛盾⑤语序不当⑥误用滥用虚词(介词)

省略号的六种用法:①表内容省略②表语言断续③表因抢白话未说完④表心情矛盾⑤表思维跳跃⑥表思索正在进行

六种常用写作手法:象征、对比、衬托(铺垫)、照应(呼应)、直接(间接)描写、扬抑。

热门教案

学诗词

学名句