在我们上学期间,大家对知识点应该都不陌生吧?知识点在教育实践中,是指对某一个知识的泛称。还在为没有系统的知识点而发愁吗?为同学们整理了七年级下册数学教案(优秀8篇),在同学们参考的同时,也可以分享一下给您的同桌。
本学期备课组严格按照学校和科组的要求,定期组织备课组活动,加强备课组的建设,有计划、* *有重点地开展了各项教学和教研活动,较好地完成了教学任务。现将主要工作总结如下:
一、 认真完成各项常规教学任务
学期初,备课组就根据实际讨论制定了七年级教学计划,明确了备课组的活动原则,并坚持定期开展备课组活动,进行阶段教学工作小结,统一教学进度,统一作业和测试。一个学期以来,顺利地完成了教学任务。本备课组通过提高上课效率使广大同学较好地掌握了数学学科“双基”知识,培养了理论联系实际、搜集资料、撰写调查报告的能力。备课组成员能认真参与备课组活动,完成科组、备课组布置的各项工作任务,并认真做好备课、听课、辅导、批改讲评作业等各项常规教学工作,确保了教学任务的顺利完成。
二、加强教研力度,努力提高教学质量
教学质量的高低是衡量备课组整体教学水平的一个重要标准。为此七年级数学备课组充分发挥集体的智慧,通过加大备课组活动的教研力度,积极做好教学经验的交流,努力提高备课组的整体教学水平。
1.积极开展备课组成员之间的互相听课,通过听课、评课,学习他人对教材内容的处理方法,对重难点知识的把握以及教学方法设计的独到之处,从而加以借鉴,使自己的教学水平不断提高。
2.积极承担公开课,开展示范教学活动。本学期,备课组成员按照科组布置的任务,精心策划,认真准备,积极上好教学公开课。
3.积极开展集体备课活动,提高教材处理和教法设计的能力。为了发挥集体优势,切实提高教学质量,备课组把定期组织集体备课作为开展教研活动的重要内容。本学期进行了多次集体备课活动,每次都能做到有主题、有准备、有中心发言人,气氛非常热烈。集体备课主要是备教材、备教法、讨论命题技巧等等,通过互相的交流和讨论,大大提高了备课组成员处理教材的水平,也使大家学到了不少有创意、有成效的教学方法,提高了驾驭整个课堂教学过程的能力和命题水平。
此外,教学任务之余,老积极参与各种教学技能比赛,并获得了很好的成绩。其中,陈铭老师录像课《8.2.2消元----解二元一次方程组—加减消元法》获得端州区“一师一优课、一课一名师”优课评比活动一等奖。
三、取长补短,创出各自的教学特色
备课组成员通过集体备课、经常性的听课,互相学习,取长补短,并根据所教班学生的不同特点,不断探索各自独具特色的教学模式。
本学期,在备课组成员的共同努力和通力合作下,七年级数学备课组在教学和教研上都取得了一些成绩。但是,工作中还存在许多的不足之处,比如集体备课的力度还须加大,要多向其它年级、其它科目的教师请教?今后,我们将在这些方面做出相应的改进,力争使备课组的建设再上一个新台阶。
时间如流水,一学期的教育教学工作已经结束,留给我们的是新的思考和更大的努力。掩卷长思,细细品味,过去这一学期里教学工作中的点点滴滴不禁又浮上心头来,使我感慨万千,这其中有苦有乐,有辛酸也有喜悦,失败与成功并存。在我任初一(52)、初一(53)班数学教学工作的这一学期里,我自己是过得紧张又忙碌,愉快而充实的。现在,总结如下:
1、认真学习新的教育理论,及时更新教育理念。积极参加新课改,并做了相关的政治笔记与理论笔记。
2、备好课。
每一次备课都很认真,遇到没有把握讲好的课时在集体备课时立即提出,请其它数学老师参谋,综合考虑各种方案,如有问题立即更正、改进。
3、多听课,学习有经验教师的教学方法,听课的同时,认真做好记录,并进行评课。听完课后写听课评议,哪些地方是自己不具备的,哪些地方可以怎样讲可能有更好的效果等等。务求每听一节课都要有最大的收获。
4、做好课后辅导工作,初一学生爱动、好玩,难管,常在学习上不能按时完成作业,有的学生抄袭作业,针对这种问题,就要抓好学生的思想教育,并使这一工作惯彻到对学生的学习指导中去,还要做好对学生学习的辅导和帮助工作,尤其在后进生的转化上,对后进生努力做到从友善开始。
5、热爱学生,平等的对待每一个学生,让他们都感受到老师的关心,良好的师生关系促进了学生的学习。
6、存在的不足
"金无足赤,人无完人",在教学工作中难免有缺陷,例如,对学生兴趣的培养不足;课堂语言不够生动;引导不够;低分人数太多等,这些是我目前在我教学中存在的不足。
7、改进措施:
(1)多与学生沟通,由于教学技巧性不强,难免会有学生听不懂,多些主动和学生进行沟通。
(2)注重组织教学,严格要求学生。由于学生缺乏学习自觉性,所以上课时间是他们学习的主要时间,教师应善于组织、调动学生进行学习,更充分地利用好上课时间。
(3)注重打基础。由于学生基础较差,上课时多以学过内容作为切入点,让学生更易接受,从熟悉的内容转到新内容的学习,做到过渡自然。
走进21世纪,社会对教师的素质要求更高,在今后的教育教学工作中,我将更严格要求自己,努力工作,发扬优点,改正缺点,开拓前进,为美好的明天奉献自己的力量。
教学目标
1.使学生受到初步的辩证唯物主义观点的教育。
2.使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。
教学重点和难点
把比转化成分数。
教学过程设计
(一)复习准备
2.甲数与乙数的比是4∶5。
①甲数是乙数的几分之几?
②乙数是甲数的几分之几?
③甲数是甲、乙总数的几分之几?
④乙数是甲、乙总数的几分之几?
3.出示投影图:
师:看到此图你能想到什么?
学生说,老师写在胶片上:
①女生与男生的比是3∶2。
②男生与女生的比是2∶3。
4.某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨?
60÷5=12(吨)
这种解答的方法,在算术上叫什么方法?
刚才我们解题的方法叫平均分配的方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。
如:你们单元住着18家,每月交的水电费能平均分配吗?
又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?
比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)
(二)学习新课
1.出示例题。
例1 第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?
学生读题,分析题中的条件与问题,教师把条件与问题简写出来:
然后再让学生带着三个问题去思考。
(1)两种作物一共几份?怎样求?
(3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算?
分析:①用一个长方形表示全部土地。(画图)
②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)
师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。
观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?
(板书)总份数: 3+2=5
3∶2,实质都表示倍数关系。现在这道题能够解决了。
粮食作物多少公顷?怎么算?
经济作物多少公顷?怎么算?
验算:①求总数 240+160=400
②求比 240∶160=3∶2
答:粮食作物240公顷,经济作物160公顷。
(附图)
这道题就是“按比例分配”的问题。解决这个问题的关键是:首先
多少。
师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:
已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。
2.试一试。
抓住主要矛盾练习,运用规律解决问题。
把45棵树苗分给两个中队,使两个中队分得的树苗的比是4∶5,每个中队各得几棵树苗?
总份数是几?怎么算?一中队占几分之几?二中队占几分之几?
①总份数 4+5=9
验算:①总棵树 20+25=45(棵)
②比 20∶25=4∶5
答:一中队得20棵,二中队得25棵。
(三)巩固反馈
1.某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?
2.沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?
3.图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?
以上三题只列出主要算式即可。
4.学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?
分析条件、问题以后让学生讨论:
①三个班植树的总棵树是几?
②题目要求按什么比?人数比是几比几?
③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?
试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)
5.有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?
(这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)
6.看图编一道按比例分配题解答。
7.水是由氢和氧按1∶8的重量比化合而成的。5.4千克的水中含氢、氧各多少千克?(看谁用的方法多。)
方法1
8+1=9
方法2
5.4÷9=0.6(千克)
0.6×1=0.6(千克)
0.6×8=4.8(千克)
方法3
方法4
5.4÷(8+1)=0.6(千克)
0.6×8=4.8(千克)
方法5
解:设氢为x千克。
5.4-x=8x
5.4=9x
x=0.6
5.4-x
=5.4-0.6
=4.8
方法6
解:设氧为x千克。
x=(5.4-x)×8
x=43.2-8x
9x=43.2
x=4.8
5.4-x
=5.4-4.8
=0.6
以上方法4,5,6要写全过程。
(四)布置作业
(略)
课堂教学设计说明
1.通过复习,使学生认识到比与分数是有联系的。
2.讲授新课时,先讲了一个最一般的按比例分配题,练习1~3题以后出现另一种形式的按比例分配题,这里老师采用讲练结合的方法。最后让学生用多种方法解答一道题,从而让学生认识到整数、分数、比和比例这些知识的内在联系,使学生明确,当题中给出比的条件时,可以直接用比例的知识解题,也可以根据整数、分数、比和比例之间的联系,把比所表示的两个数量之间的关系用分数、整数之间的关系来表示,并解答题。但是由于分析的思路不同,解答的方法也不同。不管学生采用哪种方法解答,老师都要加以肯定,并鼓励学生采用多种方法解答。
板书设计
教学目标
1.理解和掌握倒数的意义。
2.能正确的求出一个数的倒数。
3.培养学生的观察能力和概括能力。
教学重点
认识倒数并掌握求倒数的方法
教学难点
小数与整数求倒数的方法
教学过程
一、基本训练
(一)口算
=
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。
(板书:倒数)
三、新课教学
(一)乘积是1的两个数存在着怎样的倒数关系呢?
请看: ,那么我们就说 是 的倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数。
和 存在怎样的倒数关系呢?2和 呢?
(二)深化理解
教师提问
1.什么是互为倒数?
2.怎样理解这句话?(举例说明)
( 的倒数是 , 的倒数是 ,……不能说 是倒数,要说它是谁的倒数。)
3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1)。
(三)求一个数的倒数
1.例:写出 、 的倒数
学生试做讨论后,教师将过程板书如下:
所以 的倒数是 , 的倒数是 .
(能不能写成 ,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
2.深化
你会求小数的倒数吗?(学生试做)
三、训练、深化
(一)下面哪两个数互为倒数
(演示课件:倒数的认识1)
(二)求出下面各数的倒数
(演示课件:倒数的认识2)
(三)判断
1.真分数的倒数都是假分数。( )
2.假分数的倒数都小于1.( )
3.0没有倒数。( )
(四)提高
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
四、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
五、课后作业
(一)下面哪两个数互为倒数?
(二)写出下面各数的倒数。
六、板书设计
教学目标:
知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
能力目标:进一步培养学生分析、归纳和探索能力。
情感目标:培养学生数形结合的思想。
教学重难点:公式的应用及推广。
教学过程:
一、复习提问:
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:
沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,
这样裁开后才能重新拼成一个矩形。
(3)比较(1)(2)的结果,你能验证平方差公式吗?
学生讨论,自己得出结果
2.(1)叙述平方差公式的数学表达式及文字表达式;
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.
3.判断正误:
(1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)
二、新课:
运用平方差公式计算:
(1)102×98;(2)(y+2)(y2)(y2+4).
填空:
(1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
教学目标
1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题。
2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力。
教学重点
理解分数乘、除法应用题的异同点,会正确解答。
教学难点
能正确解答分数乘、除法应用题。
教学过程
一、复习引新
(一)下面各题中应该把哪个数量看作单位“1”?
1.花手绢的块数是白手绢的
2.白手绢块数的 正好是花手绢的块数。
3.花手绢的块数相当于白手绢的
4.白手绢块数的 倍相当于花手绢的块数
(二)教师提问
1.求一个数是另一个数的的几分之几用什么方法?
2.求一个数的几分之几是多少用什么方法?
3.已知一个数的几分之几是多少,求这个数,用什么方法?
(三)谈话导入
为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习。
二、讲授新课
(一)教学例3
1.课件演示:分数除法应用题
2.比较。
(1)我们把这三道题放在一起比较,它们有什么相同点?
相同点:三个数量是相同的;需要找准单位“1”来分析。
(2)它们有什么区别呢?
不同点:已知和所求不同;解题方法不同。
3.小结:分数应用题主要有以上三类:
(1)求一个数是另一个数的几分之几。
(2)求一个数的几分之几是多少。
(3)已知一个数的几分之几是多少求这个数。
4.解答分数应用题的方法是什么?
抓住分率句;找准单位“1”;画图来分析;列式不必急。
三、巩固练习
(一)应用题
1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?
(1)学生独立分析列式
(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题。
2.学校有故事书36本,是科技书的 ,科技书有多少本?
3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?
(二)补充条件并列式解答。
一条路长15千米,修了全长的 ,_________________?
(三)选择正确答案
1.修一条长240千米的公路,修了 ,修了多少千米?
2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?
240× 240÷ 150÷240 240÷150
(四)思考题
有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等。这个两位数是多少?
四、课堂小结
这节课我们进行了三类题的对比练习。解决这三类题的关键是什么?
五、课后作业
(一)解答下面各题
1.六一班有学生45人,其中女生有20人。女生人数占全班的几分之几?
2.六一班有学生45人,女生占 .女生有多少人?
3.六一班有男生25人,占全班的 .全班共有学生多少人?
(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(三)学校买了蓝墨水30瓶,红墨水24瓶。蓝墨水是红墨水的几倍?
六、板书设计
分数乘除法对比练习
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
学习目标
1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛
2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用。
难点:理解对顶角相等的性质的探索。
教学过程
一、复习导入
教师在轻松欢快的音乐中演示第五章章首图片为主体的课件。
学生欣赏图片,阅读其中的文字。
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线。本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的'性质和平行的判定以及图形的平移问题。
二、自学指导
观察剪刀剪布的过程,引入两条相交直线所成的角
握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小。如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。
三、问题导学
认识邻补角和对顶角,探索对顶角性质
(1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线。
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线。
( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等。
(3).概括形成邻补角、对顶角概念。
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角。
如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角。
四、典题训练
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。
2.:判断下列图中是否存在对顶角。
小结
自我检测
一、判断题:
1.如果两个角有公共顶点和一条公共边,而且这两角互为补角,那么它们互为邻补角。 ( )
2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补。 ( )
二、填空题:
1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.
2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°,则∠EOF=________.
三、解答题:
1.如图,直线AB、CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数。
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数。毛
2.两条直线相交,如果它们所成的一对对顶角互补,那么它的所成的各角的度数是多少?
教学目标:
(一)知识目标:
1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、
2、理解运算法则及在乘法中对系数运算和指数运算的`不同规定、
(二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、
(三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、
教学重点:
探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、
教学难点:
理解运算法则及在乘法中对系数运算和指数运算的不同规定、
教学过程:
导入新课:
为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、
受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白、
想一想:
(1)对于上面的画面小明得到如下的结果:
第一幅画的画面面积是x(mx)米2、
第二幅画的画面面积是(mx)(x)米2、
他的结果对吗?可以表达得更简单些吗?说说你的理由、
(2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?
(3)如何进行单项式与单项式相乘的运算?
教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。