作为一名专为他人授业解惑的人民教师,通常需要准备好一份教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?这次帅气的小编为您整理了七年级数学下册教案优秀5篇,希望能对您的写作有一定的帮助。
知识与技能:
掌握本章基本概念与运算,能用本章知识解决实际问题。
过程与方法:
通过梳理本章知识点,挖掘知识点间的联系,并应用于实际解题中。
情感态度:
领悟分类讨论思想,学会类比学习的方法。
教学重点:
本章知识梳理及掌握基本知识点。
教学难点:
应用本章知识解决实际与综合问题。
一、知识框图,整体把握
教学说明:
1、通过构建框图,帮助学生回忆本节所有基本概念和基本方法。
2、帮助学生找出知识间联系,如平方与开平方,平方根与立方根,有理数与实数等等。
二、释疑解惑,加深理解
1、利用平方根的概念解题
在利用平方根的概念解题时,主要涉及平方根的性质:正数有两个平方根,且它们互为相反数;以及平方根的非负性:被开方数为非负数,算术平方根也为非负数。
例1已知某数的平方根是a+3及2a—12,求这个数。
分析:由题意可知,a+3与2a—12互为相反数,则它们的和为0。解:根据题意可得,a+3+2a—12=0
解得a=3
∴a+3=6,2a—12=—6
∴这个数是36
教学说明:负数没有平方根,非负数才有平方根,它们互为相反数,而0是其中的`一个特例。
2、比较实数的大小
除常用的法则比较实数大小外,有时要根据题目特点选择特别方法。
教学目标:
1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。
2.过程与方法:通过本节课,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。
3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生数学的兴趣。
教学重点:
1.概率的定义及简单的列举法计算。
2.应用概率知识解决问题。
教学难点:
灵活应用概率的计算方法解决各种类型的实际问题。
教学过程:
一、旧知
1、下面事件:
①在标准大气压下,水加热到100℃时会沸腾。
②掷一枚硬币,出现反面。
③三角形内角和是360°;④蚂蚁搬家,天会下雨,
不可能事件的有,必然事件有,不确定事件有。
2、任何两个偶数之和是偶数是事件;任何两个奇数之和是奇数是事件;
3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性。
4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?
5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?
求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究的“等可能事件的概率”。
二、情境导入
1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?
2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。
(1)会出现哪些可能的结果?
(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?
学生分组讨论,教师引导
三、探究新知
1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?
学生分组讨论,教师引导:
(1)一次试验可能出现的结果是有限的;
(2)每种结果出现的可能性相同。
设一个实验的所有可能结果有n种,每次试验有且只有其中的一种结果出现。如果每种结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。
2、探究等可能性事件的概率
(1)抛掷一个均匀的骰子一次,它落地时向上的数是偶数的概率是多少呢?
(2)不透明的一个袋子中装有大小相同的三个球,一个黄色和已编有1.2.3号码的3个白球,从中摸出2个球,一共有多少种不同的结果?摸出2个白球有多少种不同结果?摸出2个白球的概率是多少?
学生先独立思考,然后同桌间讨论,教师巡视指导
一般地,如果一个试验有n种等可能的结果,事件A包含其中的种结果,那么事件A发生的概率为:
P(A)=/n
必然事件发生的概率为1,记做P(必然事件)=1;不可能事件的发生的概率为0,记做P(不可能事件)=0;如果A为不确定事件,那么0<p(a)<1< p="">
3、应用新知
例:任意掷一枚均匀骰子。
1.掷出的点数大于4的概率是多少?
2.掷出的点数是偶数的概率是多少?
解:任意掷一枚均匀骰子,所有可能的结果有6)●(种:掷出的点数分别是1,2,3,4,5,6,因为骰子是均匀的,所以每种结果出现的可能性相等。
1.掷出的点数大于4的结果只有2两种:掷出的点数分别是5,6.
所以P(掷出的点数大于4)=2/6=1/3
2.掷出的`点数是偶数的结果有3种:掷出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=3/6=1/2
四、实践题目
1、袋子里装有三个红球和一个白球,它们除颜色外完全相同。小丽从盒中任意摸出一球。请问摸出红球的概率是多少?
2、先后抛掷2枚均匀的硬币
(1)一共可能出现多少种不同的结果?
(2)出现“1枚正面、1面反面”的结果有多少种?
(3)出现“1枚正面、1面反面”的概率有多少种?
(4)出现“1枚正面、1面反面”的概率是1/3,对吗?
3、将一个均匀的骰子先后抛掷2次,计算:
(1)一共有多少种不同的结果?
(2)其中向上的数之和分别是5的结果有多少种?
(3)向上的数之和分别是5的概率是多少?
(4)向上的数之和为6和7的概率是多少?
五、课堂检测
1、甲、乙、丙三个人随意的站一排拍照,乙恰好站中间的概率是( )
A 2/9 B 1/3 C 4/9 D以上都不对
2、在一次抽奖中,若抽中的概率是0.34,则抽不中的概率是( )
A 0.34 B 0.17 C 0.66 D 0.76
3、把标有1、2、3、4…10的10个乒乓球放在一个箱中,摇匀后,从中任取一个,号码小于7的奇数概率是( )
A 3/10 B 7/10 C 2/5 D 3/5
4、某商场举办有奖销售活动办法如下:凡购满100元得奖券一张,多购多得,现有10000张奖券,设特等奖1个,一等奖10个,二等奖100个,则一张奖券中一等奖的概率是
5、一个袋中装有3个红球,2个白球和4个黄球,每个球除颜色外都相同。从中任意摸出一球,则:P(摸到红球)=
P(摸到白球)=
P(摸到黄球)=
6、一个袋中有3个红球和5个白球,每个球除颜色外都相同。从中任意摸出一球,摸到红球和摸到白球的概率相等吗?分别是多少?如果不相等,能否通过改变袋中红球或白球的数量,使摸到的红球和白球的概率相等?
六、课堂小结
回想一下这节课的内容,同学们自己的收获是什么?
1、等可能性事件的特征:
(1)一次试验中有可能出现的结果是有限的。(有限性)
(2)每种结果出现的可能性相等。(等可能性)
2、求等可能性事件概率的步骤:
(1)审清题意,判断本试验是否为等可能性事件。
(2)计算所有基本事件的总结果数n。
(3)计算事件A所包含的结果数。
(4)计算P(A)=/n。
布置作业:
1、P148题6.4知识技能1.2.3
2、问题解决:请大家为“翠苑小区”亲子活动设计一个有奖竞猜活动方案。
板书设计
教学目标
1.了解解方程组的基本思想是消元。
2.了解代入法是消元的一种方法。
3.会用代入法解二元一次方程组。
4.培养思维的灵活性,增强学好数学的信心。
教学重点
用代入法解二元一次方程组消元过程。
教学难点
灵活消元使计算简便。
教学过程
一、引入本课。
接上节课问题,写出所得一元一次方程及二元一次方程组提问怎样解二元一次方程组?
二、探究。
比较此列二元一次方程组和一元一次方程,找出它们之间的联系。
xy46.41(xx5.646.4 )xx5.646.4与xy46.4比xy5.62较而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,
可得一元一次方程。想一想本题是否有其它解法?讨论:解二元一次方程组基本想法是什么?
15xy9例1:解方程组 2y3x1
讨论:怎样消去一个未知数?
解出本题并检验。
12x3y0例2:解方程组 25x7y1
讨论:与例1比较本题中是否有与y3x1类似的'方程?
怎样解本题?
学生完成解题过程。
草稿纸上检验所得结果。
简要概括本课中解二元一次方程组的基本想法,基本步骤。介绍代入消元法。(简称代入法)
三、练习
P27.练习题。
四、小结
本节课你有什么收获?
五、作业
习题2.2A组第1题。
一、教材内容分析
相似变换是图形的一种基本变换,通过学生所熟悉的实际生活的现象,认识相似图形,了解相似变换,进而探索相似变换的一些基本性质;并能认识相似变换的现实生活中的一些简单应用,为今后进一步学习相似三角形打下基础。教材尽可能多地让学生主动参与,动手操作,拓展学生思考与探索的空间,在直观感知,操作确认的基础上,努力探索图形之间的变化关系。
二、教学目标
1、认识相似图形和相似变换。
2、了解相似变换的基本性质,会按要求作出简单的图形(经过相似变换后的图形)。
3、结合教材和联系生活实际,培养学生的学习兴趣和热爱生活的情感。
三、教材的重点和难点
1、 教材重点:认识相似图形和相似变换,会按要求作出简单的图形(经过变换后的图形)。
2、 教学难点:了解相似变换的基本性质
四、〔教学过程〕
教学过程 设计说明
一、创设情景、引出课题。
出示教材中的图形F和F’(运用投影)引导学生观察图形的特点。
(学生可能会从图形的形状上去描述,例如图形的形状一样;也可能从图形的大小上去描述,例如图形的大小不等。)
教师要引导学生细致思考,回答要全面。
二、细致观察、认识特点
由图形F到F’,哪些改变了,哪些没有改变?
由学生小组讨论,然后填入下列的两个空格中。
形状: ;大小 。
从而引出相似图形及相似变换的概念:
由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变),这样的图形改变叫作相似变换。原图形和经相似变换后得到的像,称它为相似图形,图形的放大和缩小都是相似图形。
并让学生举一些在现实生活中的相似图形。
如:按不同比例尺画的地图、在显微镜下观察到的东西与原东西。
让学生举一些在观察生活中的相似变换的例子。
如:相片的放大,缩小等。
例1:如图,把方格纸中的图形作相似变换,放大到形的2倍,并在同一方格纸上画出变换后所得的像。
图形
引导学生结合相似变换的概念及其相似图形的特点来解答这个问题。
1、 取特殊点的方法,在这个方格纸内确定图形的一些特殊点的对应点的位置。然后将它们按原图形的形状用线段连结起来,就得到所得的像。
通过上述的练习,你能回答下列问题吗?
1、 将一个图形作相似变换时,图形中各个角的大小改变吗?请举例说明。
2、 将一个图形作相似变换时,图形中各条线段的长改变吗?怎样改变?
由学生小组讨论,并抽代表回答讨论结果。
然后归纳出图形相似变换的性质。
图形的相似变换不改变图形中的每一个角的大小,图形中的每条线段都扩大(或缩小)相同的倍数。
三、应用新知,体验成功
补充例题:已知,如图从 ABC 到 A’B’C’是一个相似变换,OA’与OA的长度之比为1 :2
(1) A’B’与AB的长度之比是多少?
(2) 已知 ABC的周长为16cm,面积为18cm2
分别求出 A’B’C’ 的周长和面积。
A
A
B O C
B C
(补充此题的目的是进一步应用前面已经形成的概念解决问题,也为今后学习相似形打好基础)
四、归纳小结,充实结构
1、 本节课学习了什么内容。
2、 如何作出按要求相似变换后的平面图形。
3、 相似变换的基本性质。 通过观察两幅优美的图片,导入新课,既激发了学生的浓厚的学习兴趣,又为新知识作好铺垫。
通过小组合作讨论的形式,既提高了学生的参与度,又培养了同学间的合作精神。
通过让学生举一些现实生活中相似的图形及相似变换的例子;既加深了学生对概念的理解,又培养了学生的学习兴趣和热爱生活的情感。
在引导学生结合相似变换概念及相似图形的特点解决问题后,并提出问题。
通过小组讨论的形式来共同探讨、解决问题的方法。一是体现了合作学习;二是教会学生学习数学的方法。在具体的问题中,解决后,要善于归纳规律,从而体现从具体到一般的原则。
归纳出相似变换的性质后,引导学生运用性质解决问题,从而进一步巩固,深化了相似变换,体现了数学是从一般到具体的过程。并为今后进一步学习相似三角形打下基础。
设计思路
1、本设计按“问题情境——数学活动——概括——巩固应用和拓展”的模式呈现教学内容的,这种方式符合学生的认知规律和学习规律,同时也是课堂教学和设计的立足点。
2、体现了学生动手实践、自主探索、合作学习的数学学习方式,充分调动学生的学习积极性,提高学生的参与度。
3、首先引导学生从原有的知识经验中,生成新的知识经验,然后运用它解决问题,形成数学能力。
【知识与技能】
理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】
通过题目,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【情感、态度与价值观】
体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】
理解开平方与平方是一对互逆的运算,会用平方根的。概念求某些数的平方根,并能用根号加以表示。
【教学难点】
能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续打下基础。
【教具准备】
小黑板科学计算器
【教学过程】
一、导入
1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)
2、用计算器分别求,得近似值。(用四舍五入的方法取到小数点后面第三位)
3、0.36的平方根是( )
4、(-5)2的算术平方根是( )
二、题目内容
(一)填空
1、若=1.732,那么=( ) 2、(-)2=( )
3、 =( ) 4、若_=6,则=( )
5、若=0,则_=( ) 6、当_( )时,有意义。
(二)选择
1、下列各数中没有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是( )
A.B.C.D.; 2、4_2-49=0; 3、(25/81)_2=1;
4、求8+(-1/6)2的算术平方根;
5、求b2-2b+1的算术平方根;(b<1)
6、
7、(用四舍五入方法取到小数点后面第三位)
8、肖明家装修用了大小相同的正方形瓷砖共66块,铺成了10.56平方米的房间,肖明想知道每块瓷砖的规格,请你帮助算一算。
三、小结与巩固