作为一名教师,时常需要用到教案,编写教案有利于我们科学、合理地支配课堂时间。那么写教案需要注意哪些问题呢?为同学们整理了高二数学教案优秀4篇,希望能对您的写作有一定的帮助。
教学内容:冀教版义务教育课程标准试验教科书一年级下册86~87页两位数减一位数(退位)
教材分析:本课通过"孙悟空请客"的情境引出新课34-8,激发起学生的学习兴趣。再组织学生动手摆小棒试算,小组讨论交流摆、试算的过程及方法,充分发挥学生的主体作用;"师徒改造花果山",培养学生自学用竖式计算的能力;"唐僧、八戒、沙僧植树,绿化花果山",巩固知识。
学生分析:100以内的两位数减一位数的退位减法是在学习20以内的两位数减一位数的退位减法后进行的,学生已经对两位数减一位数的退位减法有一定的知识基础,掌握了退位减法的算理。本班多数学生对两位数减一位数的退位减法是容易接受的。
设计理念:激趣引入新课,以"孙悟空请客",为情境引入新课提高了学生的兴趣。以学生自主探究新知为主要学习方式,学生摆小棒,自学竖式计算的方法,为学生提供了积极思考、自主探究的空间。
德育目标:对学生进行环境保护教育,增强保护环境意识。
知识目标:
1、在操作、试算的过程中,学习两位数减一位数(退位)的计算方法。
2、学会用竖式计算两位数减一位数(退位),理解"个位不够减从十位借1再减的道理。
能力目标:培养学生动手、动口、动脑的能力。
教学重点:掌握两位数减一位数(退位)的计算方法。学会用竖式计算。
教学难点:理解"个位不够减,从十位借1再减的道理。
教学方法:操作法、直观演示法、自学法、讨论法
教具:投影片、学具:小棒、卡片
板书设计(略)
教学过程:
一、情境引入
1 、情境引入"孙悟空请客""34-8"
师:今天,我给同学们讲一个西游记后转的故事:
孙悟空回到花果山,时间久了,想请师傅和师弟聚聚。于是打电话让师傅和师弟星期天来花果山。星期天唐僧、八戒、沙僧到了。花果山一片荒凉,水帘洞也只有断断续续的几滴水。一打听,孙悟空为挣钱,开了铁矿,破坏了环境,毁坏不少山林。
孙悟空去果园里摘桃子,他只摘了34个桃子,猪八戒吃了8个
唐僧给沙僧提出一个问题:34个桃子,八戒吃了8个,还剩几个桃子?
师:你能帮沙僧算算吗?怎样列算式
生:34-8
师:同学们真聪明!同时教师板书34-8
2 、学生通过摆小棒试算出结果(学生操作,教师巡视)
全班交流自己是怎样摆小棒的。可能有以下两种算法㈠从34里拿出14,14减8得6,20加6得26。㈡从34里拿出10,10减8得2,24加2得26。教师板书(略)
3 、竖式计算
让学生自学用竖式计算的方法。学生自学,教师巡回指导。
4 、学生汇报自学结果及发现的'问题,教师随学生汇报的自学结果。板书略。
重点理解十位数字上的重点符号表示退位。引出个位不够减,从十位借一再减的计算方法。
二、尝试练习
投影出示87页"试一试"61-942-794-6学生独立计算同桌讨论交流。
三、八戒赠树知识应用
孙悟空觉得很没面子,就再次去果园,唐僧、八戒、沙僧随后。到了果园一看,桃树38棵,干枯了9棵,苹果树43棵,干枯了6棵,杏树80棵,干枯了7棵。同学们算算,桃树还剩几棵?苹果树还剩几棵?杏树还活几棵?
1、38-943-680-7
指3名学生板演,其他学生练习本上做,做完后集体订正。
八戒直摇头:"可惜,可惜。我虽然好吃懒做,但我把取经途中的遇到的好的果树移植到我家,经过这几年培育,都成了优良品种,如不嫌弃,我送你几棵,改良一下你这里的品种。也防止沙土流失,还花果山本来面目,顺便也尝尝我的水果" 。
2、还需植多少棵树?
师:八戒打个电话,汽车拉着优良品种果树和水果,来到花果山。于是,唐僧、八戒、沙僧、孙悟空带领猴子们开始植树。咱们帮帮孙悟空植树,好不好?打开书看87页第二题的图,请你仔细观察图意并列式计算,重点说算法。一共55棵,已经植了8棵,还要植几棵?
3、品尝水果
出示卡片,学生抢答。87页3题。
四、小游戏拓展延伸
植完树,休息一会儿,我们做个游戏。我这里有5张卡片,在黑板上贴出"2、5、7、-、=",你们桌子上也有这样的卡片,我们用这些卡片来做一个数学游戏,你能列出几个式子。
游戏规则:1、用这些卡片摆成两位数减一位数的退位减法2、同桌一组,一人摆一人算。
全班交流,教师板书25-772-552-7
同学们用竖式计算出结果。
五、自主小天地
师:唐僧、八戒、沙僧告别花果山。通过"孙悟空请客",我们学习了哪些知识?
自己编题,写在"自主小天地"中。
教学目标
使学生了解并会作二元一次不等式和不等式组表示的区域.
重点难点
了解二元一次不等式表示平面区域.
教学过程
【引入新课】
我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?
【二元一次不等式表示的平面区域】
1.先分析一个具体的例子
我们知道,在平面直角坐标系中,以二元一次方程的解为坐标的点的集合是经过点(0,1)和(1,0)的一条直线 l (如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)的解为坐标的点的集合是什么图形呢?
在平面直角坐标系中,所有点被直线 l 分三类:
①在 l 上;
②在 l 的右上方的平面区域;
③在 l 的左下方的平面区域(如图)取集合 A 的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在 l 的右上方的平面区域,而点(0,0)、(-1,-1)等等不属于 A ,它们满足不等式,这些点却在l的左下方的平面区域.
由此我们猜想,对直线 l 右上方的任意点成立;对直线l左下方的任意点成立,下面我们证明这个事实.
在直线上任取一点,过点 P 作垂直于 y 轴的直线,在此直线上点 P 右侧的任意一点,都有∴
于是
所以
因为点,是 L 上的任意点,所以,对于直线右上方的任意点,
都成立
同理,对于直线左下方的任意点,
都成立
所以,在平面直角坐标系中,以二元一次不等式的解为坐标的点的。集点.
是直线右上方的平面区域(如图)
类似地,在平面直角坐标系中,以二元一次不等式的解为坐标的点的集合是直线左下方的平面区域.
2.二元一次不等式和表示平面域.
(1)结论:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.
把直线画成虚线以表示区域不包括边界直线,若画不等式就表示的面区域时,此区域包括边界直线,则把边界直线画成实线.
(2)判断方法:由于对在直线同一侧的所有点,把它的坐标代入,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点,以的正负情况便可判断表示这一直线哪一侧的平面区域,特殊地,当时,常把原点作为此特殊点.
【应用举例】
例1?画出不等式表示的平面区域
解;先画直线(画线虚线)取原点(0,0),代入,
∴ ∴?原点在不等式表示的平面区域内,不等式表示的平面区域如图阴影部分.
例2?画出不等式组
表示的平面区域
分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.
解:不等式表示直线上及右上方的平面区域,表示直线上及右上方的平面区域,上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分.
课堂练习
作出下列二元一次不等式或不等式组表示的平面区域.
一、课前准备:
【自主梳理】
1、对数:
(1) 一般地,如果 ,那么实数 叫做________________,记为________,其中 叫做对数的_______, 叫做________.
(2)以10为底的对数记为________,以 为底的对数记为_______.
(3) , .
2、对数的运算性质:
(1)如果 ,那么 ,
。
(2)对数的换底公式: .
3、对数函数:
一般地,我们把函数____________叫做对数函数,其中 是自变量,函数的定义域是______.
4、对数函数的图像与性质:
a1 0
图象性
质 定义域:___________
值域:_____________
过点(1,0),即当x=1时,y=0
x(0,1)时_________
x(1,+)时________ x(0,1)时_________
x(1,+)时________
在___________上是增函数 在__________上是减函数
【自我检测】
1. 的定义域为_________.
2、化简: .
3、不等式 的解集为________________.
4、利用对数的换底公式计算: .
5、函数 的奇偶性是____________.
6、对于任意的 ,若函数 ,则 与 的大小关系是___________________________.
二、课堂活动:
【例1】填空题:
(1) .
(2)比较 与 的'大小为___________.
(3)如果函数 ,那么 的最大值是_____________.
(4)函数 的奇偶性是___________.
【例2】求函数 的定义域和值域。
【例3】已知函数 满足 .
(1)求 的解析式;
(2)判断 的奇偶性;
(3)解不等式 .
课堂小结
三、课后作业
1. .略
2、函数 的定义域为_______________.
3、函数 的值域是_____________.
4、若 ,则 的取值范围是_____________.
5、设 则 的大小关系是_____________.
6、设函数 ,若 ,则 的取值范围为_________________.
7、当 时,不等式 恒成立,则 的取值范围为______________.
8、函数 在区间 上的值域为 ,则 的最小值为____________.
9、已知 .
(1)求 的定义域;
(2)判断 的奇偶性并予以证明;
(3)求使 的 的取值范围。
10、对于函数 ,回答下列问题:
(1)若 的定义域为 ,求实数 的取值范围;
(2)若 的值域为 ,求实数 的取值范围;
(3)若函数 在 内有意义,求实数 的取值范围。
四、纠错分析
错题卡 题 号 错 题 原 因 分 析
高二数学教案:对数与对数函数
一、课前准备:
【自主梳理】
1、对数
(1)以 为底的 的对数, ,底数,真数。
(2) , .
(3)0,1.
2、对数的运算性质
(1) , , .
(2) .
3、对数函数
, .
4、对数函数的图像与性质
a1 0
图象性质 定义域:(0,+)
值域:R
过点(1,0),即当x=1时,y=0
x(0,1)时y0
x(1,+)时y0 x(0,1)时y0
x(1,+)时y0
在(0,+)上是增函数 在(0,+)上是减函数
【自我检测】
1. 2. 3.
4. 5.奇函数 6. .
二、课堂活动:
【例1】填空题:
(1)3.
(2) .
(3)0.
(4)奇函数。
【例2】解:由 得 .所以函数 的定义域是(0,1)。
因为 ,所以,当 时, ,函数 的值域为 ;当 时, ,函数 的值域为 .
【例3】解:(1) ,所以 .
(2)定义域(-3,3)关于原点对称,所以
,所以 为奇函数。
(3) ,所以当 时, 解得
当 时, 解得 .
教学目标:
1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。
2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。
教学重点:
体会直角坐标系的作用。
教学难点:
能够建立适当的直角坐标系,解决数学问题。
授课类型:
新授课
教学模式:
启发、诱导发现教学。
教 具:
多媒体、实物投影仪
教学过程:
一、复习引入:
情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。
情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。
问题1:如何刻画一个几何图形的位置?
问题2:如何创建坐标系?
二、学生活动
学生回顾
刻画一个几何图形的位置,需要设定一个参照系
1、数轴 它使直线上任一点P都可以由惟一的实数x确定
2、平面直角坐标系
在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。
3、空间直角坐标系
在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。
三、讲解新课:
1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:
任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置
2、确定点的位置就是求出这个点在设定的坐标系中的坐标
四、数学运用
例1 选择适当的。平面直角坐标系,表示边长为1的正六边形的顶点。
变式训练
如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置
例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?
变式训练
1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程
2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程
例3 已知Q(a,b),分别按下列条件求出P 的坐标
(1)P是点Q 关于点M(m,n)的对称点
(2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)
变式训练
用两种以上的方法证明:三角形的三条高线交于一点。
思考
通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?
五、小 结:本节课学习了以下内容:
1.平面直角坐标系的意义。
2. 利用平面直角坐标系解决相应的数学问题。
六、课后作业: