数列教学说课稿(数列求和专题说课稿)

篇1:数列教学说课稿

数列教学说课稿

一、教材结构与内容简析

》数列》是高中数学新教材第一册(上)第三章第1节。在此之前,学生已学习了》函数》。因此,在数列这一章中要让学生认识到数列可看作是定义域为正整数集(或它的有限子集)上的函数,当自变量从小到大依次取值时对应的一列函数值,不断渗透用函数观点来研究数列,如:递增、递减、最大项、最小项等。本节内容是数列一章的开始部分,因此,在这一节课中,要让学生对数列的概念有比较充分的认识。

二、教学目标

根据上述教材结构与内容分析,考虑到高中学生已有的认知结构心理特征,制定如下教学目标:

1 .基础知识目标:

形成并掌握数列的概念,理解数列的通项公式,并通过数列与函数的比较加深对数列的认识。

2 .能力训练目标:

培养学生观察、归纳、类比、联想等发现规律的一般方法。

3 .个性品质目标:

培养学生认真观察的习惯,培养学生从特殊到一般的归纳能力,提高观察、抽象的能力。

三、教学重点、难点

本节课的重点是:数列的概念及其通项公式。

本节课的难点是:根据数列的前几项抽象、归纳出数列的通项公式。

克服难点的办法是让学生学会观察数列的前几项的'特点,在观察和比较中揭示数列的变化规律。

四、教法

根据本校学生的实际特点,树立以学生发展为本的思想,坚持协同创新原则,本节课采用的教法是在教师的引导下,充分调动学生的学习积极性,有效地渗透数学思想方法,发展学生个性品质,故本节课采用观察发现、启发引导相结合的教学方法。

五、学法

根据学生指导自主性和差异性原则,让学生地“观察-思考-概括-应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。

篇2:高中数学数列说课稿

一、教材分析

1、从在教材中的地位与作用来看

《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

2、从学生认知角度看

从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

3、学情分析

教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

4、重点、难点

教学重点:公式的推导、公式的特点和公式的运用。

教学难点:公式的推导方法和公式的灵活运用。

公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

二、目标分析

知识与技能目标:

理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

过程与方法目标:

通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

情感与态度价值观:

通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

三、过程分析

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

1、创设情境,提出问题

在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的`认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、

2、师生互动,探究问题

在肯定他们的思路后,我接着问:1,2,22,.....,263是什么数列?有何特征?应归结为什么数学问题呢?

探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

3、类比联想,解决问题

这时我再顺势引导学生将结论一般化,

这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

4、讨论交流,延伸拓展

在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,

那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?

设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、

5、变式训练,深化认识

首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

6、例题讲解,形成技能

设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

7、总结归纳,加深理解

以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

设计意图:以此培养学生的口头表达能力,归纳概括能力。

8、故事结束,首尾呼应

最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

9、课后作业,分层练习

必做:P129练习1、2、3、4

选作:

(2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?

设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

四、教法分析

对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用“问题――探究”的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

五、评价分析

本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

篇3:《数列极限》优秀说课稿

《数列极限》优秀说课稿

一、关于教学目的的确定:

众所周知,对数列极限这个概念的理解可为今后高等数学的学习奠定基础,但由于学生对数列极限概念及其定义的数学语言表述的理解比较困难,这种理解上的困难将影响学生对后继知识的学习,因此,我从知识、能力、情感等方面确定了本次课的教学目标。

1.在知识上,使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限;

2.在能力上,培养学生观察、分析、概括的能力和在探索问题中的,由静态到动态、由有限到无限的辨证观点。体验“从具体到抽象,从特殊到一般再到特殊”的认识过程;

3.在情感上,通过介绍我国古代数学家刘徽的成就,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。

二、关于教学过程的设计:

为了达到以上教学目的,根据北大附中教学传统把这次课连排两节。在具体教学中,根据“循序渐进原则”,我把这次课分为三个阶段:“概念探索阶段” ;“概念建立阶段” ;“概念巩固阶段”。下面我将对每一阶段教学中计划解决的主要问题和教学步骤作出说明。

(一) “概念探索阶段”

这一阶段要解决的主要问题在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以前知识相比,接受起来有困难,似乎这个概念是突然产生的,甚至于不明概念所云,故我在这一阶段计划主要解决这样几个问题:

①使学生了解以研究函数值的变化趋势的观点研究无穷数列,从而发现数列极限的过程;

②使学生形成对数列极限的初步认识;

③使学生了解学习数列极限概念的'必要性。

2.本阶段教学安排我采取温故知新、推陈出新的教学过程,分三个步骤进行教学。

① 温故知新由于研究数列极限首先应对数列知识有一个清晰的了解,因此在具体教学中通过对教案中5个具体数列通项公式的思考让学生对数列通项公式这个概念产生回忆,指出以前研究数列都是研究的有限项的问题,现在开始研究无限项的问题。然后引导学生回忆数列是自变量为自然数的函数,通项公式就是以n为自变量的、定义域为自然数集的函数

篇4:数列的极限说课稿

数列的极限说课稿

【一、教材分析】

1、教材的地位和作用:

数列的极限是中学数学与高等数学一个衔接点,它同时也是中学数学教学的难点之一。在中学阶段渗透近代数学的基础知识,是课程教材改革的要求之一。教材把极限作为高中阶段的必修内容,意图是在中学阶段渗透极限思想,使学生初步接触用有限刻画无限,由已知认识未知,由近似描述精确的数学方法,使学生对变量、变化过程有更深的认识,这对于提高学生数学素质有积极意义。

2、教学目标及确立的依据:

教学目标:

(1)教学知识目标:通过趣闻故事和割圆术使学生对“无限趋近”有感性的认识;

从数列的变化趋势理解数列极限的概念;

会判断一些简单数列的极限。

(2)能力训练目标:观察运动和变化的过程,初步认识有限与无限、近似与精确、量变与质变的辨证关系,提高学生的数学概括能力和抽象思维能力。

(3)德育渗透目标:通过教学提高学生学习数学的兴趣和数学审美能力,培养学生的主动探索精神和创新意识。

教学目标确立的依据:《全日制中学数学教学大纲》中明确规定,要从数列的变化趋势理解数列的极限,针对这样的情况,我依照《大纲》的要求制定了符合实际的教学目标,并在教学过程中把重点放在对数列极限的概念意义的准确把握和理解上。为了更好的达到教学目标,我设计一些形象、直观、准确的计算机演示程序,分散教学难点。

3、教学重点及难点确立的依据:

教学重点:数列极限的意义

教学难点:数列极限的概念理解

教学重点与难点确立的依据:数列极限的定义抽象性比较强,它有诸多的定义方式,我们教材是采用描述性方法定义数列的极限。数列极限的定义过程,重点是剖析“数列无限趋近于常数”的含义。所以要求学生的理性认识能力较高,所以本节课的重点难点就必然落在对数列极限概念的理解上。

【二、教材的处理】

由于极限的概念中关系到“无限”,而高中学生以往的数学学习中主要接触的是“有限”的问题,很少涉及“无限”的问题。因此,对极限概念如何从变化趋势的角度来正确理解成为本章的难点。为了解决这一难点,主要结合具体例子,首先要让学生对它形成正确的初步认识,为了理解极限概念积累一定的感性认识,还要注意从“特殊”到“一般”的归纳。在将具体例子时,注意从中提炼,概括涉及极限的本质特征,为归纳出一般概念作好准备;在讲一般概念时,注意结合具体例子予以解释说明,克服抽象理解的困难,使学生对数列极限的概念有很准确的认识。教材中只是介绍了数列极限的定义,着重让学生从变化趋势上去理解,工夫化在概念的理解上,而不过分膨胀内容、增加习题难度和过多的训练。

【三、教学方法和教学工具】

教学方法:通过观察发现特征,教师归纳概念,师生共同探讨。

确立教学方法的依据:数列极限是一个抽象的概念,关键是让学生理解从“有限”到“无限”如何从变化趋势来理解极限的概念,通过师生共同观察讨论来帮助学生深刻理解,为以后的应用打下坚实的基础。

教学工具:多媒体教学设备

【四、教学流程】

主要过程课程设计及决策意图

一、引入

(1)趣闻故事以趣闻故事引入,激发学生学习的兴趣,并使学生对“无限接近”有感性的认识。

(2)割圆术通过割圆术使学生对“无限接近”有进一步的认识,并及时进行德育渗透,增强民族自豪感。

二、数列极限的描述性定义

(1)给出几个数列,让学生由学生归纳当无限增大时数列的项的值的相关特征,教师顺其给出数列极限的描述性列表计算,并借助计算机定义,并通过描述性定义进行辨析,为后面理演示作图,观察归纳数列解“无限趋近”的数量表示做准备极限的描述性定义

(2)概念的辨析

三、“无限趋近”的数量表示

给出一个具体的数列,通过这个数列重点剖析“数列{ }无限趋近于并把这个数列的各项在数轴上常数c”的含义,让学生对“数列无限趋近于常表示,观察数列各项的点与1数c”有进一步的认识。

的距离是越来越趋近于1。

然后通过“越来越趋近于1”

在数量上的反映为当无限增大时,预先给定任意小的正数总可以找到这样的,使得与1的差的绝对值都小于,即<。这样的趋近过程称为“无限趋近于1”

三、练习巩固数列极限概念

四、小结 总结数列极限概念的本质

【五.几点说明】

数学教学注重的是学生在原有的数学知识基础上,在教师的组织和指导下,充分自主的进行讨论、交流,通过表达、接受和转换,获取新的数学知识与方法,重组个人的知识结构,形成良好的数学素养,提高个人获取信息的能力,培养合作学习的精神。所以在这节课的设计上,我主要是通过趣闻吸引学生的兴趣,从而对极限有感性的认识,然后通过具体数列由观察到分析,由定性到定量,由直观到抽象,按照思维的发展规律,有浅入深设计了6个不同的层次:

1、通过趣闻和割圆术,使学生对数列极限有感性的认识,并及时渗透爱国注意教育,增强学生的民族自豪感和对数学学习的兴趣,并激励学生的好奇心和求知欲,在认知方面明确本节课的内容。

2、给出几个具体的无穷数列,让学生通过列表计算,并借助计算机作图观察,并讨论交流归纳出有极限数列当项数无限增大时的直观特点;

3、教师引导学生概括出数列极限的描述性定义;

4、通过对几个精心设计的几个问题的讨论,纠正学生在对数列的描述性定义理解上可能出现的错误,这样可以使学生对数列极限定义的进一步探讨的必要性有了初步的认识,也能够激发起学生的参与热情;

5、通过具体的例子深入分析数列极限的内涵,理解“无限趋近”的数量表示;

6、巩固练习,加深对数列极限概念的正确认识。

小结

重在对数列极限概念的本质进行总结和点拨,以便引起学生对极限的更深刻的思考,同时与教学目标相呼应。

篇5:《数列》教学反思

今年已是第二次教这章,总得来说数列也是在函数的基础进一步加深对函数的理解,因为数列是特殊的函数,因此在教学中要把握这点。在数列这章中,要记忆的内容很多,不过也是有规律可循的。

由于在整章中主要教授四个内容:等差、等比数列及其性质、数列的通向公式的求法、数列的前n项和的求法。但是,这里面等比等差数列又是平行概念,因此总的来说,只有三大板块。在教学中,我按分版块的思路将本章内容进行教学。值得一提的是,由于在等差数列中的性质很多,又很杂,但是使用率又相当的高,为此我采用的是由题引出结论,让学生先有切身体验,再进行讲解,这样使其感受到用性质解题远远比用定义简单得多,从而促使其自觉地使用性质,而且所有的性质我都是从所给的例题中让学生自觉总结归纳出来的,这样比我直接给出性质再让他们用效果好的多。在学好等差数列的性质的基础上,让学生对照等差学等比数列的内容,一是让其注意二者的共同点,二是让其注意到二者的本质区别。从而减轻学习负担。

这样的效果是可见的,学生在对照的基础上加深对知识的理解,通过相应的练习使其掌握知识并自己的运用知识。

学生给我说,他们总觉得这章的内容很多很杂,好像一个题可以用到很多的性质,但是正确的选择一个或者几个性质会使得问题变得简单,但是往往又不知道到底该用哪个性质来解相应的题。对于这个问题我也在思考,对于这样的内容该如何很好的教学,即达到效果又减轻学生的学习负担,因此找出对照学习的方法。对于性质的运用,则采用一对一的例讲及练习,达到例题示范及对应练习。最后再用综合试卷检查学生的学习效果及自己的教学方法是否达到目的。

篇6:《数列》教学反思

数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。

利用给定数列通项公式求任意项的值是一个数的简单的代值运算,而根据给定数列的`有限项归纳总结出数列的通项公式是重点难点内容。

给定一个数列的有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。

为了提高学生的反应能力,我从最简单的数列——正整数数列——开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。

( 1 )数列 1 , 2 , 3 , 4 , 5 ,……是一个正整数数列,每一项与项数相等,其通项公式为 。

( 2 )数列 2 , 4 , 6 , 8 , 10 ,……是一个由正偶数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

( 3 )数列 1 , 3 , 5 , 7 , 9 ,……是一个由正奇数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

( 4 )数列 1 , 4 , 9 , 16 , 25 ,……是一个由正整数的平方数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式

( 5 )数列 1 , , , , ,……是一个由正整数的开方组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

然后参照以上 5 个数列,由同学们归纳出下列数列的通项公式:

( 1 )数列 3 , 5 , 7 , 9 , 11 ,……的通项公式为 。

( 2 )数列 0 , 3 , 8 , 15 , 24 ,……的通项公式为 。

( 3 )数列 , , , , ……的通项公式为 。

( 4 )数列 , , , ,……的通项公式为 。

通过以上由易入难,由简入繁的教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。

学生对数列通项公式的归纳获取思路明确,理解比较深刻,较好地完成了课前预设的目标。

篇7:《数列》教学反思

数列作为一种特殊的函数,是反映自然规律的基本数学模型.数列概念的引入,通常是对日常生活中的实际问题的分析,建立数列的概念,认识数列,为学习特殊数列——等差数列、等比数列奠定基础因此数列概念的引入、形成对数列一章的学习非常重要.以下就数列概念的引入的两次设计作一分析.

一、新课程要求“让学生经历知识的产生和发展过程”.强调了教学中要重视知识的形成过程,因此,在数列的有关概念、公式教学中要根据实际情况尽可能地引导学生对知识的形成过程进行探究,让学生充分体验知识的形成过程,从而使他们在学习中能够积极地思考和主动建构,切忌不要把数列的有关概念、公式生硬地塞给学生去认识、去理解.设计一中虽然也是通过4个实例让学生进行探究,发现各个实例的共同特点,归纳总结数列的概念,但感觉上有些生硬,没有将数列的实质、特点分析透彻,从而对概念的理解不是很明了.而设计二中通过对大量实例的分析,使学生感知、认识、理解数列的概念,从课堂引入到概念的形成显得自然、流畅、水到渠成,学生充分体验知识的形成过程,同时能深刻感受到数列在日常生活中大量存在,能激发学生学习数学的兴趣和积极性.

二、成功的教学过程应该是每一个学生都能积极地参与并得到发展,在教学过程中为学生创造更多的参与机会,使每一个学生参与到教学中,积极思考、探究.设计一只给出了4个实例,对“尖子生”容易理解,而对学有困难的同学可能还没弄清楚怎么回事,教师就给出概念.而设计二中,通过12个实例,逐步深入探究形成数列的概念,每个学生都有参与机会,积极去思考、探索,从而使每个学生都有所收获,这也符合新课程的要求:使不同的学生在数学上得到不同的发展.

三、虽然设计二比设计一有进一步的改进和完善,但实例较多,学生去探究、理解、形成概念需要大量的时间,对本节可后面的教学会受到影响,另外对同一个数在数列中可以重复出现的说明只是按定义,应通过实例①说明.

篇8:《数列》教学反思

开学以来我们进入了第二章数列知识的学习,学完这一块内容以后,我对这块内容有这么几点认识。

首先这章开始之前,要先开个好头,就是这章的引言,以前我很少讲章前引言,但是这次的引言内容特别的好,引言从自然界的花瓣,树杈以及动物的繁殖揭示了一个非常有规律的数列叫斐波那契数列,我看了之后就产生了很大的兴趣,我想这也应该给学生分享一下,果然引起了学生对数列的学习兴趣。

其次是对数列知识的把握,本章主要讲了两个特殊的数列,一个等差数列,一个等比数列,这两个数列从定义上来讲是很好理解的。学生们有这种体会,学等差数列的时候觉得很得心应手,但是一到等比数列会觉得越来越混乱,倒不是因为等比数列比等差数列难,是因为两个数列的规律和性质他们混到了一块,此时应该提醒他们对所学知识进行梳理,两个数列类比着记忆,列成表格进行整理,这样知识网络才会清晰。然后对所做题型进行归类,如:求通项的方法;数列求和的方法等。

最后应该对所学内容上升到理论高度,就是从函数的角度去分析数列,因为数列是特殊的函数,可以通过用函数分析和解决问题的方法去处理数列问题,透过现象看本质,才能达到融会贯通,做题才会游刃有余!

篇9:数列教学反思

数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。

利用给定数列通项公式求任意项的值是一个数的`简单的代值运算,而根据给定数列的有限项归纳总结出数列的通项公式是重点难点内容。

给定一个数列的有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。

为了提高学生的反应能力,我从最简单的数列――正整数数列――开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。

( 1 )数列 1 , 2 , 3 , 4 , 5 ,……是一个正整数数列,每一项与项数相等,其通项公式为 。

( 2 )数列 2 , 4 , 6 , 8 , 10 ,……是一个由正偶数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

( 3 )数列 1 , 3 , 5 , 7 , 9 ,……是一个由正奇数组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

( 4 )数列 1 , 4 , 9 , 16 , 25 ,……是一个由正整数的平方数组成的数列,()观察每一项与项数之间的关系,最后总结归纳出通项公式

( 5 )数列 1 , , , , ,……是一个由正整数的开方组成的数列,观察每一项与项数之间的关系,最后总结归纳出通项公式 。

然后参照以上 5 个数列,由同学们归纳出下列数列的通项公式:

( 1 )数列 3 , 5 , 7 , 9 , 11 ,……的通项公式为 。

( 2 )数列 0 , 3 , 8 , 15 , 24 ,……的通项公式为 。

( 3 )数列 , , , , ……的通项公式为 。

( 4 )数列 , , , ,……的通项公式为 。

通过以上由易入难,由简入繁的教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。

学生对数列通项公式的归纳获取思路明确,理解比较深刻,较好地完成了课前预设的目标。

篇10: 数列教学反思

这节课是高二数学第七章数列的重要的内容之一,是在学习了等差、等比数列的前n项和的基础上,对一些非等差、等比数列的求和进行探讨。

(一)对课前备课的反思

首先,是备学生。学生的基础知识薄弱,基本的分析问题、解决问题的能力欠缺、对于数学的悟性和理解能力都有待提高,因此在选择教学内容上就考虑到了学生现有的认知水平。

其次,课程内容的选择。内容是数列求和,是现阶段学习数列部分一项很重要的内容,在高考题中经常出现。关于数列求和的方法有很多,常见的如倒序相加法、分组求和法、裂项相消法、错位相减法等。在本节课主要介绍了裂项相消法和错位相减法,其目的是让学生先有一个经验,就是能够认识到一些非等差、等比数列都能转化为等差、等比数列后再分别求和。

第三,教学呈现方式的定位。这是很关键的环节,直接影响到本节课的成败。本节课设计上一个难点就是如何设计例题。不能求全而脱离学生实际,也不能一味搞成题海战术,因此结合本班学生的特点,选择设计的题目在难度和容量上较为侧重基础,以适应学生的认知水平,使学生在教学过程中能灵活应用,思维得到提高。

(二)对课中教学的反思

这节课总体上感觉备课比较充分,各个环节相衔接,能够形成一节完整并且系统的课。本节课教学过程分为导入新课、知识回顾、例题讲解、变式训练、课堂小结、布置作业。本节课总体上讲对于内容的把握基本到位,对学生的定位准确,教学过程中留给学生思考的时间,以学生为主体。

(1)学生的创新解答

在例1求1002-992+982-972+962-952L+42-32+22-12的值问题的解决上学生观察式子相邻两项之间都是平方差的形式,利用平方差公式,最后转化成一个等差数列。但是学生出现了两种做法。一种是转化成199+195+191+L+7+3,这样转化是学生最容易想到的。另一种是转化成了100+99+98+L+2+1,这两种方法都是值得肯定的,特别是第二种转化方法让整个课堂变得活跃起来。

(2)课堂中的偶发事件

在例2教学设计中我就曾预设到学生会从两个角度来考虑,一种是得到50个1,另一种就是将奇数和偶数分别合并。若是第二种就可以很自然就引出另一种求和方法――分组求和法。但是一位同学的回答出乎我的意料,这种做法在我预想之外,当时我对他的陈述及时做出肯定和鼓励,同时我的脑子在快速地反应怎样总结他的解法,等他讲完了,我首先是对他的做法给予了肯定,并且引导学生发现n个正偶数的和n个正奇数的和之差恰好就等于项数n。尽管能从容不慌地面对了偶发事件,但是还是略为显得处理的粗糙了一点,对他的表述没有概括到位。

(三)课后反思,再设计

一节课下来,我摸索出了一节课的设计要贴近学生的实际,符合他们的认知水平,按照学生的认知规律来组织教学。在课堂教学过程中,要始终把学生放在第一位,学生是学习的主体,教师充当的是引导者。学生总会有“创新的火花”在闪烁,教师应当充分肯定学生在课堂上提出的一些独特的见解,这样不仅使学生的好方法、好思路得以推广,而且对学生也是一种赞赏和激励。同时,这些难能可贵的见解也是对课堂教学的补充与完善,可以拓宽教师的教学思路,提高教学水平。

篇11: 数列教学反思

探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,而是通过数学建模活动启发学生,引导学生从实际情境中发现规律。类比等差数列通项公式的获得过程,寻求等比数列中四个量之间的关系,引导学生利用迭代法及叠加法得到等比数列的通项公式 。在教学活动中渗透了数学建模的思想。

在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。

本节课后,最大的一个感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,而且内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。

本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导。由于前边已经学习了等差数列的有关内容,本节课主要就是采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有条理,课件展示得当,时间把握恰当。

就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。

课后反思,使我更深刻地认识到教学不仅是一门学问,也是一门艺术,值得我们在日常教学中不断探索,不断学习,不断研究,不断反思,只有这样才能不断地进步。这也为我以后的教学奠定了很好的基础,让我明确了自己今后努力的方向。在今后的教学中我会不断地反思,寻找不足,争取更大的进步。

篇12: 数列教学反思

在等比数列的教学中,特别是探索等比数列通项公式的环节中,教师不应简单地给出公式让学生机械记忆,这样很容易让学生思维僵化而且并没有起到让学生归纳类比的思想。所以在教学中通过建模活动启发学生,引导学生从实际情境中发现规律,类比等差数列通项公式的获得过程,寻求等比数列中首先,公比,项数,第n项这四个量之间的关系,引导学生用迭代法及叠乘法得到等比数列的通项公式 。

在教学活动中渗透了数学建模的思想。在这个活动中不断将等差与等比的概念及方法做对比,让学生更加清楚地了解等比数列的特征。在等比数列概念的建立及通项公式的探索过程都充满了类比的归纳的数学思想,目的是使学生体会等差数列与等比数列的知识的有关联系,感受数学的整体性。

在这一节课后,一个很大的感受就是在课堂上我们要说的每一句话,要提的每一个问题,包括内容先后顺序的设置都必须反复推敲,细细琢磨。语言要简练,提出的问题要有针对性,要能启发学生,内容的设置必须切实符合学生的认知规律。我们不仅要考虑到学生的实际水平,而且需要预先想到课堂中学生会提到的问题以及出现的错误,并及时对学生的表现给与充分的表扬、鼓励以及正确的引导。现在的教学需要使用鼓励教育,充分调动学生的积极性和能动性,打开学生思维。

本节课是等比数列的第一课时,注重概念的讲解以及通项公式的推导和分析应用。在前面的教学中,学生已经有了等差数列的有关内容,这节课的重要思想采用类比的思想,在教师的引导下,以学生为主体完成整个课堂教学。就课堂反馈情况来看,我的引导比较到位,讲解也比较透彻,重点突出,前后呼应,学生完成的比较理想,实现了预期的教学目标。学生的课堂活动很积极,课堂气氛融洽,实现了良好的师生互动,完成了预先的教学设计过程。板书有待改进,课件展示得当,但时间把握有点仓促。就学生的课后反馈来看,基础较好的学生反映课堂容量较小,也有部分同学反映练习题比较简单,随堂练习在层次上没有太大差异,不能很好的满足各个层次学生的需要,今后在习题的选择上应多下功夫,多查阅些资料,精选细练,力求让每个学生各有所得,都能找到适应个人实际的练习,帮助他们更好的理解当堂的基础知识,也便于课后学生个人的复习总结。更好的实现课堂教学的时效性。

经过这次公开课,另外一个重要的收获是我们备课的时候一定要认真备好三维目标,特别是情感价值态度。只有带着情感态度价值带来备课才能从宏观上来把握整堂课,头脑里清楚我们将带非学生什么东西,这样我们的教学才会具有目标性。这堂课下来,我更多的只是注意了基础知识和基础技能,而忽略了带给学生的思想上的总结。

经过四年的教学让我认识到教学不仅是一门学问,也是一门艺术。教学需要我们在日常教学中不断总结和探索,不断学习,不断研究反思,这样才能在教学中进步和创新。

篇13: 数列教学反思

根据上午说课后其他老师的建议,我做了修改:

(一)引入部分简化,斐波那契数列的学习同样也运用了化难为易的思想,在刘xx老师的授课《斐波那契数列》中多次提到难易的转化,我们的学生也认真地进行了这节《斐波那契数列》的学习,给我们的学生试课可以这样引入:

孩子们,我们在学习《斐波那契数列》时是怎么发现小兔子数量的规律呢?对,化难为易,我们可以用化难为易的方法解决很多问题,那老师请你们来试试连线游戏,在平面上有100个点,这些点能连成多少条线段?

学生回答不上来时,教师指导:100个点连线有点多有点难,老子说:“天下难事做于易。”我们就从最简单的两个点开始研究,用数学的思考方法解决点连线的问题。这样的引入斐波那契数列就不只是欣赏,而是数学思考方法的延续。可是,不知道其他学校的教师能否重视教材65页的阅读资料《斐波那契数列》,所以还是没底。

(二)探究过程的连线过程又做了一遍,原来用了四张幻灯片而且一直一闪而过,感觉有点杂有点多,我修改用一个表格一张幻灯片呈现,这样就不觉得繁杂。这点怪我有点懒了,用别人现成的,所以今天又用了半个下午修改了一遍。

篇14: 数列教学反思

数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。

利用给定数列通项公式求任意项的值是一个数的简单的代值运算,而根据给定数列的有限项归纳总结出数列的通项公式是重点难点内容。

给定一个数列的有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。

为了提高学生的反应能力,我从最简单的数列――正整数数列――开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。

通过以上由易入难,由简入繁的教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。

篇15:数列

 §3.1.1、的通项公式 目的:要求学生理解的概念及其几何表示,理解什么叫的通项公式,给出一些能够写出其通项公式,已知通项公式能够求的项。重点:1的概念。按一定次序排列的一列数叫做。中的每一个数叫做的项,的第n项an叫做的通项(或一般项)。由定义知:中的数是有序的,中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。2.的通项公式,如果{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做的通项公式。从映射、函数的观点看,可以看成是定义域为正整数集N*(或宽的有限子集)的函数。当自变量顺次从小到大依次取值时对自学成才的一列函数值,而的通项公式则是相应的解析式。由于的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。难点:根据前几项的特点,以现规律后写出的通项公式。给出的前若干项求的通项公式,一般比较困难,且有的不一定有通项公式,如果有通项公式也不一定唯一。给出的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。过程:一、从实例引入(P110)1.  堆放的钢管    4,5,6,7,8,9,102.  正整数的倒数    3.  4.  -1的正整数次幂:-1,1,-1,1,…5.  无穷多个数排成一列数:1,1,1,1,…二、提出课题:1.  的定义:按一定次序排列的一列数(的有序性)2.  名称:项,序号,一般公式 ,表示法 3.  通项公式: 与 之间的函数关系式如 1:      2:      4: 4.  分类:递增、递减;常;摆动;                  有穷、无穷。5.  实质:从映射、函数的观点看,可以看作是一个定义域为正整数集               N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。6.  用图象表示:— 是一群孤立的点          例一 (P111 例一   略)三、关于的通项公式1.  不是每一个都能写出其通项公式 (如3)2.  的通项公式不唯一   如: 4可写成      和                                 3.  已知通项公式可写出的任一项,因此通项公式十分重要例二  (P111  例二)略           四、补充例题:写出下面的一个通项公式,使它的前 项分别是下列各数:1.1,0,1,0.                                    2. , , , ,                       3.7,77,777,7777                        4.-1,7,-13,19,-25,31                         5. , , ,          五、小结:1.的有关概念2.观察法求的通项公式六、作业 :  练习P112  习题 3.1(P114)1、2七、练习:1.观察下面的特点,用适当的数填空,关写出每个的一个通项公式;(1) , , ,(   ), , …(2) ,(  ), , , …  2.写出下面的一个通项公式,使它的前4项分别是下列各数:(1)1、、、;        (2) 、、、;                         (3) 、、、;  (4) 、、、。3.求1,2,2,4,3,8,4,16,5,…的一个通项公式4.已知an的前4项为0, ,0, ,则下列各式 ①an=    ②an=  ③an=  其中可作为{an}通项公式的是 A ①         B ①②         C ②③        D ①②③ 5.已知1, , , ,3, …, ,…,则 是这个的(    ) A. 第10项    B.第11项    C.第12项    D.第21项      6.在{an}中a1=2,a17=66,通项公式或序号n的一次函数,求通项公式。7.设函数 ( ),{an}满足 (1)求{an}的通项公式;(2)判断{an}的单调性。8.在{an}中,an=(1)求证:{an}先递增后递减;(2)求{an}的最大项。 答案:1. (1) ,an= (2) ,an=       2.(1)an=                  (2)an=         (3)an=        (4)an=       3.an=    或an=这里借助了1,0,1,0,1,0…的通项公式an=。4.D  5.B   6. an=4n-2

7.(1)an=    (2) <1又an<0, ∴ 是递增

篇16:初中数学的说课稿—数列

数列(第一课时)的说课稿

一、教材结构与内容简析

本节内容在全书及章节的地位:《数列(第一课时)》是高中数学新教材第一册(上)第3章第一节。数列是在紧接着第二章函数之后的内容,数列是一个定义域为正整数集(或它的有限子集)的函数当自变量由小到大依次取值时对应的一列函数值。它在教材中起着承前启后的作用,一方面,可以加深学生对函数概念的认识,使他们了解不仅可以有自变量连续变化的函数,还可以有自变量离散变化的函数;另一方面,又可以从函数的观点出发变动地、直观地研究数列的一些问题,以便对数列性质的认识更深入一步。数列还有着非常广泛的实际应用;数列还是培养学生数学能力的良好题材。所以说数列是高中数学重要内容之一。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试观察、归纳、类比、联想等数学思想方法。

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,我制定如下教学目标:

1、基础知识目标:形成并掌握数列的概念,理解数列的通项公式。并通过数列与函数的比较加深对数列的认识。

2、能力训练目标: 培养学生观察、归纳、类比、联想等发现规律的一般方法。

3、情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

三、教学重点、难点、关键

本着课程标准,在吃透教材基础上,我觉得本节课是本章内容的第一节课,是学生学习本章的基础,为了本章后面知识的学习,首先必须掌握数列的概念,其次数列的通项公式是研究后面等差数列、等比数列的灵魂,所以我认为数列的概念及其通项公式是教学的重点。由特殊到一般,由现象到本质,要学生从一个数列的前几项或相邻的几项来观察、归纳、类比、联想出数列的通项公式,学生必须通过自己的努力寻找出数列的通项an与项数n之间的关系来,对学生的能力要求比较高,所以我认为建立数列的通项公式是教学的难点。我觉得教学的关键就是教会学生克服难点,办法是让学生学会观察数列的前几项的特点,在观察和比较中揭示数列的变化规律。

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈。

四、教法

数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我进行了这样的教法设计:在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受。

五、学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。随着《基础教育课程改革纲要(试行)》的颁布实施,课程改革形成由点到面,逐步铺开的良好态势。其中转变学生学习方式是本次课程改革的重点之一。课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,我根据学生的认知水平,我设计了 ①创设情境——引入概念②观察归纳——形成概念③讨论研究——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

六、教学程序及设想

接下来,我再具体谈一谈这堂课的教学过程:

(一) 创设情境——引入概念我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

1、由生活中的具体的数列实例引入:a、时间:时钟、挂历 b、植物:植物的茎

2、用古老的有关国际象棋的传说引入,符合高一学生喜欢探究新奇奥妙事物的特点。有利于激发学生的学习兴趣。

(二)观察归纳——形成概念

由实例得出几列数,再有目的地设计,如自然数、自然数的倒数、大于零的偶数、开关(0,1,0,1,0,1,„)、“一尺之棰,日取其半,永世不竭。”以及从1984年到我国体育健儿参加六次奥运会获得的金牌数15,5,16,16,28,32所形成的数列,教师引导学生概括总结出本课新的知识点:数列的定义。

(三)讨论研究——深化概念

课前我精心设计的几个数列中已经含概了有穷数列、无穷数列、递增数列、递减数列、常数数列,等待学生观察、讨论、交流后掌握以上几个概念。数列的相关概念:数列中的每一个数都叫这个数列的项,并且依次叫做这个数列的第一项(首项),第二项,…第n项,…。数列的一般形式可写成:a1,a2,a3,…,an„,简记为{an},其中an表示数列的第n项。 接着引导学生再观察以上几个数列的项与项数之间的关系,如果数列{an}的第n项an与序号n之间的关系可以用一个公式an=f(n)来表示,那么这个公式就叫做这个数列的通项公式。 最后通过数列通项公式与函数解析式的对比研究,使学生得出数列通项公式an=f(n)的图象是一群孤立的点。 在数列中,项数n与项an之间存在着对应关系。如果把项数n看作自变量,那么数列可以看作以自然数集(或它的有限子集{1,2,3,„,n})为定义域的函数当自变量由小到大依次取值时对应的一列函数值。而数列的通项公式也就是相应函数的解析式。当我们把直角坐标系的横坐标看作项数n,纵坐标看作项an时,我们得到的图象就是一群孤立的点。

(四)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,并且把课本的例题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。

(五)总结反思——提高认识

由学生总结本节课所学习的主要内容:⑴数列及其有关概念;⑵根据数列的通项公式求其任意一项;⑶根据数列的一些相邻项求数列的通项公式;⑷数列与函数的关系(数列是一种特殊的函数)。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

(六)任务后延——自主探究

学生经过以上五个环节的学习,已经初步掌握了探究数列规律的一般方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

七、简述板书设计。

结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。希望各位专家领导对本堂说课提出宝贵意见。

篇17:数列求和教学反思

本节课是高三一轮复习课,主要是对特殊数列求和。对于数列的复习,我觉得主要是复习好两个方面,一个是如何求数列的通项公式,另一个是如何求解数列的前n项和。

这里的求和,对学生来说是一个难度很大的内容,因为此前学生一直是使用等差和等比数列的求和公式进行计算的,让他们忽然去理解和掌握错位相减和裂项相消等方法去求和,难度可想而知,所以这堂课不仅仅是复习课,而且也是一堂新课,课题是求和,学生一看就明白,但求和的对象变了,求和的方法变了。我在教学时,尊重学生的理解和掌握能力,循序渐进,不赶进度,学生要是不能掌握,那就再来一遍,特别是错位相减法,学生知道什么样的数列可以用错位相减法,但算不出正确的结果,所以课堂上在学生板演的基础上我再归纳一下做错位相减法的题目时要注意的地方,什么地方容易错,什么地方要注意等,争取在做作业时不要再犯同样的错误。而且在经后的教学过程中要多培养学生的运算能力以及解题能力,提高他们的动手能力,思维逻辑能力和分析问题的能力,数列求和在整个数列知识中试比较综合的内容,知识点多,方法也多,在做题时首先要思考一下该用什么方法,然后再着手,加上细心才能把题目做对,而现在的学生就是缺乏这点耐心和细心,总想着花最少的时间做较多的事,有时还不检验最后的结果,这是我们教师在教学过程中要渗透的地方,教会学生耐心、细心地做题,确保题目的正确率,在今后的教学中我会在这方面加强培养学生,同时在备课的时候加强培养学生的动手、动脑能力。

篇18:数列应用教学反思

本节课是高三总复习冲刺阶段的复习课,为了更好地将知识点连贯起来,对数列及其求和问题有一个更深的认识,首先展示了20xx年的高考大纲中对数列问题的基本要求,也就是本节课的教学目标,要让学生知道数列问题在高考中考什么,怎么考。它规范了教师的教学行为和学生的学习行为,克服教学中的随意性,教学目标的出示有助于引导学生明确本课时的学习任务和要求。

同时将历年高考中出现的典型问题作为例题进行展示,为的是让学生充分把握好数列问题的难易度,做到心里有底。学生在自主探索和合作交流中理解并掌握本节课的内容。在整个探究学习的过程中充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。例1中运用的分组求和法和例2中的裂项法,从学生课堂反馈来看掌握较好,这也是本节课的重点。例3所涉及到的错位相减法显然难度有点太,学生完成起来有点困难。

梳理归纳环节上,总结反思了每道例题的出题意图,意在培养学生归纳、总结的习惯,让学生自主构建知识体系,清楚高考中每一道题都有它自己的考察方向。激励学生以更大的热情投入到最后的,冲刺复习中去。

目标检测部分,意在将本节课的重点做一个重温,两道练习与例1和例2是相对应的。目的就是要让学生一定要掌握本节课的重点。

本节课的优点:

1、整体的思路比较清晰:展示目标,组内讨论,小组展示并释疑解惑,然后通过练习进行辨析,学生自己归纳求和方法,再接下去是方法的应用和巩固,即目标检测,知识梳理、布置作业。整个流程比较流畅、自然。

2、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;能准确的指出学生在处理问题中的不足并帮助及时改正。

本节课的遗憾:

1、在做时例3这张幻灯片没有设计好,导致字有重叠看不清。

2、还应更注重细节,讲究规范,强调反思。

总体来讲,在教授中始终把以学生为本的教学理念贯穿本课。采用将上课的主动权交给学生,而学生的学习积极性有很大的提高,学习效果好。通过对本节课系统的回顾,梳理,发现部分学生在知识点的运用上还存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。我会吸取教训,更上一层楼。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

篇19:数列应用教学反思

数列的概念这一节的教学内容分为两部分:一是利用给定数列通项公式求出任意项的值。二是根据给定的数列的有限项,归纳总结出数列的通项公式。

利用给定数列通项公式求任意项的值是一个数的简单的代值运算,而根据给定数列的有限项归纳总结出数列的通项公式是重点难点内容。

给定一个数列的有限且连续的几项,归纳出通项公式的关键在于理解数列每一项的值与项数(项在数列里的序号)之间的关系。这实际上是一个逆向的抽象思维过程。学生要想提高这种抽象思维能力,必须对项数(正整数数列)有非常敏感的反应能力。

为了提高学生的反应能力,我从最简单的数列――正整数数列――开始,分析数列的通项公式的归纳提取过程,并对正整数数列变形构成新的数列,通过观察分析归纳出通项公式。

通过以上由易入难,由简入繁的教学过程,使同学们理解到数列的每一项无非就是项数的加、减、乘、除以及开方、乘方等数学运算的综合结果。这样,一方面消除学生对数列学习的畏难情绪,最重要的方面是培养了学生科学的理解问题、分析问题、解决问题的能力。

学生对数列通项公式的归纳获取思路明确,理解比较深刻,较好地完成了课前预设的目标。

热门教案

学诗词

学名句