以下是小编整理的11篇数学工程问题说课稿,欢迎阅读分享,希望对您有所帮助。
一、说教材
工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。
教学重点是:掌握工程问题的数量关系和解答方法。
难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。
二、说教法
现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。
三、说学法。
教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。
四、说教学过程。
根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。
第一环节是复习铺垫。
由于用分数解工程问题与整数解工程问题的`思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。(2)如果这项工程每天完成 ,( )天完成。巩固了旧知,为学习新知作好铺垫。
第二环节是学习新知识,分三步进行。
第一步:加深对整数解工程问题的数量关系的理解。
出示:三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成?
引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。
第二步:探究用分数解工程问题。
这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。
第三步,比较分数解和整数解工程问题,加深印象。
比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。
第四环节是练习、巩固。
练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。
教学目标:
1、了解工程问题的结构特征及数量关系,学会解答比较简单的工程问题。
2、在主动参与、发现和揭示数学原理和方法中提高思维水平。
教学流程
一、复习铺垫
1、谈话:
同学们,我们学校准备在明年暑假把操场上的跑道改造成塑胶跑道。你见过塑胶跑道吗?它有什么优点?但铺塑胶跑道需要很多钱,还需要专业的施工队。
2、出示:
(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。
(2)如果这项工程每天完成 ,( )天完成。
3、揭题:
在日常生活中,像修跑道、造桥、运货、搞绿化等各种工作,我们统称为工程,今天的这节课我们就一起来研究工程问题。
二、探究新知
1、谈话:
如果我们能将修塑胶跑道这项工程进行招标。应聘单位有两个,他们都承诺能保质保量完成任务。但甲工程队单独完成需10天,乙工程队单独完成需8天。
问:(1)如果你是校长,你选择哪个施工队?为什么?
(2)但新学期开学迫在眉睫,为了 同学们在新学期一开学就能在跑道上上体育课,如果你是校长,又该怎么办呢?
2、出示:
三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成。
(1)独立解题 200÷(200÷10+200÷8)= 4 (天)
(2)交流反馈、小结数量关系式:
讨论:200÷10与200÷8各表示什么?这两个商加起来又表示什么?再用200除以它们的和得到了什么?根据什么数量关系算出合作的时间?
板书(工作总量÷工作效率和=合作工作时间)
(3)那如果要修建的塑胶跑道是400米,800米又要多少天时间呢?独立做。
400÷(400÷10+400÷8)=4 (天)
800÷(800÷10+800÷8)= 4 (天)
(4)讨论:三道题做完了,你有什么发现?猜猜如果跑道是1000米的话,用几天时间完成?跑道长度是a米呢?看来完成工程的天数跟工作重量没多大关系?那么到底为什么工作总量在变化,可完工的时间却一样?
3、出示:
例、三毛小学要修一条塑胶跑道,由甲工程队单独施工需10天;由乙工程队单独施工要8天完成。两队共同施工需要多少天完成?
(1)分析思考:A、工作重量不知道怎么办?
B、甲工程队的工作效率是多少?怎样想出来的? 乙工程队呢?
(2)怎样列式。(尝试)。
(3)交流说说 。1÷( + )中。 、各表示什么? + 又表示什么。“1”
一、说教材。
1、教学内容:
义务教育六年制小学数学第十一册第79页例9、练习二十。
2、教材简析。
“工程问题”是研究工作总量、工作效率和工作时间三个数量之间关系的一个数学问题。它的解题思路与整数工作问题的思路相同,仍是工作量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量看作单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率,这是工程问题的基本特征。从教材安排上看,由准备题、例题、做一做和巩固练习的构成,题量较大,不仅要求学生能求工作时间,还要能求部分工作量。教好这部分知识,不仅可以训练学生的分析、综合、抽象、概括等思维能力,而且可以提高学生综合运用知识能力。
3、教学目标
(1)使学生了解工程问题的结构特征,掌握工程问题的解题方法,学生解答比较简单的工程问题。
(2)在教学过程中培养学生尝试、探究、猜测、合作交流等能力,渗透数学的应用意识。
4、教学的重点、难点和关键:
(1)教学重点:
掌握工作问题的结构特征和解答方法。
(2)教学难点:
为什么将工作总量抽象为单位“1”,建立工作总量与工作效率的对应关系。
(3)教学关键:
掌握工程问题的基本数量关系,会迁移运用,组建新的认识结构。
二、说教法、学法
1、在教法上主要是采用引导发现法,通过教师适时地“引”来激发学生主动地“探”,使师生双边活动产生共鸣,和谐发展。创设情境,提供生活化的学习材料,密切与现实生活的联系,激发学习动机,引导学生积极主动地参与,从而培养数学意识。关注学生的'自主探索和合作交流,让学生经历“问题――探究――应用”的学习过程。
2、在学法上要鼓励学生动手、动口、动脑,在活动中学习数学,在活动中善于抓住新旧知识的连接点,主动构建数学知识,逐步由“学会”向“会学”转变,充分体验成功的喜悦。
三、教学过程。
1、复习铺垫
出示两道复习题,让学生回答后,概括出基本数量关系:工作总量÷工作效率=工作时间。
2、探究新知
(1)让学生弄清题意,理解数量关系。
(2)独立思考,学生自己列出算式。
(3)合作交流。在独立思考、自主探索基础上,组织学生进行合作交流,学生要充分展示解题思路。
①30÷(30÷10+30÷15)
②1÷(-+-),学生进行讨论,把“长30千米”去掉,又如何解答?把题中谁看单位“1”?甲乙队的工作效率又怎样表示?根据什么数量关系列式?让学生共同帮助来发现工程问题的解题方法。
(4)反馈评价。
四、巩固练习
(1)完成“做一做”。
(2)练习二十第1题。
五、总结
学习这节课有什么收获?在生活中还有哪些类似工程问题的实际问题?让学生寻找生活中的数学问题解决问题。
数学相遇问题说课稿
教学目标
1.理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题.
2.培养学生初步的逻辑思维能力和解决简单实际问题的能力.
3.渗透运动和时间变化的辩证关系.
教学重点
掌握求路程的相遇问题的解题方法.
教学难点
理解相遇问题中时间和路程的特点.
教学过程
一、以旧引新
(一)口答列式,并说明理由.
1.一辆汽车每小时行60千米,4小时行多少千米?
2.一辆汽车4小时行了240千米,每小时行多少千米?
3.一辆汽车每小时行60千米,行驶240千米需要几小时?教师板书:速度×时间=路程
(二)创设情境
1.录音(或录相)“有一天,张华放学回家,打开书包正准备做作业.发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”
2.小组集体讨论
(1)张华送到李诚家;
(2)李诚来张华家取走;
(3)两人同时从家出发,向对方走去,在途中相遇,交给李诚.
3.认识相遇问题
(1)找两名学生表演第三种情况,其余学生观察并说出是怎么走的?(同时,从两地,相对而行)
(2)两个人之间的距离有什么变化?(越来越近,最后变为零)教师指出:当两个人的距离为零时,称为“相遇”
具有“两物、同时从两地相对而行”这种特点的行程问题,叫做“相遇问题”板书课题:相遇问题
(三)出示准备题:
张华距李诚家390米,两人同时从家里出发,向对方走去.张华每分走60米,李诚每分走70米.
根据已知条件填写下表
走的时间
张华走的路程60米
李诚走的路程70米
两人所走路程的和
现在两人的.距离
1分
60米
70米
2分···
3分···
思考:
1.出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)
2.两个人所走路程的和与两家的距离有什么关系?(两人所走路程和=两家距离)
二、教学新课
(一)教学例3
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米.经过4分钟,两人在校门口相遇.他们两家相距多少米?
1.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记.请同学解释这两个词的含义.
2.动画演示两人行进的过程,并在图中显示出已知数据.(演示课件:相遇问题)
3.由学生尝试解答例3
4.结合线段图订正答案.
方法一:65×4+70×4 方法二:(65+70)×4
=260+280=135×4
=540(米) =540(米)
速度和×相遇时间=路程
5.比较
(1)两种算法哪一种比较简便?
(2)两种算法之间有什么联系?
三、巩固练习
(一)志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分钟两人相遇,两地相距多少米?
(二)两列火车从两个车站同时相向开出.甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇.两个车站之间的铁路长多少千米?
讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?板书:出发地点:两地
出发时间:同时
运动方向:相向(相对、对面)
运动结果:相遇
(三)两只轮船同时从上海和武汉相对开出.从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇.上海到武汉的航路长多少千米?
(四)两辆汽车同时从一个地方向相反方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.经过3小时,两车相距多少千米?
1.由学生用手势表述题意.
2.比较:与前面题目相比,有什么不同?又有什么共同之处?
(五)甲、乙两列火车从两地相对行驶.甲车每小时行75千米,乙车每小时行69千米.
甲车开出后1小时,乙车才开出,再经过2小时相遇.两地间的铁路长多少千米?
1.由学生用手势语言向同组同学介绍题意.
2.由学生独立解答
3.出示四种不同解法,请同学小组讨论并做出判断.
方法一:75×1+75×2+69×2 方法二:75×(1+2)+69×2方法三:75×1+(75+69)×2 方法四:(75+69)×(2+1)
四、课堂小结
通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?
(相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动??)今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?
怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?请同学们在课下思考?
五、课后作业
(一)两只轮船同时从上海和武汉相对开出.从武汉开出的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时相遇,上海到武汉的航路长多少千米?
(二)两辆汽车同时从一个地方向相反的方向开出.甲车平均每小时行44.5千米,乙车平均每小时行38.5千米.过3小时,两车相距多少千米?
小学数学练习题精选:工程问题
1、填空。
修一条路,甲队3天修了14 ,乙队5天修了13 。
①甲队每天修这条公路的( )( ) ,5天修了这条路的( )( ) 。
②乙队每天修了这条公路的( )( ) ,4天修了这条路的( )( ) 。
③两队合修,( )天修完这条路。
2、一项工程,甲队单独做10天完成,乙队单独做15天完成。
①甲队每天完成这项工程的`( )( ) ,乙队每天完成这项工程的( )( ) 。
②甲、乙两队合做,每天完成这项工程( )( ) 。
③甲、乙合做,( )天可以完成这项工程。
④甲、乙合做4天后,还剩下全工程的( )( ) 。
3①一件工作,甲独做要12小时完成,乙独做要10小时完成,甲、乙合作多少小时完成?
②一批布料,做上衣可以做20件,如果做裤子可以做30条,这批布料可以做多少套衣服?
4、一份材料,甲单独打完要3小时,乙单独打完要5小时,甲、乙两人合打多少小时能打完这份材料的一半?
5、打扫多功能教师,甲组同学13 小时可以打扫完,乙组同学14 小时可以打扫完,如果甲、乙合做,多少小时能打扫完整个教室?
6生产一批玩具,甲组要4天完成,乙组要6天完成,两组合做几天能完成这批玩具的56 ?
7、一项工程,甲队单独做要5小时,乙队单独做要6小时。甲队先做了3小时,然后由乙队去做,还要几小时才能完成?
8、一项工程,甲队独做15天完成,已知甲队3天的工作等于乙队两天的工作量,两队合做几天完成?
数学植树问题的说课稿
教材分析
“植树问题”是人教版新课程标准实验教材四年级下册第八单元“数学广角”的内容。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单入手的思想,整个知识点的学习需要3至4个课时,本节课设计的是第一个课时的学习。
设计理念
以教材知识编排为基准,创造性地应用教材,改编教材题例,将复杂的.植树问题进行简单化分解,实现知识点的各个击破,三个知识点的学习过程在对比中进行,通过最后的系统总结,帮助学生实现知识的内化。
教学目标
1、利用现实生活中的情景,引导和组织学生通过观察、推理及动手操作,认识植树问题中间隔数与植树棵数之间存在的关系,即:两端栽——植树棵树=间隔数+1;只栽一端——植树棵树=间隔数;两端不栽——植树棵树=间隔数-1。
2、引导学生能熟练应用所学植树规律解决生活中的实际问题。
3、培养学生从实际问题中发现规律,应用规律解决问题的能力。
教学重点
认识植树问题中间隔数与植树棵数之间存在的关系,即:两端栽——植树棵数=间隔数+1;只栽一端——植树棵数=间隔数;两端不栽——植树棵数=间隔数-1。
教学难点
引导学生利用生活中的植树情景,发现并理解植树问题中间隔数与植树棵数之间的关系。
教具准备
教师:幻灯片、学习卡片
学具准备
学生:直尺或三角板
教学过程
整个知识点的教学过程在收信后的回信过程中进行,具体环节如下:收到信(问题的产生)——引导学生结合学习卡1进行动手操作、观察、推理等得出植树问题中两边栽时棵数和间隔数之间的关系式——引导学生结合关系式解答——谈话引出新的问题(如果只栽一端)——引导学生结合学习卡2进行动手操作、观察、推理等得出植树问题中只栽一端时棵数和间隔数之间的关系式——引导学生结合关系式解答——谈话引出新的问题(两端不栽)——引导学生结合学习卡3进行动手操作、观察、推理等得出植树问题中两端不栽时棵数和间隔数之间的关系式——引导学生结合关系式解答——知识点的对比整理(回信)——应用所学知识解决问题(2个小题)——拓展练习(结合学习知识点和学生实际情况设计)——课堂小结(先让学生交流,再结合板书小结,最后进行知识点延伸铺垫)。
一、教材分析
《数学广角》是新教材中新增设的一个内容,它主要是介绍和渗透一些数学思想方法,使学生运用这些数学思想方法解决一些简单的实际问题或数学问题。例1借助学生熟悉的题材,渗透集合的有关思想,并利用集合图的方式求出两个小组的总人数。
二、学情分析
在本节课前,学生虽然已经学习过分类的思想方法,但集合这部分内容比较系统、抽象,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
三、设计理念:
《课程标准》中明确指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,让学生在生动具体的情境中学习数学。”根据这一理念,结合本节课教学内容,我大胆对教材进行再创重组,以学生熟悉的体育活动为情境贯穿教学始终。让学生在自主探究——合作交流——构建方法的过程中,有效的学习。
四、教学目标:
根据课标的要求、教材内容、学生学情我设立了如下教学目标:
1、使学生借助直观图,利用集合的思想方法解决简单的实际问题,并能运用数学语言进行描述。
2、通过活动,丰富学生对直观图的认识,培养学生的观察能力、思考能力,创新能力、评价说理能力。
3、使学生在主动参与数学活动过程中体验身边数学的价值,获得成功的体验,提高学生学习数学的兴趣。
五、教学重、难点:
教学重点:使学生初步体会集合的有关思想方法并能用之来解决实际问题。
教学难点:理解重复部分。
六、教学流程
(一)创设情境,激发兴趣。
以我校正在开展的“阳光体育运动”为载体,现场调查跳绳、踢毽子这两项活动学生的喜欢情况。请某一小组同学将带有自己名字的'卡片贴到黑板相应的项目下面,如果两项都喜欢,那么就各贴一张。
【预设】若这一小组学生喜欢跳绳、踢毽子的情况,没有出现交集时,教师可继续调查第二组学生的喜欢情况,或教师自身也准备了两张名字一起参加这一组的调查。
【设计意图】根据学生的实际情况,在教材处理上,我没有利用原有例题,而是进行教材重组。选择更贴近学生实际生活的题材——现场调查学生喜欢跳绳、踢毽子的情况,这样处理使学生置身于熟悉的生活情境中,多种感官被调动起来,感受到数学问题来源于自己的身边。让学生把自己的名字贴到黑板上应该说大大激发了学生的参与热情和学习兴趣。
(二)合作探究,解决问题。
此环节分三步进行。
第一步:设置问题,引发探究。
以“喜欢跳绳、踢毽子的一共有多少人?”这一问题为线索,当学生计算的结果与实际人数进行比较,产生矛盾时,适机组织学生通过观察、讨论,发现有几名同学既喜欢跳绳又喜欢踢毽子,计算时将它们重复计算了,应将重复的名字拿掉一张。
接着教师将重复的名字拿掉一张,将剩下的名字贴在黑板中间,引导学生观察,使学生明确黑板上每一部分表示的含义。(只喜欢跳绳的、只喜欢踢毽子的、既喜欢跳绳又喜欢踢毽子的)
【设计意图】:给孩子们创设一种自主探究的学习氛围,让孩子在探究中发现问题、提出问题、并解决问题。
第二步:认识集合图、明确各部分的意义。
请学生上黑板前指一指哪部分是喜欢跳绳的同学?哪部分是喜欢踢毽子的同学?并将它们用红、黄两种颜色的椭圆形圈起来。
引导学生仔细观察集合图,充分交流感知集合图的作用和每一部分表示的意义,再利用课件进一步明确、巩固集合图每一部分表示的意义。
【设计意图】:通过让学生仔细观察,交流感知,及多媒体演示,明确集合图的作用,各部分表示的意义,从而突破本课的重难点。
第三步:列式计算。
请学生根据集合图每一部分表示的意义,列式解决问题,鼓励学生用多种方法解答。
预设学生会列出四种方法解答。
【设计意图】:在鼓励算法多样化、择优选择的同时,使学生进一步明确集合图每一部分表示的意义,加深对集合图重复部分的理解,从而突破本课难点。
(三)巩固深化,拓展应用。
本着“由浅入深、循序渐进、既重视双基,又重视新知识的应用”的原则,我设计了三个层次的练习。
1、基本练习
出示班级女生跳绳比赛统计表,在明确各部分意义后,请学生按统计表填写韦恩图,并计算总人数。
【反思】:学生在填写的过程中没有顺序,速度慢,反复修改。根据这一情况,我及时更改了教学设计,在学生填写后,请快速而准确的同学介绍填写方法,——先写中间重叠部分,再写两边。让其他学生根据此方法进行修改。课后反馈情况理想,只有一名学生填错。这样设计不仅提高了学生的学习效率,还使学生懂得学习方法的重要。
2、拓展练习
学校为同学们准备了跳绳比赛的奖品,两个奖箱里各放四种奖品,问两个奖箱里共放几种奖品?并说明理由
【设计意图】:这道题答案不唯一,具有一定的开放性、挑战性,有利于培养学生的发散性思维。
3、课后延伸
这里我设计了两道题
(1)让学生观察生活中的重叠现象,并与父母及好朋友交流。
(2)以小组为单位,调查本组同学家长抽烟喝酒情况,并利用集合图表示出来。然后根据调查结果写一写自己的感受。
【设计意图】:培养学生收集整理信息的能力,再次体验生活中的重叠现象,体会数学知识的应用价值。让学生写感受体现学科整合的理念,并渗透健康意识。
通过本节课的教学,我深深体会到数学学习是一个“主动建构、动态生成”的过程。本节课,我本着学生带着问题走入课堂,带着更多的问题走出课堂这一理念,让学生动手实践,探索发现,使学生在真正的探究活动中学会学习,为今后的可持续发展奠定了基础。
教学内容:九年义务教育六年制小学数学第十一册第79页工程问题应用题
教学要求:
1.使学生掌握工程问题的特点和解答方法,并能解答有关的简单实际问题。
2.培养学生分析解答应用题的能力,及迁移类推触类旁通的能力。
教学重点:使学生掌握工程问题的特点和解题方法。
教学难点 :工作总量用单位“1”表示及工作效率所表示的含意。
教学手段:多媒体
教学过程 :
一.设计情境,复习铺垫:
1.谈话:同学们,你发现最近我们南雄城发生了哪些变化?
生答:略
师:如果我们要把新建沿江路人行道两边进行绿化。
①这项工程计划15天完成,平均每天完成几分之几?
②如果这项工程每天完成 ,几天可以完成全部工程?
2、导入 新课:在日常生活中,像搞绿化、修马路、盖房屋、造桥、运货等各种工作,统称为工程,今天我们就一起来研究“工程问题”。
二.尝试探究、探讨新知:
1.谈话:如果我们将新建路两旁的绿化工程进行招标,应聘单位有三个,他们都承诺能保质保量完成任务,但甲工程队单独完成需10天,乙工程队单独完成需15天,丙工程队单独完成需18天。请问:
①你选择哪个队施工?为什么?
②为了加快工程完成速度,又该做怎样的选择?
2.(投影)出示例题,进行研讨。
(1)要绿化30公顷土地,甲队单独完成要10天,乙队单独完成要15天,两队合作,几天可以完成?
要求:①学生独立完成。
②分析题意:明确:30÷10 、30÷15与(30÷10+30÷15)各求出的是什么?怎样求合作时间?
(2)把“30公顷”改为“10公顷”、“1公顷”。这时分别怎样求合作时间?学生独立完成,并汇报。
板书: 30÷(30÷10+30÷15)=6天
10÷(10÷10+10÷15)=6天
1÷(1÷10+1÷15)=6天
问:通过这三个算式,你发现了什么?(工作总量在变化可用的时间都一样)
怎样求出合作时间呢?
板书:工作总量÷效率和=合作时间
为什么绿化面积加大了,可用的时间却都一样呢?
(3)(出示去掉具体绿化面积是多少的题目)
通过读题看看现在这道题与前面三道题有什么不同?
①、学生独立解答,相互交流。
②、弄清:表示什么?表示什么?
又表示什么?要求合作时间,为什么要用1÷( + )?
讨论:已知条件中去掉了具体的数量也能求出问题,这种做法与前面具体的数量计算结果的方法比较,有什么相同的`地方与不同的地方?
不同:一是具体的工作总量,另一题是没有具体的工作总量,而是用单位“1”表示。
相同:解题的思路是一致的,数量关系也相同,合作时间=工作总量÷工作效率和。
把全部工作量看作单位“1”是工程问题的特点,这个“1”可代表一项工程,一块地,一堆煤,一段路程等等。
再看一看:为什么绿化面积水逐渐加大,可用的时间却都一样呢?
明确:工作总量虽然变化了,但每天完成工作量的几分之几没有变。把工作量“30公顷”、“45公顷”、“60公顷”都可以看作单位“1”,这三个算式实际就是例题的后一种形式,所以工作时间不变。
三、综合应用、巩固提高:
(1)为了加快工程速度,三个工程队一起完成这项工程需几天?
(2)根据上面给出的情境,绿化工程,甲队单独完成需10天,乙队单独完成需10天,丙队单独完成需18天。
大家提问,共同解答。
①甲乙合做几天完成全工程的一半?
②甲乙合做几天后,还剩全工程的 ?
③甲乙合做2天后,剩下的丙队来完成还需几天?
④甲、乙、丙合做3天后,还剩全部工程的几分之几?
……
4、看书质疑。
三、全课总结:
这节课我们共同研究了工程问题这类应用题,了解了工程问题的特点及解题思路和方法,同时解决了我们生活中的问题。同学们通过学习还有什么新的想法和见解。
四、课外实践:
编题练习:
五、回归评价:
希望同学们能够用我们所学的知识解决生活中的实际问题,把我们南雄建设得更加美好
小升初数学工程问题练习题及答案参考
为了能更好更全面的做好复习和迎考准备,确保将所涉及的考点全面复习到位,让孩子们充满信心的步入考场,现特准备了小升初数学工程问题练习题。
1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?
解:
1/20+1/16=9/80表示甲乙的工作效率
9/80×5=45/80表示5小时后进水量
1-45/80=35/80表示还要的进水量
35/80÷(9/80-1/10)=35表示还要35小时注满
答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的.工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天
1/20*(16-x)+7/100*x=1
x=10
答:甲乙最短合作10天
3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时?
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
数学 - 《工程问题》的教学设计
教学内容:人教版第九册第四单元 P95 例9教学目标:使学生认识工程问题的结构特点,掌握它的数量关系,解题思路和解题方法,并能正确地解答工程问题的基本题。
教学过程
一、创设情境,设疑激趣
出示小黑板
本班语、数两学习委员分发数学作业本,语文学习委员单独分发要2分钟,数学学习委员单独分发要3分钟,大家猜一猜,两人一起分发要几分钟?
1、学生读题
2、先让学生大胆猜想
3、然后老师提出:
我们一起来探究这个问题好吗?
二、由浅入深,辅路搭桥
出示小黑板:
1、一迭作业本60本,聪聪分发需要2分钟,每分钟发多少本?明明分发需要3分钟,每分钟发多少本?
2、一迭作业本60本,聪聪每分钟发30本,明明每分钟发20本,两个人合发,几分钟发完?
3、一迭作业本60本,聪聪单独分发需要2分钟,明明单独分发需要3分钟,两人合发需要几分钟?
让学生独立完成,然后指名回答,教师板书:
1、60/2=30(本) 60/3=20(本)
2、60/(30+20)=1.2(本)或者:设X分钟发完?
(30+20)x=60
X=60/50
X=1.2
3、60/(60/2+60/3)或者:设两人合发需要X分钟
X*(60/2+60/3)=60
三、引导探究,挑战问答
老师质疑:
假如上面三道题都隐去“60本作业本”这个条件,你们能探究出解决问题的办法吗?
1、要求学生分小组合作思考、探究 。
2、让各小组组长把解决问题的办法讲出来,老师板书:
A、1/2=1/21/3=1/3
B、1/(1/2+1/3)或者:设需要X分钟完成
X*(1/2+1/3)=1
在学生合作探究过程中,教师应参与其中一小组,并成为其中的一员,在恰当时机提问:
“你怎么知道这是对的.?”
“还有没有别的思路或可能性?”
“列式为1/(2+3)你们认为对吗?为什么?”
四、促进思维,拓展发散
解决好“分发本子”问题后,我问学生:
你能利用今天所学的知识,解决实际生活中类似的“做套装衣服问题”、“相遇问题”吗?
五、反馈练习,以促双基
1、P95 “做一做”
2、练习二十五 第1题
3、指导学生自学例9
六、总结
1、今天学习了什么内容?
2、这节课你最大的收获是什么?哪些地方你还不太懂?
家庭作业:
练习二十五 第2、3、4题
教学目标
1.理解工程问题的数量关系,掌握工程问题的特征,分析思路及解题的方法.
2.能正确熟练地解答这类应用题.
3.培养学生运用所学到知识解决生活中的实际问题.
教学重点
理解工程问题的数量关系和题目特点,掌握分析、解答方法.
教学难点
理解工程问题的数量关系.
教学过程
一、复习旧知.
(一)解答下面应用题
1.挖一条水渠100米,用5天挖完,平均每天挖多少米?
列式:100÷5=20(米)
2.挖一条水渠,用5天挖完,平均每天挖全长的几分之几?
列式:
教师提问:上面这两道题研究的是哪三种的关系?已知什么,求什么?
学生回答:上面两道题研究的是工作总量,工作时间和工作效率的三量关系,已知工作总量和工程时间,求工作效率.
3.挖一条水渠100米,平均每天挖20米,几天可以挖完?
列式:100÷20=5(天)
4.挖一条水渠,每天挖全长的 ,几天可以挖完?
列式: (天)
师生小结:上面3、4两题研究的是工作总量、工作效率和工作时间问题.已知工作总量,工作效率求工作时间.
二、探索新知.
(一)教学例9.
例9.一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
1.教师提问:
(1)用我们学过的方法怎样分析?怎样解答?
30÷(30÷10+30÷15)=6(天)
(2)把上题的一段公路完成60千米、90千米、30千米、24千米等如何分析解答?
60÷(60÷10+60÷15)=6(天)
90÷(90÷10+90÷15)=6(天)
24÷(24÷10+24÷15)=6(天)
(3)通过计算,你发现了什么?(结果都相同)
(4)为什么结果都相同呢?
工作总量的具体数量变了,但数量关系没有变;工作效率是用“工作总量÷工作时间”得到的,所以工作效率是随着工作总量的变化而变化的.因此它们的商也就是工作时间不变.)
(5)去掉具体的数量,你还能解答吗?
把这段公路的长看作单位“1”,甲队每天修这段公路的 ,乙队每天修这段公路的 .两队合修,每天可以修这段公路的( )
列式:
2.教师:这就是我们今天学习的新知识.(板书课题:工程问题)
3.归纳总结.
4.小组讨论:工程问题有什么特点?
工作总量用单位“1”表示,工作效率用 来表示数量关系:工作总量÷工作效率(和)=工作时间
5.练习.
(1)一项工程,甲队单独做20天完成,乙队单独做要30天完成,如果两队合作,每天完成这项工程的几分之几?几天可以完成?
(2)加工一批零件,甲单独用12小时,乙单独做用10小时,丙单独做用15小时.甲、丙两人合作,多少小时完成?甲、乙、丙三人合作多少小时可以完成?
三、巩固练习.
(一)选择正确的算式.
一堆货物,甲车单独运4小时可以完成,乙车单独运6小时可以完成,现在由甲、乙两车合运这批货物的` ,需要多少小时?正确列式是( )
四、归纳总结.
今天我们这节课学习了新的分数应用题―工程应用题.其解答特点是什么?(工作总量÷工作效率和=合作时间)工程应用题的结构特点是什么?(把工作总量看作单位“1”,工作效率用“ ”表示.)工程应用题还有很多变化,以后我们继续学习.
小学六年级数学教案――《工程问题应用题》教学设计
教学内容:小学数学第十一册第98页例10
教材简析:工程问题应用是分数应用题中的一个特例。它的数量关系和解题思路与整数工程应用题基本相同。本节教学,主要是用整数工程应用题引入,让学生根据具体数量解答,然后把工作总量抽象成一个整体,用单位“1”表示。通过教学,使学生理解工程问题的实际意义,掌握它的解题方法,培养学生的分析,对比能力和综合、概括能力,提高他们的解题能力,发展他们的智力。
教学目标:1.认识分数工程问题的特点。
2.理解、掌握分数工程问题的数量关系,解题思路和方法。
3.能正确解答分数工程问题。
教具、学具准备:投影片几张。
过程设计:
一、复习引入:
口答列式:
1.修一条100米长的跑道,5天修完。平均每天修多少米?
2.一项工程,5天完成,平均每天完成几分之几?
3.修一条100米长的跑道,每天修25米,几天修完?
4.一项工程,每天完成1/8,几天可以完成全工程?
(通过这组题,复习工程问题的三个基本数量关系,以及工作总量、工作效率、不定具体的数量应样表示,为学习用分数解答奠定基础。)
二、新课:
1、引出课题:工程问题应用题.
2、教学例10
(1)出示例10:一段公路长30千米,甲队单独修10天完成,乙队单独修15天完成,两队合修几天可以完成?
(2)审题后,根据条件问题列成下表,分析解答,讲算理:
小学六年级数学教案――工程问题应用题
教学目标:
1、理解比较抽象的工作总量、工作效率、工作时间的数量关系。
2、掌握一般工程问题的结构特征。
3、学会解题方法,会正确解答一般的工程问题。
教学重点:学会解题方法,会正确解答一般的工程问题。
教学难点:理解比较抽象的工作总量、工作效率、工作时间的数量关系。
教学准备:投影片。
教学过程:
一、复习准备:
1、口答,并说出数量关系式。
(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。他们要几天完成?
60÷(3+2)=12天
工作总量÷工作效率=工作时间
(2)加工80个零件,甲用4小时完成。平均每小时加工多少个零件?
80÷4=20(个)
工作总量÷工作时间=工作效率
2、回答,说说你是怎么想的。
(1)加工一批零件,甲用4小时完成。平均每小时完成这批零件的几分之几?
1÷4=
(把工作总量看作“1”)
(2)一项工程,甲单独修建,需要4天完成,乙单独修建,需要8天完成。
①甲队独修,每天完成全工程的( )。
②乙队独修,每天完成全工程的( )。
③两队合修,每天完成全工程的( )。
小结:刚才这几道题中,工作总量所以用“1”表示,因为工作总量不再是一个具体的数量,而工作效率是一个分数,这个分数实质上是单位时间完成了工作总量的几分之几。
二、教学新课。
1、出示例2.(小黑板)
一项工程,由甲工程队单独施工,需8天完成。由乙工程队单独施工,需要12天完成。两队共同施工需要多少天完成?
(1)审题后,想:这道题需我们求什么?你可以根据哪个关系式来解答?
(2)学生尝试做,并同桌交流。
(3)反馈说明。
1÷(+)=1÷(+)=1÷=4(天)
(把工作总量看作“1”,两队的工作效率就是+。)
教师:如果不把工作总量看作“1”,而是看作2、3、5、10……结果会怎样?
学生任选一个数列式计算。
小结:计算结果是一样的。不过看作“1”是最简捷、最常用的。
2、练一练。
(1)填空。
①甲做一项工作需5天完成,每天完成这项工作的( ),3天完成这项工作的( )。
②一项工程,甲队独做需要36天完成,乙队独做需要45天完成。两队合做,一天可以完成这项工程的( ),( )天可以完成。
(2)修一条公路,甲队独做需10天,乙队独做需15天,甲乙两队合做,几天可以完成?
(全班练,抽学生写在投影片上,同桌互说是怎么想的)
3、小结:四人小组讨论。刚才练的题有什么特点?我们是怎么解的?
教师:这就是我们今天学的工程问题。(出示课题)
三、巩固练习
1、变式练习
打印一份稿件,甲单独干要10小时,乙单独干要12小时,丙单独干要15小时。
(1)甲、乙、丙三人合打1小时,完成这份稿件的几分之几?
(2)三人合打一小时后,还剩下几分之几?
1-=
(3)甲、乙、丙三人合干,几小时可以完成?
1÷(++)=4(小时)
(4)甲、乙两人合干5小时,可以完成这份稿件的几分之几?
(+)×5=
(四人小组交流,想想还可以提出哪些问题并解答。)
2、看书,质疑。
四、教学小结:今天我们学习了什么?你是怎样来解答这些应用题的?
五、作业:《作业本》P70[67]
小学六年级数学教案――工程问题应用题
教学目标:
1、理解比较抽象的工作总量、工作效率、工作时间的数量关系。
2、掌握一般工程问题的结构特征。
3、学会解题方法,会正确解答一般的工程问题。
教学重点:学会解题方法,会正确解答一般的工程问题。
教学难点:理解比较抽象的工作总量、工作效率、工作时间的数量关系。
教学准备:投影片。
教学过程:
一、复习准备:
1、口答,并说出数量关系式。
(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。他们要几天完成?
60÷(3+2)=12天
工作总量÷工作效率=工作时间
(2)加工80个零件,甲用4小时完成。平均每小时加工多少个零件?
80÷4=20(个)
工作总量÷工作时间=