以下是小编精心整理的10篇人教版初中数学矩形说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
矩形初中数学第一课时说课稿
各位领导、老师大家好:
今天说课的题目是八年级(下册)第六章第一节《矩形》第一课时。下面我分设计理念与思路、教材分析、学生分析、教学目标、教学过程设计、板书设计等六个方面说一下这节课。
一、设计理念与思路:
新课标以培养学生的能力为目标,积极倡导他们亲身经历探究为主的学习活动,培养他们的好奇心和探究欲,发展他们对科学本质的理解,使他们学会探究解决问题的策略,为他们的终身学习和生活打好基础。在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。在课堂教学中,帮助学生检视和反思自我,唤起学生成长的渴望;帮助学生寻找、搜集和利用学习资源,设计恰当的学习活动;帮助学生发现他们所学东西的实际意义,营造和维持学习过程中积极的心理氛围;故此本课从生活中的数学(做窗框)入手,充分展示“观察、操作-猜想、探索-说理”的认识过程,使学生能在直观的基础上学习说理,体现直观与简单推理的融合基础知识的掌握与能力的形成。
二、教材分析:
本节课是平行四边形与特殊平行作业(矩形、菱形和正方形)之间第一课时,起到承上启下的作用,是本章内容的一个重点。同时,矩形又是人们日常生活中最常见的应用最广泛的一种几何图形,使学生体会到几何知识来源于实际又作用于实际的辨证关系。在研究几个图形之间的从属关系时也涉及了辨证思维和认识论的一些观点,这对于发展学生的逻辑思维能力和渗透辨证唯物主义观点的教育,都有一定的作用。
三、学生分析:
学生在小学学习过长方形的简单知识,有了这样的基础,再加上八年级学生思维活跃,兴趣广泛,获取信息渠道多,对新事物的追求与敏感,他们完全有能力通过自主探究的学习方式借助老师恰当的点拨,来学好矩形的性质。这就要求我们在课堂上要敢于放手,让学生去想,去说,去做,去表达,去自我评价,去体会成功的喜悦。面对问题,让学生大胆实践,使学生在实践中发现真知,从而体验到成功的喜悦,更加增强了学好数学的信心,促进学生形成积极乐观的态度和正确的人生观。
四、教学目标:
知识目标:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.
2、会初步运用矩形的概念和性质来解决有关问题.
3、渗透运动联系、从量变到质变的观点.
能力目标:使学生能应用矩形定义、性质等知识,解决有关问题,进一步培养学生的逻辑推理能力。
情感目标:通过引入,使学生加深对矩形概念的理解,并以此激发学生的探索精神。
教学重点:矩形的性质。
教学难点:矩形的性质的灵活运用、学生的书写。
五、教学过程设计:
1、情境创设:让学生从生活中的数学引入(做窗框)入手,引导学生注重观察生活,从而进一步研究矩形的性质进入学习情境。
2、探索活动:活动一操作-观察-探索
活动分三个层次:第一层次:让学生了解做窗框的过程,即从中包含的数学知识,平行四边形的判定,两组对边分别相等的四边形是平行四边形。
第二层次:引导学生探索四边形ABCD的特点。学生通过进一步探究可以发现平行四边形ABCD中有一个角是直角,这样就为引入矩形的概念做好铺垫。
第三层次:概括得出矩形概念。在第二层次的基础上概括得出矩形概念,同时,要启发学生注意:矩形的概念有两方面的涵义,它既是矩形的一条性质,又是矩形的一种判定方法。
活动二探索矩形的性质
活动分四个层次:
第一层次:让学生举例说明生活中的矩形,使学生直观初步认识矩形,及矩形在生活中的广泛应用。
第二层次:让学生通过量课堂课本封面来了解矩形的'性质,复习近平行四边形的性质,并使学生理解矩形与平行四边形的特殊与一般的辨证关系,矩形具备一般平行四边形的性质,从而让学生叙述矩形具备的一般平行四边形的性质。
第三层次:引导学生思考,促使学生理解,由于矩形比一般平行四边形多一个特殊条件:有一个角是直角,因此矩形具有一些特殊性质,探索它的特殊性质要从它的特殊处有一个角是直角入手。引导学生观察:改变平行四边形形状,它的边、角、对角线有怎样的变化?当一个角为直角时,它的四个角有什么特点?两条对角线有怎样的特殊关系?这一层次旨在利用四边形的不稳定性,借助直观,引导学生通过合情推理去探索、发现结论。同时在演示的过程中,学生可以体会到知识发生的过程,渗透了量变到质变的辩证唯物主义观点的教育。
第四层次:在第三层次的基础上,引导学生对矩形的角、对角线的性质进行说理,同时发展学生有条理地表达能力。
3、例题讲解:
讲解课本例1。本例设计的目的直接应用矩形的有关性质;同时为总结矩形中具有的一些特殊图形(四个等腰三角形)做铺垫。也进一步培养学生的数学表达能力和书写能力。
4、课堂练习:例题讲解完毕后,通过问题链来归纳总结矩形的相关特点:由OA=OB=OC=OD可知图中有几个等腰三角形?这些三角形全等吗?面积相等吗?几个直角三角形?研究矩形的轴对称性。有关矩形的问题往往转化为直角三角形或等腰三角形的问题解决。
5、课堂小结:引导学生归纳总结,教师补充升华:矩形的性质
6、知识拓展
1、培养学生用多种方法解决实际和积极思考的习惯,同时为下一节课创设问题情境,(引入课中问题中另一种解决办法)
2、通过生活知识引导学生探究数学,应用数学,培养学生的学习数学的兴趣(门框窗框为什么要做成矩形的?)
7、布置作业:课本P134T1、2、3、4;作业本(2)P33
六、板书设计:
矩形的性质(一)、定义:(二)、矩形的性质(三)、例题
七、反思:
本节课的容量决定学生板书时间太少。
初中数学说课稿《矩形的判定》
各位评委、各位老师:
你们好!本日我要为各人讲的课题是《矩形的判断》,凭据新课标理念,对应本节,我将以教什么、怎样教以及为什么如许教为思绪,从课本阐发、讲授目的阐发、讲授计谋阐发、讲授历程阐发四个方面加以阐明,
一、教材分析(说教材):
1、教材所处的地位和作用:本节教材是初中一年级第二册,第19章《四边形》的第二节的内容,是初中教学的重要内容之一。一方面这是在学习了不等式的基础上,对不等式的进一步深入和拓展;另一方面,又为学习不等式组等知识奠定了基础,是进一步研究不等式的工具性内容。因此我认为本节起着承前启后的作用。
2、教学目标:1、通过探索和交流使学生逐步得出矩形的判定方法,使学生亲身经历知识发生发展的过程,并会用判定方法解决相关的问题。2、通过探究中的猜想、分析、类比、测量、交流、展示等手段,让学生充分体验得出结论的过程,让学生在观察中学会分析,在操作中学习感知,在交流中学会合作,在展示中学会倾听。培养学生合情推理能力和逻辑思维能力,使学生在学习中学会学习。3、使学生经历探究矩形判定的.过程,体会探索研究问题的方法,使学生在数学活动中获取成功的体验,增强自信心。
3、教学重点、难点:教学重点:掌握矩形的判定方法及证明过程教学难点:矩形判定方法的证明以及应用
下面为了讲清重点和难点,使学生达到本节课的教学目标,我再从教法和学法上谈谈:
二、教学策略(说教法):
1、教学手段:通过动手实践、合作探索、小组交流,培养学生的的逻辑推理、动手实践等能力。
2、教学方法及其理论依据:通过探索与交流,逐渐得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。
三、教学过程
环节一:创设情境、导入新课
通过上节课对矩形的学习,谁能告诉我矩形是怎样定义的?(通过对矩形定义的回顾,引出判定矩形除了定义外,还有哪些方法,导入新课。)
回顾:1、矩形的定义:有一个角是直角的平行四边形叫矩形2、矩形的性质:对边:对边平行且相等。对角:四个角相等,都是直角。对角线:互相平分且相等。3、平行四边形的性质:
平行四边形的性质平行四边形判定
平行四边形两组对边分别相等
平行四边形两组对边分别平行 两组对边分别平行(或相等)的四边形是平行四边形
平行四边形一组对边平行且相等
平行四边形对角线互相平分 一组对边平行且相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
平行四边形两组对角分别相等 两组对角分别相等的四边形是平行四边形
环节二:尝试发现,探索新知:活动一:学生分成学习小组,限定仅用手中量角器尝试判定课前准备好的四边形纸板是否为矩形纸板,并说明理由,
(此问题的解决以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的定义,得出矩形的判定定理一。教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并适当给予点拨。)活动结束,由小组代表汇报交流结果,并可适当板书进行推证、讲解。在此过程中,全体同学可互相补充、互相评价,培养学生的语言表达能力、推理能力。
活动二:学生分成学习小组,限定仅用直尺尝试判定课前准备好的平行四边形纸板是否为矩形纸板,并说明理由。(此问题的解决仍以分组合作交流的形式进行,学生在探究过程中根据已有的知识积累——矩形的判定定理一,得出矩形的判定定理二。)通过此种互动过程,让全体学生参与其中,获得不同程度的收获,体验成功的喜悦。
定理一、定理二得出后,总结矩形的三种判定方法,并对题设进行比较、区分,使学生进一步明确定理应用的条件。(学生比较,归纳。)
环节三:应用辨析,巩固定理
总结:矩形判定方法1有一个角是直角的平行四边形是矩形矩形判定方法2有三个角是直角的四边形是矩形。
矩形判定方法3对角线相等的平行四边形是矩形。为了帮助学生巩固定理,应用定理,练习如下:
一、判断题:1、四个角都相等的四边形是矩形2、对角线相等的四边形是矩形。3、对角线互相平分且相等的四边形是矩形。4、一组对角互补的平行四边形是矩形。
二、填空题:
1、若四边形ABCD的对角线AC、BD相等,且互相平分于O,则四边形ABCD是_形,若∠AOB=60,那么AB:AC=_,若AB=4cm,BC=_cm,矩形ABCD的面积为_。
2、两条平行线被第三条直线所截,两组同旁内角的平分线相交所成的四边形是_形。习题设置原则及解决方法说明:
判断题的设计加强学生对所学定理的理解和掌握,使学生能将给出的条件转化为应用定理所需的条件,辨析判定定理的题设,以便更好地应用定理。填空题第一题是对教材例2的改编,第二题是对教材习题的改编,这两个问题的解决分别应用所学定理,使学生能够学习致用。这两道题的解决方法是先采用独立完成形式,有困难的学生可以求助老师或同学,学生互助完成,派学生代表板书讲解。
环节四:开放训练,发散思维
变式训练
如图,△ABC中,点O是AC边上的一个动点,
过点O作直线MN∥BC,设MN交∠BCA的
平分线于点E,交∠BCA的外角平分线于点F。
(1)求证:EO=EF(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
变式训练的设置,旨在发散学生的思维,使不同层次的学生都能有所收获,而移动、旋转等问题也是近年中考的热点。学生思考、讨论完成,教师适当点拨,加以讲解。
环节五:反思小结,体验收获.今天你学到了什么?谈谈你的收获。再现知识,教师点评,对学生在讲堂上的积极互助,大胆思索接纳肯定,提出盼望。
关键六:部署作业,反馈回授通过作业反馈对所学知识的掌握结果,并进一步巩牢固理,应用定理。
初中数学《矩形》教案
一、教学目标
1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力
二、重点、难点
1.重点:矩形的判定.
2.难点:矩形的判定及性质的综合应用.
三、例题的意图分析
本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的.判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.
四、课堂引入
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?
通过讨论得到矩形的判定方法.
矩形判定方法1:对角钱相等的平行四边形是矩形.
矩形判定方法2:有三个角是直角的四边形是矩形.
(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)
五、例习题分析
例1(补充)下列各句判定矩形的说法是否正确?为什么?
(1)有一个角是直角的四边形是矩形; (×)
(2)有四个角是直角的四边形是矩形; (√)
(3)四个角都相等的四边形是矩形; (√)
(4)对角线相等的四边形是矩形; (×)
(5)对角线相等且互相垂直的四边形是矩形; (×)
(6)对角线互相平分且相等的四边形是矩形; (√)
(7)对角线相等,且有一个角是直角的四边形是矩形; (×)
(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)
(9)两组对边分别平行,且对角线相等的四边形是矩形. (√)
指出:
(l)所给四边形添加的条件不满足三个的肯定不是矩形;
(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.
例2 (补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.
解:∵ 四边形ABCD是平行四边形,
∴ AO= AC,BO= BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(对角线相等的平行四边形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴ BC= (cm).
例3 (补充) 已知:如图(1), ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.
分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.
证明:∵ 四边形ABCD是平行四边形,
∴ AD∥BC.
∴ ∠DAB+∠ABC=180°.
又 AE平分∠DAB,BG平分∠ABC ,
∴ ∠EAB+∠ABG= ×180°=90°.
∴ ∠AFB=90°.
同理可证 ∠AED=∠BGC=∠CHD=90°.
∴ 四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).
六、随堂练习
1.(选择)下列说法正确的是( ).
(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形
(C)对角线互相平分的四边形是矩形 (D)对角互补的平行四边形是矩形
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.
七、课后练习
1.工人师傅做铝合金窗框分下面三个步骤进行:
⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
⑵ 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是: ;
⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是: ;
2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.
教学目标
1.使学生掌握分组后能运用提公因式和公式法把多项式分解因式;
2.通过因式分解的综合题的教学,提高学生综合运用知识的能力.
教学重点和难点
重点:在分组分解法中,提公因式法和分式法的综合运用.
难点:灵活运用已学过的因式分解的各种方法.
教学过程设计
一、复习
把下列各式分解因式,并说明运用了分组分解法中的什么方法.
(1)a 2-ab+3b-3a;(2)x 2-6xy+9y 2-1;
(3)am-an-m 2 +n 2;(4)2ab-a 2-b 2 +c 2 .
解(1) a 2-ab+3b-3a
=(a 2-ab)-(3a-3b)
=a(a-b)-3(a-b)
=(a-b)(a-3);
(2)x 2-6xy+9y 2-1
=(x-3y) 2-1
=(x-3y+1)(x-3y-1);
(3)am-an-m 2 +n 2
=(am-an)-(m 2-n 2 )
=a(m-n)-(m+n)(m-n)
=(m-n)(a-m-n);
(4)2ab-a 2-b 2 +c 2
=c 2-(a2+b2-2ab)
=c 2-(a-b) 2
=(c+a-b)(c-a+b).
第(1)题分组后,两组各提取公因式,两组之间继续提取公因式.
第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式
继续分解因式.
第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然后两组之间再提取公因式.
第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式
,第四项与这一组再运用平方差公式分解因式.
把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运
用提公因式或分式法进行因式分解.在添括号时,要注意符号的变化.
这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式.
二、新课
例1把分解因式.
问:根据这个多项式的特点怎样分组才能达到因式分解的目的?
答:这个多项式共有四项,可以把其中的两项分为一组,所以有两种分解因式的方法.
一、教学目标
1. 知识与技能:
(1 ).理解并掌握矩形的性质定理及推论;
(2 ).会用矩形的性质定理及推论进行推导证明;
(3 ).会综合运用矩形的性质定理、推论以及特殊三角形的性质进行证明计算.
2. 过程与方法:
(1). 通过教学过程中同学的测量、交流、讨论,并运用课件的直观形象性,加深对矩形性质定理及推论的理解和应用.
(2). 体验矩形性质定理及推论的发现过程,探索证明性质定理及推论的方法.
(3). 感受新旧知识及几何代数之间的紧密联系.
3. 情感态度与价值观:
(1).在观察、测量、猜想、归纳、推理的过程中,体.验数学活动充满探索性和创造性,感受证明的必要性、证明过程的严谨性及结论的确定性。
(2).树立用观察、实验、猜想、归纳出结论,并用逻辑推理证明定理的意识.
(3).进一步认识软件《几何画板》的作图、测量功能,体验智能工具的快速、准确及其规范..
(4).从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的,培养
学生辨证唯物主义观点。
(5).在讨论和回答问题过程中,敢于发表自己的观点,尊重他人的见解,能从交流中获益.
二、学习重点、难点:
学习重点: 矩形性质定理及推论.
学习难点: 矩形性质定理、推论及特殊三角形的性质的综合应用.
三、教学方法及手段:
教学方法:探究发现法为主,辅以讲授法.
教学手段:PPT及几何画板演示辅以板书.
四、教学设计:
本节课依据新课标“在第三学段(7——9年级)中,学生将经历探索物体与图形的基本性质、变换、位置关系的过程,掌握三角形、四边形、圆的基本性质以及平移、旋转、对称、相似的基本性质,体会证明的必要性,能证明三角形和四边性的基本性质,掌握基本的推理技能”的要求。首先课前让学生以小组为单位调查实际生产生活中应用矩形的实例,培养学生的小组协作和实际调查能力,课上从矩形的定义和平行四边形的性质引入,提出问题,让学生猜想矩形应具有的性质,调动学生的思维积极性,激发探究欲望;教学过程中充分利用学生手中的矩形书本和测量工具以及几何画板课件演示,让学生通过观察、测量得出矩形性质后,再引导学生进行推理证明及应用,帮助他们在自主探索和合作交流过程中真正理解和掌握矩形性质定理及推论,体验数学学习过程中的探索性和挑战性以及推理的严谨性。通过正确,帮助学生树立合作意识和学好数学的自信心。
一、教材
不等式基本性质是八年级下册第一章第二节内容,本节课是建立在学生已认识了不等关系基础上来学习的,也是为进一步学习解不等式及应用不等关系解决实际问题的重要依据,因此本节课内容在不等关系这一章占有重要位置。由此本节重点内容是不等式三条基本性质,难点是不等式第三条基本性质,在不等式两端同时乘以(或除以)同一个负数不等号方向改变学生在这一点应用上很难掌握。
另外,本节课在教材安排上意在通过等式基本性质引入新课教学,在新课教学中用不等式实例进行操作,进而推出不等式基本性质,学生通过观察、质疑、发问易于接受新知,根据新课程标准确定学习目标如下:
(一)知识与技能目标
掌握不等式基本性质,能熟练运用不等式性质解决简单的不等式问题问题
(二)过程与方法目标
1. 经历探索不等式基本性质的过程,体验数学学习探究的方法
2.通过观察、实验、猜想、推理等数学学习活动过程,发展合理的推理和初步论证能力
(三)情感态度与价值观目标
1.学生在探索过程中感受成功、建立自信
2.体验在研究过程中创造的快乐,并学会与人交流合作形成良好的人格品质
二、重点、难点
重点:掌握不等式基本性质及熟练应用性质解决实际问题
难点:第三条性质的应用
三、教法
以引导发现、活动参与、交流讨论为主,学生自己举出实际不等式例子,教师根据认识规律引导学生由等式性质向不等式知识的迁移,安排学生用一组数在不等式两端参与四则运算,学生通过与其他学生的交流讨论,总结规律得出不等式基本性质
在这一环节教师一方面不断引导学生积极参与教学过程,为适应学生思维发展水平有序引导学生观察分析,由认识到实践再到认识完成认识上的飞跃,圆满完成教学任务,另一方面,教师根据练习情况设疑引导,重在理解不等式性质应用,展开学生思维。
四、学情
一般说来,这个年龄段的学生开始有比较强烈的自我和自我发展的意识,对于与自己直观相冲突的现象和“挑战性“的任务很感兴趣,要在教学过程中给学生探究问题这样的做数学机会,学生能够在这些活动中 表现自我发展自我从而感到数学学习的重要性及其中的乐趣。
学生在学习本节内容时,可能会在应用第三条性质时遇到困难,尽可能引导学生多练习多总结最终完成学习过程,达到教学目标。
五、教学过程
本节课我安排了四个教学过程:
(一)回忆旧知,引出新知
经过以前的学习我们知道在等式的两端同时加上(或减去)同一个整式依然成立,这是等式的性质那么对于上节课我们所学的不等式又有哪些性质呢?这就是今天我们要共同探讨的问题——不等式基本性质。
在这一环节通过对等式性质的回忆进而导出不等式的基本性质,
不仅对旧知的巩固也激发了学生对新知的兴趣。
(二)自主参与探索,交流讨论总结性质规律
教师安排学生自己举出一个具体不等式,根据认识规律有序引导学生在不等式两端同时加上(或减去)同一个数,学生会发现不等号两端经运算比较大小后不等号方向没有发生改变,由此推出不等式第一条性质。
在引出第二条性质时,教师有意引导学生用正数参与两端的乘法(或除法)的运算,同学会发现不等号方向仍然没改变,这时可能会有学生发问:用负数呢?这就引起了学生的好奇心和探究热情,经学生自己动手实验与其他同学讨论得出用负数不等号方向发生了改变,至此就得到不等式的第二三条性质。
在这一环节教师运用了“自主参与”和“交流讨论”的教学方式,通过引导和质疑,突出重点,化解难点,从而完成教学任务,收到良好教学效果。
(三)应用新知,解决问题
我将上节课没圆满完成的问题再次提出:通过一棵树的树围可计算其生长年龄,某树栽种时树围是5cm ,以后每年树围增长3cm ,问这棵树至少生长多少年才能超过2.4m ?
上节课我们已经列出不等关系
设 至少生长x 年才能超过2.4m 则有不等关系
0.03x 0.05 >2.4
现我们根据这节课所学将这个问题彻底解决。(将不等式性质应用全过程在板书出来)
再在黑板上列出两个例题 5x 3 < 2 - 2x – 1 >3
要求学生仿照刚才不等式应用过程将其表示“x < a (x >a) ”形式,并找两名同学板书。在这一环节根据初中学生开始对“有用”数学感兴趣选取第一道例题,学生会感到数学就在身边
在练习过程中教师根据普遍存在的问题加以强调并帮助学生改正,针对个别(较慢)学生再具体教学
(四)引导学生总结全课
在这节课我们知道了不等式三条基本性质,并能熟练应用解决简单的不等式问题
各位领导、各位老师:
大家好!
今天我说课的题目是《两角差的余弦公式》。我计划从教材背景、教学目标、教学方法、教学过程、教学评价等方面来谈谈我对本节课的理解。
背景分析
1、教材所处的地位和作用:
《两角差的余弦公式》是新课标人教版数学必修四第三章第一课时的教学内容,是本模块第一章《三角函数》和第二章《平面向量》相关知识的延续和拓展。其中心任务是通过已学知识,探索建立两角差的余弦公式。它不仅是前面已学的诱导公式的推广,也是后面其它和(差)角公式推导的基础和核心,具有承前启后的作用,是本章的重点内容之一。
2、重点,难点以及确定的依据:
对本节课来说,学生最大的困惑在于如何得到公式.所以,
本节课的教学重点是:两角差的余弦公式的探究和应用;
教学难点是:两角差的余弦公式的由来及证明;
引导学生通过主动参与,独立探索。
教学目标设计
(1)知识与技能:
本节课的知识技能目标定位在公式的向量法证明和应用上;学会运用分类讨论思想完善证明;学会正用、逆用、变用公式;学会运用整体思想,抓住公式的本质.在新旧知识的冲撞过程中,让学生自主地对知识进行重组、构建,形成属于自己的知识结构体系.
(2)过程与方法:
创设问题情景,调动学生已有的认知结构,激发学生的问题意识,展开提出问题、分析问题、解决问题的学习活动,让学生体会从“特殊”到“一般”的探究过程;在探究过程中体会化归、数形结合等数学思想;在公式的证明过程中,培养学生反思的好习惯;在公式的理解记忆过程中,让学生发现数学中的简洁、对称美;在公式的运用过程中,培养学生严谨的思维习惯和自我纠错能力.
(3)情感、态度与价值观:
体验科学探索的过程,鼓励学生大胆质疑、大胆猜想,培养学生的“问题意识”,使学生感受科学探索的乐趣,激励勇气,培养创新精神和良好的团队合作意识. 通过对猜想的验证,对公式证明的完善,培养学生实事求是的科学态度和科学精神.
教法设计
1、学情分析:
学生刚刚学习了同角三角函数的变换及平面向量的知识,对用举反例推翻猜想、运用单位圆、用向量解决三角问题已经有了一定的基础,但还远未达到综合运用这些方法自主探究和证明的水平.
教学手段:
(1)从知识的认知程序上看,老师看问题从整体到局部,而学生却是从局部到整体。本节课尝试将“带着知识走向学生”的接受式教学模式转变为“带着学生走向知识”的探究式教学模式,充分尊重学生的主体地位.
(2)本节课的教法采用了“一个主题两种教学”的设计模式.一个主题:公式探究与应用,两种教学:显形教学(知识能力教学)、隐性教学(情商培养),实践两种教学相互促进的人性化教学理念.
(3)在课堂上营造民主、开放、平等的教学氛围,注重教学评价的多元性,将简单的结果评价上升为对过程的评价;将一味的知识评价拓展为能力评价,突出学生的主体性,实现显形教学与隐性教学的双重评价,为全面发展学生打下基础.
(4)利用几何画板,通过计算机技术,给学生提供一种验证猜想合理性的途径. (教学媒体设计)
课堂结构设计:
引入课题,提出猜想,实验探究,严谨证明,例题训练,课堂小结
教学过程设计
1、引入课题:
例:如图所示,一个斜坡的高为6m,斜坡的水平长度为8m,已知作用在物体上的力F与水平方向的夹角为60°,且大小为10N ,在力F的作用下物体沿斜坡运动了3m,求力F作用在物体上的功W.
解: W =
= 30.
提问:1、解决问题需要求什么?
2、你能找到哪些与有关的条件?
3、能否利用这些条件求出?如果能,提出你的猜想.
4、怎样检验这些猜想是否正确?
【设计意图】生活实例引入,体现数学与实际生活的联系,也与物理(功的定义)、哲学(透过现象看本质)等相关学科相联系,增强学生的应用意识,激发学生的学习热情,同时也让学生体会数学知识的产生、发展过程.
2、提出猜想:
从特殊情况去猜测公式的结构形式.
令
令
分析:可见,我们的公式的形式应该与均有关系?他们之间存在怎样的代数关系呢?请同学们根据下表中数据,相互交流讨论,提出你的猜想.
用具体值检验猜想的合理性.
令则=
三角函数
三角函数值
猜想:
【设计意图】鼓励学生发挥想象力,大胆猜测,然后再去验证其合理性,增强学生探索问题、挑战困难的勇气.
3、实验探究:
【设计意图】让学生用几何画板进行数学实验, 激起学生的好奇心和探究欲望, 使学生体会到数学的系统演绎性和实验归纳性的两个侧面.
4、严谨证明:
(利用向量)
前一章我们刚刚学习完向量,并用向量知识解决了相关的几何问题,这里,我们能否用向量知识来推导两角差的余弦公式呢?我们来仔细观察猜想的结构,我们在什么地方见到过类似结构?在向量部分,求角的余弦有什么方法吗?
(学生:向量的数量积!)
证明:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角,它们终边与单位圆O的交点分别为A、B,则:
=, =
=
∴= (0≤≤)
思考:1、作为两向量的夹角,有没有限制条件?
2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)
【设计意图】让学生经历用向量知识解出一个数学问题的过程,体会向量方法在数学探究过程中的简洁性。
思考:1、作为两向量的夹角,有没有限制条件?
2、如果不在[0,]这个区间内,我们的结论还会成立吗?怎样给出证明?(引导学生找到与夹角之间的关系)
推广完善:令为、的夹角,
则
无论哪种情况,都有
小结:两角差的余弦公式:
(其中为任意角,简记为)
思考:请同学们仔细观察一下公式的结构,说说公式的结构有什么特点?应怎样记忆?(对学生的回答给予及时肯定)
【设计意图】引导学生关注两个向量的夹角θ与α-β的联系与区别,并通过观察和讨论,增强学生用数形结合、分类讨论的方法解决问题的意识,感受数学思维的严谨性.
(介绍单位圆的三角函数线法)
除了以上的证明方法,是否还有其它证法呢?
我们发现,这里涉及的是三角函数,是这个角的余弦问题,那我们还能不能考虑在单位圆里用三角函数线来推导呢?
请同学们课后自己在单位圆中画出、,并考虑如何用角的正弦线、余弦线来表示的余弦线?
这个问题作为课后思考题,请同学们课下相互讨论,共同探索。
【设计意图】根据教学实际,对教材进行适当安排,把单位圆三角函数线证法留作课后学生思考,为学生的课后探讨留有空间。
5、例题训练:
1、解决引例中的问题.
2、P127练习:已知,求.
(运用公式时应根据角的范围,正确确定两角正、余弦值的范围)
公式的逆用:.
4、公式活用:.
【设计意图】例1让学生运用所学解决实际问题;例2利用变式突破学生在运用公式过程中的易错点;例3对逆用公式解题加深认识;例4活用公式,加深学生对公式中两角形式变化的认识,强化整体思想。
6:课堂小结:
公式探索的一般步骤;公式的结构和功能;公式的运用应注意的问题。
7、作业:
P127 练习1、2、3;
.
【设计意图】让学生通过自己小结,反思学习过程,加深对公式的推导和应用过程的理解,促进知识的内化;然后用作业巩固本节课所学知识。
(附:板书设计)
§3.1.1 两角差的余弦公式
一、公式
二、证明
引例:
例2:
例3:
4:
小结:
教学评价分析
诊断性评价:
1.按常规,学生很可能想到先探究两角和的正弦公式,怎样想到先研究两角差的余弦公式是一个难点(但非重点),教学时可以直接提出研究两角差的余弦公式。但后面补充老教材的证明方法,让学生明白和与差内在的联系性与统一性,努力让学习过程自然。
2.尽管教材在前面的习题中,已经为用向量法证明两角差的余弦公式做了铺垫,多数学生仍难以想到.教师需要引导学生,联想到向量的数量积公式和单位圆上点的坐标特点,努力使数学思维显得自然、合理。
3.用向量的数量积公式证明两角差的余弦公式时,学生容易犯思维不严谨的错误,教学时需要引导学生搞清楚两角差与相应向量的夹角的联系与区别。
预期效果:
1、让学生在掌握两角差的余弦公式探究方法的基础上,能够自我总结形成公式探究的一般方法。
2、激发学生的探究欲望,能够独立或合作提出推导其它三角恒等式的方案,形成对三角恒等变换的本质认识,加深对灵活运用公式的理解。
3、培养学生的“问题意识”,在探索的过程中学会将“知识问题化”,大胆、合理地提出猜测,通过证明、完善,最终达到将“问题知识化”的目的.
各位领导、各位老师:你们好!
今天,我说课的题目是《最大公因数》,这是人教版义务教育课程标准实验教科书数学五年级下册第四单元7981页的内容。
一、教材分析和学情分析
(出示课件)这部分教材是建立在学生已经掌握因数、倍数的含义及其特点的基础上来学习。通过本节课学习,为学生以后学习约分和分数四则运算奠定基础。
二、教学目标
(出示课件)根据《新课标》要求:数学教学应以学生发展为本,培养能力为重。因此,我制定如下教学目标:
1、理解公因数和最大公因数的意义。会求两个数的公因数和最大公因数。
2、通过解决实际问题,初步了解公因数和最大公因数在现实生活中的应用。
3、培养学生的抽象概括能力和解决问题的能力。
三、教学重难点
依据教学目标,我确定了这节课教学的重点和难点是:理解公因数和最大公因数的意义。会求两个数的最大公因数。
四、教法、学法
根据教学目标及重难点,结合本节课实际,我采用的教学方法有:引导自学法、尝试探究法等等。相应地,指导学生采用自学探究、合作交流等方法来学习。
五、教具、学具
为了便于学生更好地进行操作,我要求学生准备长方形方格纸等教具。
六、教学流程
根据新课标理念,结合教材特点和学生实际情况,这节课我安排了玩一玩看一看做一做议一议练一练五个教学步骤来进行。这样设计符合教研室倡导的学导练三三教学原则,符合新课标提出的自学探究、合作交流等新的学习形式,也体现出蔡林森教授所创新的洋思教学方法。突出了课堂教学以学生为主体,教师为主导,训练思维为主线,实现高效课堂为主要目的的教学方式。
(一)玩一玩
这一步骤,我采用游戏的方式来完成。
学号是16的因数,这些同学请起立。
学号是12的因数,这些同学请起立。
哪些同学站起来2次?为什么?
学生回答后顺势进行鼓励:嗯,同学们可真聪明。有关因数的知识还有很多呢?,你们愿意继续来学习它吗?
(新课开始,用游戏引入,激发学生的学习兴趣。既复习了旧知,又为学习新知做好铺垫。)
(二)、看一看:
这一步骤,我出示自学了提示,让学生自学。
自学提示:
自学课本80页的内容。思考下面的问题。
16和12的因数分别有哪些?
哪些是16和12独有的因数,
哪些是16和12公有的因数?
什么叫公因数?最大公因数?
6分钟后检测。
(这样,学生带着问题来自学、探究。体现出学生可持续能力的培养。体现出学生良好学习习惯的养练。)
独有公有 最大
16的因数:1,2,4,8,168,16
12的因数:1,2,3,4,6,123,6,12
可以看出:1、2、4这三个数是16和12公有的因数,所以说:1、2、4这三个数是16和12的公因数。
2、议一议:学生再看1、2、4这三个数,你想说点什么?(学生知道了1是最小的公因数,4是最大的公因数)
板书:4是最大的公因数.
(三)、做一做:
学生自学完毕,请程度偏下的两位同学上台板演。其余学生在答题卡上完成。这一步能检查出学生自学的效果。体现出学生的尝试探究,体现出科学的学习态度。
1、填一填:
(1)10 和15的公因数有:
(2)14和49的公因数有:()
(四)、议一议:
1、初议:做对的同学说一说你为什么要这样做?
做错的同学对照课本找错因,找不出错因的同学让别的同学帮忙改正。
2、设疑:15和12的最大公因数是3,对吗?
2是4和16的最大公因数吗?
6和9的最大公因数是几?
3、运用:现在,你会求两个数的最大公因数了吗?
请用你喜欢的方式求出18和27的最大公因数。
学生的方法可能有:
A、找对应因数
B、从18的因数中找27的因数
或者从27的因数中找18的因数
C、排序法
D、短除法
E、分解法
总之:不论采用哪种方法,我们都要:先找出它们的因数,
再找出它们独有的和公有的因数,然后找出在公有的因数中,谁最大?
4、总结;这节课,我们学了什么?
根据学生回答板书课题:最大公因数
(整个议一议环节,体现了生生互动、师生互动。体现了以学定教。)
(五)练一练:
(为了检测学生的学习情况,我进行了分层训练。第一层:基本性练习。第二层:综合性练习。第三层:发展性练习。实现层层深入,由浅入深。使学生深刻体会到数学来源于生活,并为生活服务的道理。)
(出示课件)第一层:基本性练习
1、把下面的数填到合适的位置。
1,2,3,4,6,9,12,18,
12的因数:
18的因数:
12和18的公因数:
2、填一填:
8的因数:
16的因数:
8和16的公因数:
8和16的最大公因数:
(出示课件)第二层:综合性练习
3、说出下列各数的公因数和最大公因数
5和11 8和9 5和8
4和89和3 28和7
通过练习,你发现了什么?
(出示课件)第三层:发展性练习
4、看例1:现在,你知道可以选择边长是几分米的地砖吗?边长最大是几分米?今后,在装修、铺地砖时,遇到此类问题,你知道该怎样解决了吗?如果你是工程师,你会选用边长是几分米的地砖吗?为什么?
七、板书设计:
这节课,我的板书设计科学、醒目、美观,便于学生直观理解。
八、反思:
回顾这节课,学生通过自学,理解公因数和最大公因数的意义,但要求出两个数的最大公因数是本节课教学的难点。因此,教学时,我鼓励学生运用多种方法,让学生在感悟、理解的基础上,总结出求最大公因数的方法。顺利完成了本节课的教学任务。
一、说教材:《真分数和假分数》是人教版大刚教材小学数学第十册第四单元的教学内容。这一课教学是在学生学习了分数的意义、分数与除法的关系、比较分数的大小等知识的基础上进行的。老教材,新思路是我设计这堂课的出发点。《新课程标准》全新地强调:动手实践、自主探索与合作交流是学生学习数学的重要方式。研究性学习作为培养学生学习能力的重要学习方式愈来愈受到重视。所以在设计真分数和假分数这一课时,我力图把研究带入学习之中,让学生在学习中进行研究,在研究中学到知识、发展能力。分数教学有两个最基本的概念,一个是分数的意义,一个是分数的单位.学生在理解的基础上掌握了这两个概念,学习分数就可以举一反三,因此在教学真分数和假分数时,我首先帮助学生从分数意义上理解和掌握新课的内容。
二、说教学目标:
(一)知识与技能目标:
1.理解和掌握真分数和假分数的意义,能正确判断真分数和假分数,加深对分数认识的理解。会进行假分数与整数的互换。
2.进一步培养学生的数感,培养学生的抽象、概括、实践、创新、语言表达等能力。
(二)过程与方法目标:经历探索的过程,在动手操作,自主探索与交流合作中,掌握观察、分析、比较的方法。
(三)情感态度与价值观目标:使学生了解分数在日常生活中的应用,增强自主探索与合作交流的意识,树立学好数学的信心。
三、重点:理解真分数和假分数的意义、正确判断真分数和假分数。难点:概括出真分数和假分数的意义。
五、教法、学法:主要采用自主探究、合作交流的教学方法,在教学中为学生提供充分的探索与交流的时间,让学生在观察、操作、分类、比较、交流等活动中,自己概括出真分数和假分数的意义。因为真分数和假分数是一节概念教学课,概念的形成是认识的发展过程,也就是在对事物感知和分析、比较、抽象的基础上,概括一类事物的本质属性,不断提出假设,验证假设的过程。同时学生通过自主探索与合作交流,提升了思维水平,提高抽象、概括等能力,而教师只是一个学习的组织者、引导者与合作者。
六、说教学程序:
一、复习导入:说2/3、7/9的意义及分数单位、几个这样的分数单位(我通过让学生叙述自己表示出的分数、分数的意义,回答分数的分数单位及几个这样的分数单位为学生学习真分数和假分数奠定基础。)
二、探究新知:
(一)故事导入:教师讲述《猪八戒吃西瓜》故事,要求同学们认真听,把藏在故事中的分数找出来。
(二)教学例2:1、怎么在圆中涂色来表示它们? 2、说说你是怎么想的?3、这些分数的分数单位都是什么?4、每个分数里各有几个1/4。5、分母是4的分数还有吗?6、我们应该怎样涂色表示5/4?
(1)只用一个圆(单位1)表示,够不够?
(2)一个单位1不够,那怎么办?
(3)5/4怎么理解?5/4里有几个1/4?
(三)教学例3:1、电脑依次出示例3的图形和分数。2、让学生说说怎么涂色。3、这些分数的分数单位都是什么?4、每个分数里各有几个1/5?5、表示10个1/5用了几个圆?表示13个1/5用了几个圆?
(四)指导分类,揭示概念:
1、观察、比较大屏幕上的分数中分子和分母的大小,你们能给它们分类吗?
(1)同桌讨论分类方法。(2)把分类结果记录下来。
2、汇报分类结果,让学生说出自己的想法。
3、揭示概念:(1)把它们分为哪两类?真分数和假分数有什么特点。(2)什么是真分数?什么是假分数?指名概括、全班齐读。(3)如何判定一个分数是真分数还是假分数?
4、练习:师生操练。
(五)真分数、假分数与1的大小关系:
1、观察大屏幕上的真分数和图,看看真分数与1的大小关系。2、你发现了什么?你是如何理解的?3、通过观察大屏幕上的假分数和图,看看假分数与1的大小关系。4、你发现了什么?你是如何理解的?
三、课堂练习:
(一)完成练一练第1题。师问:应把什么看作单位1?
(二)写出分母是5的所有真分数,再写出分子是5的所有假分数,在小组里交流。
(三)在()里填上或=3/8( )11/8 12/12( )1 5/7( )4/7 12/13( )10/13
1、学生填写。2、师问:你是怎么比较的?
四、课堂总结:今天这节课我们学习了什么内容?结合生活实际,能用真分数或假分数说一句话吗?
五、布置作业:小组合作,以本节课所学知识为主,为下节课设计一组复习题。
板书设计:
真分数和假分数
真分数:分子分母、真分数1
假分数:分子分母、假分数1
1.教材说明
教材将加法的初步认识和5以内的加法安排在一起进行教学。让学生结合具体情境,初步认识把两个数合起来是多少用加法计算,并会用适合自己的算法正确计算5以内的加法,同时使学生初步认识到应用前面所学的数的组成的知识来计算,比较简便。
教材分为四个板块:第一块为加法的初步认识,主题图是一个变化过程,让学生在此变化中理解加法的含义,就是表示合起来,在教材中的主题图里渗透了三个具体问题的含义,都可以用1+2=3这个算式来表示,渗透了不同的含义的事情可用一个抽象的算式来表达的数学思想,使学生初步感受、体会数学抽象的作用及数学的简洁美。接着,教材安排了一个变化的情境图,小丑合气球,来进一步直观形象地表达、说明加法的含义,让学生通过看图、理解图意,明确求一共有多少用加法计算,说出加法算式,从而来帮助学生对加法的含义有更深一层的理解;第二块做一做是一个让学生自己动手摆学具的活动,如摆一个圆片,再摆一个,一共是几个?摆两个圆片,再摆两个,一共是几个?让学生在操作中巩固对加法含义的理解,并能说出加法算式;第三块为15的加法,在学生掌握了5以内数的顺序及各数的组成,并初步知道加法含义的基础上进行教学的。本块根据儿童不同的思维方式和思维水平初步体现算法多样化的思想。通过三个小朋友计算4+1=?的思考过程,鼓励学生说出自己计算的过程,尊重学生的想法,同时,引导学生使其初步认识到应用前面所学的数的组成的知识来计算比较简便;第四块教材安排了做一做练习。通过学生自己看图计算3+2=5和2+3=5,3+1=4和1+3=4两组算式,来进一步巩固算理和初步感知交换两个加数的位置和不变的道理。
2.学情分析
一年级的学生对加法含义已经有了一定的感性认识,由于在进行加法教学前,学生已掌握了5以内数的顺序和各数的组成,能够自觉的运用加法进行计算,但不知道为什么要用加法进行计算以及我们是如何用加法进行计算的。因此,再进行加法的教学时,重点是帮助学生理解加法的含义,鼓励学生用自己喜欢的方式进行计算的同时感知用数的组成计算的简便。将他们对加法的感性认识提高到理性认识。
其次,学生已具备一定的语言表达能力、动手操作能力和小组合作意识,因此,在本节课教学过程中也着重培养学生发展其动手操作、语言表达的能力和初步的数学交流意识,让学生感受到与同伴交流的乐趣,也培养学生积极思考、认真倾听他人想法的习惯。
3.教学目标
(1)通过操作、演示,使学生知道加法的含义;能正确读出加法算式;使学生经历与同伴交流5以内加法的算法过程,会用适合自己的算法正确计算5以内的加法;使学生初步体会生活中有许多问题要用加法来解决。
(2)通过学生操作、表述,培养学生动手操作能力、语言表达能力;培养学生初步的数学交流意识,并感受与同伴交流的乐趣。
(3)培养学生积极思考、认真倾听他人想法的习惯。
(4)使学生积极主动地参与数学活动,获得成功的体验,增强自信心。
4.教学重点
(1)知道加法的含义
(2)激励学生说出自己计算4+1=5的过程
5.教学难点
(1)知道加法的含义
(2)使学生会用数的组成知识来计算5以内的加法
二、教学过程
教学过程
设计意图
学生预设
(一)激趣导入
1、今天老师给小朋友们带来了礼物,我的礼物将奖励给坐姿最漂亮,回答问题声音最响亮的小朋友。
2、教师演示:左手3支铅笔,右手2支铅笔,合在一起一共有几支铅笔?
3、小组合作:和你的同桌说一说,你是怎么知道合在一起一共有几支铅笔的。
4、汇报结果
5、当我们把事物合在一起求一共有多少时可以用加法计算,今天,我们就来学习加法。(板书课题)
用贴近学生生活的物品铅笔,激发起学生学习的兴趣,让学生之间相互交流,初步感知加法的含义,就是把两个数合起来,从而导入今天的教学内容。
1、点数
2、数的顺序
3、列加法算式
(二)理解加法的含义
1、课件动态展示23页主题图
2、引导学生观察提出数学问题,并解决问题(板书在小黑板上)
3、以上三个问题都能用加法来计算,那你能总结出什么情况下我们用加法计算吗?
4、小结:把两个数合在一起求一共有多少,我们就用加法计算。(教师边说边用手势表示合起来)
5、学习加法算式
(1)由数量抽象出数字
(2)认识+:把1和2合起来在数学上我们用符号+来表示(板书+)
(3)合在一起是多少,用数字几表示?(板书=3)
(4)读加法算式(板书读法)
通过课件主题图的动态变化让学生进一步感知并理解,加法就是把两个数合起来,求一共有多少。同时,培养学生的语言表达能力和思维训练能力。
让学生在具体的情境中抽象出数字,渗透给学生,抽象的数字可以表示不同的含义。
1、1个粉纸鹤和2个蓝纸鹤,合在一起一共有几个纸鹤?用加法计算,列式为1+2=3。
2、左边1位小朋友,右边2位小朋友,合在一起一共有几位小朋友?用加法计算,列式为1+2=3。
3、1位小女孩,2位小男孩,合在一起一共有几位小朋友?用加法计算,列式为1+2=3。
(三)进一步巩固、理解加法的含义
活动一:
1、课件展示小丑合气球
2、小组合作:你能用今天学过的知识说一说这个图是什么意思吗?快和你的伙伴说一说,并在你说的时候,像老师一样加上动作。
3、检验合作效果
活动二:
1、教师边板演边表述含义:摆1个圆片,再摆1个圆片,合起来一共是几个圆片,用加法计算,列式为1+1=2。
2、学生边板演边表述含义
3、小组合作:2+2=4
4、检验小组合作
活动三:
1、用5个圆片摆出不同的加法算式
2、学生独立操作,全班汇报交流
帮助学生进一步理解加法的含义,并说出加法算式,同时,训练其语言表达能力和培养小组合作意识,让学生感受到与同伴交流的乐趣,也培养学生积极思考、认真倾听他人想法的习惯。
让学生在操作中逐步理解并巩固加法的含义,并说出加法算式。同时,训练学生的动手操作能力、语言表达能力和培养小组合作意识,让学生感受到与同伴交流的乐趣,也培养学生积极思考、认真倾听他人想法的习惯。
4+13+22+31+4
(四)5以内的加法教学
1、创设情境
(1)课件播放:学校的操场上有4位同学做游戏,又来了一位同学
(2)你能从刚才的图象中提出数学问题吗?(将图像复制到黑板)
(3)解决问题(板书4+1=5)
2、交流算法
(1)谁能说说你是怎么算的得数是5呢?
(2)全班交流,可适时引导学生不看图,你会计算4+1=5吗?
(3)引导学生讨论:这些算法中哪些比较简便。
3、小结:我们在计算5以内的加法时可以用前面所学的数的组成的知识来计算比较简便。
用贴近学生校园生活的情境,使学生初步体会生活中有许多问题要用加法来解决,让学生积极主动地参与数学活动,并培养学生的语言表达能力和思维训练能力。
1、点数
2、根据数的顺序
3、根据数的组成
(五)巩固练习
1、课件播放:24页小猫图动态的活动情境
(1)让学生说题意、列式(板书)
(2)独立计算得数并填在方框里
(3)点名汇报并说算理
(4)引导学生观察并使学生初步感知交换两个加数的位置和不变的道理
2、摆一摆
(1)学生独立操作,边摆边表述加法含义,并独立完成填空
(2)点名汇报,说算理
通过读懂题意,进一步理解加法的含义,知道用自己理解的算法进行计算,能从多样化的算法中认识到用数的组成的知识来计算比较简便,并使学生直观感知到交换两个加数的位置和不变的道理。同时,培养学生的动手操作能力和语言表达能力。