倒数的认识教案(六年级数学倒数的认识教案)

在教学工作者开展教学活动前,时常需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么你有了解过教案吗?为同学们带来了倒数的认识教案【优秀7篇】,如果能帮助到您,我们的一切努力都是值得的。

小学数学教案倒数的认识 篇一

教学目标

1.学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2.学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3.培养学生的观察能力和概括能力。

教学重点和难点

1.正确理解倒数的意义及互为的含义。

2.正确地求出一个数的倒数。

教学过程设计

(一)激发兴趣,引出概念

1.投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2.同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1 两个数

3.你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4.举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于

《倒数的认识》的教学设计 篇二

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:那么我们就说xx是xx的倒数,反过来(引导学生说)

xx是xx的倒数,也就是说和互为倒数。

xx和xxx存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:

①什么是互为倒数?怎样理解这句话?(举例说明)

②0有倒数吗?为什么?1有倒数吗?什么?

3.求一个数的倒数

教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

总结:求一个数(0除外)的倒数,只要把这个数的'分子、分母调换位置。

②深化

你会求小数的倒数吗?

小学数学教案倒数的认识 篇三

一、教学内容:九年义务教育六年制第九册第二单元《倒数的认识》

二、教材分析:

“倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

三、教学目标:1.理解倒数的意义,掌握求倒数的方法。

2、能熟练地写出一个数的倒数。

3、结合教学实际培养学生的抽象概括能力。

四、教学重点:理解倒数的意义,掌握求倒数的方法。

五、教学难点:熟练写出一个数的倒数。

六、 教学过程:

(一)、谈话

1、交流

师:我们的黑板是什么颜色?

生:黑色。

师:教室的墙面又是什么颜色?

生:黑色。

师:黑与白在语文上是什么联系?

生:黑是白的反义词。

生:白是黑的反义词。

师:能说黑是反义词或白是反义词吗?

生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。

师:那么,数学上有没有相互依存联系的现象呢?

生:约数和倍数。

师:你能举例说明约数和倍数的相互依存联系吗?

生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的。

2、导入今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。

(二)、学习新知

对数游戏

1、学习倒数的意义

我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。

师:4是3的4/3,

生:3是4的3/4

师:7是15的7/15;生:15是7的15/7。

……

提问;看我们做游戏的结果,你们有没有发现什么?

生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

生2:两个分数的分子、分母相互调换了位置。

生2:两个分数的乘积是1。

提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数) 出示课题:倒数的认识

提问:那么怎样的两个数才是互为倒数呢?指导看书。

思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

(2)你能找出互为倒数的两个数吗。请举例

评析:回答问题

理解“互为”的意义。怎样的两个数互为倒数。

找朋友游戏(课前每位同学发一张数字卡片)

练习

(!)出示卡片 (六位同学举着卡片依次站在黑板前)

7/911/41/5086/599

(2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

3教学求一个数倒数的方法

出示例题:找出下列各数的倒数

2/37/41/591/7/80.4

小组讨论指名板演

提问:1.你是怎么找出2/3的倒数的?

生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2。

2、你是怎么找出7/4的倒数的?

……

提问:我们怎样才能很快地找到一个数的倒数?为什么?

4、练习请剩下的没有找到朋友的同学继续找倒数

5、讨论:1的倒数是谁?0的倒数呢?

生:1的倒数是1

师:能说明一下理由吗?

生1:因为1与1的乘积还是1。

生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

师:0的倒数呢?

生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

生4:0可以写成0/1,0/1的倒数是1/0。

生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

6、完善求一个数的倒数的方法

三、巩固练习

(一)填空

1、因为5/3XX/5=1,所以()和()互为();

2、因为15XX/15=1,所以()和()互为();

3.4/7与()互为倒数;

4、()的倒数是6/11

5、()的倒数是2

6.1/8的倒数是()

7.1/2/7的倒数是()

8.0.3的倒数是()

(二)判断

1、得数是1的两个数互为倒数。()

2、互为倒数的两个数乘积必定是1。()

3.1的倒数是1,所以0的倒数是0。()

4、分数的倒数都大于1。()

(四)思考

4/5XX)=()XX

四、总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

五、布置作业

倒数的认识教学设计 篇四

教学内容:数学第十一册19页----倒数的认识。

教学目标:

(1)知识目标:理解倒数的意义,掌握求倒数的方法。

(2)能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。

教学重点:理解倒数的意义和怎样求一个数的倒数。

教学难点:正确理解倒数的意义及0为何没有倒数。

一、游戏导入

教师:我知道同学们特别喜欢做游戏。今天我们一起做个游戏。这个游戏是这样的。如果我说1、2,大家就说2、1。那我说1、2、3,大家该怎么说?好!游戏正式开始。喜欢!我教育你!我吃西瓜!我打篮球!谁能说一说这个游戏的规则是什么?在数学当中,我们还可以怎样玩这个游戏?继续玩,我说分数,大家倒过来说。3/8、15/7、1/80、3(板书)

二、探究意义

1、找特点

师:请同学们观察黑板上四组数都有什么特点。

(生:分子、分母互相颠倒 )

师:请同学们把每一组中的两个数相乘,看乘积是多少?

(生:每一组中的两个数乘积都是1 )师及时板书

师:谁还能很快说出乘积是1的两个数吗?

(生回答)

师:同学们说得这么快一定找到了窍门,把你找到的窍门跟同学门说说好吗?

(生:两个数分子分母颠倒位置乘积是1)

师:那么乘积是1 的两个数数学给它起个什么名呢?

(生回答,师板书:乘积是1 的两个数叫互为倒数)

师:在这个概念中你认为哪个词比较重要?让学生自由说出自己的想法。

重点讲解“互为”的意思,就是互相是的意思。例如:

3/8×8/3=1 我们就说3/8是8/3的倒数,或者说3/8的倒数是3/8,也可以说8/3和3/8互为倒数。而不能说8/3的倒数,或3/8是倒数。

师:谁来把黑板上的后三组数仿照老师刚才叙述的来说一遍,用上“因为”“所以”一词。

(指名叙述)

师:根据同学们的叙述,我们可以看出倒数不是指某一个数,而是指两个数相互依存的关系,是相对两个数而言,不能孤立的说某一个数是倒数。

三、探究求倒数的方法。

师:现在我们已经理解了倒数的意义,那么怎样求一个数的倒数呢?继续观察黑板上的四组数,看互为倒数的两个数有什么特点,(分子,分母调换了位置)根据这个规律我们试着求下面几个数的倒数。

出示:3/5 7/2 8/6 5/12 10/4

(指名回答师板书)

师:你们是怎么找出每个数的倒数的?

(说自己的方法)

师:除了这些分数外我们还学过哪些数?(整数、小数、带分数)怎样求它们的倒数呢?求同学们试着求下面书的倒数。

出示:6 0.5 2 7/8 1

(生回答,师板书)并说说你是怎样求的?

师:是不是所有的数都有倒数呢?同桌讨论

0为什么没有倒数?(0和任何数相乘都不得1)

师:通过同学们的练习,谁来总结求一个数的倒数的方法?

(生总结,师板书)

四、小结并揭示课题

同学们我们今天重点认识了什么?(板书课题:倒数的认识)你们在这节课都学会了什么?下面老师想知道你们是否真正的掌握了没有,所以老师要考考你们,。

五、巩固练习。

1、填空

1、乘积是()的两个数叫()倒数。

2、因为7/15 x 15/7 =1 所以7/15和15/7( )

3、 5的倒数是( )。 0.2的倒数是( )。

4、()的倒数是它本身。()没有倒数。

5、8×()=1 0.25×()= 1

()×2/3=1 7/2×( )=( )×8=( )×0.15 =1

2、当把小医生。

1、得数是1的两个数叫互为倒数。()

2a是一个整数,它的倒数一定是 1/a 。()

3、因为2/3×3/2=1,所以2/3是倒数。()

4、1的倒数是1,所以0的倒数是0。()

5、真分数的倒数都大于1。()

6、2.5和0.4 互为倒数。()

7、任何真分数的倒数都是假分数。()

8、任何假分数的倒数都是真分数。()

3、面各数的倒数

2.5 4 1/8 2 6/7 0.12

4、列式计算

1、7/6加上它的倒数的和乘2/3,积是多少?

2、 1减去它的倒数后除以0.12,商是多少?

3、已知A×3/2=B×3/5,(A、B都是不为0的数)

求A、B的大小

六、教学反思:

倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。

“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。“倒数的求法”中求一个小数或带分数的倒数学生可能有些困难。

今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新设计了教案。我觉得这样设计才是让学生自己通过观察、比较、归纳总结出倒数的意义,是学生自己通过参与整个学习过程后有了真正的收获。特别是通过游戏的形式激发学生的学习兴趣,学生发现了算式的'特点,并让学生举例后发现,有这样特点的算式是写不完的。然后让学生仿照老师的样子,通过例子说倒数的意义,并强调说倒数的关键字词。这对学生掌握概念是非常必要的。当学生很高兴的自认为是掌握了求一个数的倒数的方法时,我又给学生设计了障碍:怎样求带分数、小数和整数的倒数。虽然教材新授内容没有这些知识,但在以后的练习中出现了。我把它提到前面来,大家一起研究。我觉得很有必要。这样,使学生避免把带分数的倒数也用把分子分母颠倒位置的方法来求。这样就不会给学生的认知造成误导。学生在知道了分数、带分数、整数、小数的求倒数的方法以后,我又提出是不是所有的数都有倒数么?使学生想到0的倒数问题。以前我是直接问学生“0“有倒数吗?好像暗示学生”0“没有倒数。改换成今天这样问,学生通过自己思考,得出两种答案,”0“有倒数,另一种是”0“没有倒数。有了分歧意见,又一次把学生带入了问题王国。学生分别发表自己的见解。最后,大家一致认为”0“没有倒数。因为“0”和任何数相乘都不等于1,也就是0不能作分母。我觉得这节课的教学比以往教学有了本质的转变,就是发挥了学生的主体作用。

倒数的认识优秀教学设计 篇五

教学目标:

(1)理解倒数的意义,掌握求倒数的方法。

(2)会求一个数的倒数,培养学生阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。

教学重点

理解倒数的意义和怎样求倒数。

教学难点

正确理解倒数的意义及0为何没有倒数

知识点:倒数的意义、导数的求法

教学过程:

一、导入

1、出示汉字“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?

2、汉字真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里也有这种奇妙的现象!

二、新授

1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?

2、学生在本子上写出一组有这种特点的分数,请生说一说,多请几人说,老师板书。

3、迅速地算出这两个数的乘积,比比看谁算的快!

4、讨论:通过刚才的计算你发现了什么?

5、交流讨论结果,老师板书。(乘积是1两个数)

6、师由此引出倒数的意义,并出示课题,生齐读倒数的意义。

追问:(1)怎样的两个数才能称互为倒数?你是怎么理解“互为”倒数的?举例说一说你是怎么理解的。

如果学生说不出来,可由老师先说,然后学生再说(利用刚才黑板上的例子多说几个)

(2)说说看,刚才这几组数为什么互为倒数

7、出示例题:写出和的倒数。

8、学生讨论倒数的写法,然后再写出这两个分数的倒数(两名学生板演)

(1)说说你是怎样想的

(2)注意倒数的写法,部分学生会用“等号”表示

(3)小结出求一个倒数的方法。

有没有补充?你是怎么想的?

讨论并交流出0不能做倒数的两种原因并完善求倒数的方法。

(4)板书,生齐读。

9、口答出和6的倒数

10、完成书上的练一练

三、练习

1、练习六第一题(口答并用今天所学的知识,用因为所以说几句话)

第三题

2、综合练习。

的倒数是()。和()互为倒数。

()的倒数是5。()和互为倒数。

1的倒数是()。()没有倒数。

3、那你能写出2、0.8的倒数吗?

生思考,说一说,并说出自己是如何想的?

小结:求带分数的倒数,先要把带分数化成假分数,再调换分数分子与分母的位置,求出倒数。求小数的倒数,一般先要把小数化成分数,再求出倒数。

4、练习六第4题。

先找出每组数的倒数,再看看你能发现什么?

(1)每个人在书上先写出各数的倒数;

(2)同桌选一组数,观察原来的数有什么特点,再观察它们的倒数有什么特点?

全班交流,看看你们能发现什么?

5、练习六第5题

6、判断

1、乘积是1的两个数互为倒数。(如果改成得数是1,行不行?)

2、5/2×2/5=1,所以5/2是倒数。(那你打算怎么改?)

3、因为1的倒数是1,所以0的倒数是0。(你是怎么分析这句话的)

4、0.25和4互为倒数。(说出你是怎么想的?你能再举一个这样的例子吗?)

5、所有真分数的倒数都比1大。(由这句话你还想到了什么?)

四、总结

本节课你有什么收获?

小学数学教案倒数的认识 篇六

课题:倒数的认识

教学内容:p27倒数的认识,练习六全部习题。

教材简析:这个内容是在分数乘法计算的基础上进行教学的。主要是为后面学习分数除法作准备的。本节课的教学重点是注意突出倒数是表示两个数之间的关系,它们具有互相依存的特点。

教学要求:使学生认识倒数的概念,掌握求倒数的方法,能比较熟练地求一个数的倒数。

教学过程:

一、用汉字作比喻引入

1、师指出:我国汉字结构优美,有上下、左右……结构,如果把“杏”字上下一颠倒成了什么字?“呆”把“吴”字一颠倒呢?(吞)……一个数也可以倒过来变为另一个数,比如“3/4”倒过来呢?(4/3)“1/7”倒过来呢?(7/1也就是7)这叫做“倒数”,随即板书课题。

2、提一个开放性的问题:看到这个课题,你们想到了什么?

(学生各抒己见)

师生共同确定本节课的目标——研究倒数的意义、方法和用处。

二、新知探索:

1、研究倒数的意义

师:请大家看书p27第3行的结语:乘积等于1的两个数叫做互为倒数。

学生自学后,问:有没有疑问?

师引导学生说出:倒数是对两个数来说的,它们是互相依存的。必须说,一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

2、学生自主举例,推敲方法:

(1) 师:下面,请大家各自举例加以说明。

(2) 学生先独立思考,再交流。

(a、 以“真分数”为例;如:5/8的倒数是8/5……真分数的倒数是假分数。)

(b、 以“假分数”为例;8/5的倒数是5/8……假分数的倒数是真分数。)

(c、 以“带分数”为例;带分数的倒数是真分数。)

(d、 以“小数”为例;分两种情况:纯小数和带小数,纯小数相当于真分数,带小数相当于假分数)

(e、 以“整数”为例;整数相当于分母是1的假分数)

学生举例的过程同时将如何寻找倒数的方法也融入其中。

3、讨论“0”、“1”的情况:

1的倒数是1。0没有倒数。要求学生说出想的过程(因为1与1相乘得1,所以1的倒数是1。0和任何数相乘都得0,不可能是1,所以0没有倒数。)

4、总结方法:(除了0以外)你认为怎样可以很快求出一个数的倒数?(只要把这个数的分子、分母调换位置)看看书上是这样写的吗?(让学生体会到一种成就感,自己说的居然和书上的意思一样)

三、反馈巩固:

1、完成“练一练”。

学生独立完成后,集体订正。重点问:“8”的倒数是几?

2、练习六5(判断)

3、补充判断:

a、a是自然数,a的倒数是1/a。

倒数的认识教学设计 篇七

教材分析:

这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

设计理念:

本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程。在求一个数的倒数时,让学生先学后教,激发学习热情,并培养学生观察、归纳、推理和概括的能力。

教学目标:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

能力目标:

培养学生观察、归纳、猜想、推理和概括的能力。

情感目标:

提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

教学重点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学难点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学过程:

一、课前谈话突破难点

1、谈话——蕴含“两个”,突破“互为”

师:老师也愿和六(1)班的同学成为朋友,你们愿意吗?(愿意)那老师就是你们的…(朋友),你们是老师的…(朋友)。你们和老师互为朋友。(指板书:互为)

二、导入揭题,引导质疑

师:其实在我们的数学中也有类似的情况。今天这节课就〈WWW.XIEZUOWEN.NET〉让我们一起来发现数学中的类似问题。揭题——(板书:倒数的认识)

师:看到“倒数”这个数学新名词,你的脑子里产生哪些问题。

预设:什么是倒数?怎样求倒数?……

这节课一起来探究这些问题?

三、创设活动情景,理解概念——“倒数是什么”

师:我们刚刚研究了分数乘法,老师想了解大家掌握的怎么样?请看计算。

1、在分类中理解“是什么”

①5/8×8/5②0.25×4③3/4+1/4

④1.6—3/5⑤13/7×7/13⑥3/2×6/5×5/9

计算后你有什么发现?

师:如果请你将这六个算式分成两类,你准备怎么分?

(学生汇报:乘积是1。)[适当处板书:乘积是1]

归纳总结:分类的标准不同,得到的答案也不同,今天我们就研究这一类的算式。

师:这三个算式有什么共同的特征吗?

预设:乘积是1。

2、举例感悟“怎么做”

师:你还能举出这样的例子吗?

还能举出与这些算式不同的例子吗?还能举出不同的算式吗?

归纳总结:像刚才举的这些例子,他们都有一个共同的特点!(乘积是1)在数学上“乘积是1的两个数互为倒数”。如5/8×8/5=1,我们就可以说5/8和8/5互为倒数,还可以怎么说?如我们表述朋友的关系。

5/8倒数是8/5,8/5倒数是5/8。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

②0.25×4这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

⑤13/7×7/13

3、在思辨中深入理解

师:能说3/4和1/4互为倒数吗?为什么?

师:能说3/2、6/5和5/9互为倒数吗?为什么?

四、运用概念,探究方法——“怎样求倒数”

过渡:大家对倒数理解的很不错,那么我给你一个数你能找出它的倒数吗?

(投影,出示例2)

1、求下面各数的倒数

3/5267/20。610。250

学生尝试。

回报交流。

师:这组数中,你最喜欢求哪些数的倒数?为什么?

预设:

生1:我最喜欢求分数的倒数,因为把分数的分子、分母调换位置,它们的乘积就是1。很容易,所以我喜欢求。

生2:我最喜欢求1的倒数,因为1的倒数可以写成分数,分子、分母调换位置还是,1的倒数就是1。很有趣,所以我喜欢求1的倒数。生:进行计算。

师:这组数中,你最不喜欢哪个数的倒数?

预设:

生1:我最不喜欢求0的倒数,因为0如果写成分数,要是调换分子、分母的位置就是,0不能作分母(0不能作除数)。0好像没有倒数。

生2:再说0乘任何数都等于0,也不等于1呀,0肯定没有倒数。

师:那你是怎样求26的倒数的呢?

你是怎样求一个小数的倒数的呢?

归纳总结:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

2、强调书写格式

师:刚才老师看到有学生是这样写的,可以吗?(3/5=5/3)

归纳总结:互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是()(2)9/7的倒数是()

2/5的倒数是()10/3的倒数是()

4/7的倒数是()6/5的倒数是()

(3)1/3的倒数是()(4)3的倒数是()

1/10的倒数是()9的倒数是(

nbsp;1/13的倒数是()14的倒数是()

由学生说出各数的倒数。

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

预设:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。

3、填空:

7×()=15/2×()=()×0.25=0.17×()=1

热门教案

学诗词

学名句