以下是小编整理了20篇三角形支架大班教案,希望你喜欢,也可以帮助到您,欢迎分享!
三角形支架大班教案
活动目标:
1、通过观察比较,初步了解三角形支架最稳固。
2、在操作实践、表达交流的过程中迁移运用经验,探索让支架更稳固的多种方法。
3、初步了解支架在生活中的运用,体验参与科学探索带来的愉悦感和成功感。
4、培养幼儿观察能力及动手操作能力。
5、激发幼儿对科学活动的兴趣。
活动准备:
1、物质准备: 纸棒、剪刀、双面胶、箩筐、幼儿课前人手制作一个不同形状的支架。
2、经验准备:幼儿初步了解支架在生活中的实际运用。
活动过程:
一、导入活动,引起稳固问题的讨论。
1、幼儿看支架、说形状
瞧,昨天,我们一起用纸棒做了很多支架,看看有些什么形状的支架?这么多的支架想不想来玩一玩,玩的时候,有什么新的发现?
2、交流:谁来告诉我,你发现了什么?(三角形支架最稳固,其他支架能变形)
3、你们有没有发现这个秘密?请把稳固的支架放到上面来。(幼儿检测自己的支架是否稳固)
4、看看稳固的支架是什么形状的?(同伴相互交流、置疑、发现三角形支架最稳固)
二、第一次探索,运用增添纸棒的方法让不稳固的.平面支架变得稳固些
1、你们手里有那么多不稳固的支架,想不想把它变稳固呢?那边桌子上有一些工具、材料,我们去试一下怎样把它们变稳固?(幼儿思考加固方法)
2、幼儿操作,教师巡回指导
3、交流:你们的支架变稳固了吗?谁来说说你的好办法?
(1)(对角的)不过我还要来检验一下,手捏两个角轻轻拉一拉,哇,成功了。
(2)还有谁来介绍一下,你们觉得这个支架怎样?为什么?
(3)同样是添了一根纸棒,为什么这个变稳固了,而这个没有变稳固呢?
4、小结:哦,我明白了:只要在变形的支架里用添加纸棒的方法变出三角形,这个支架就变稳固了。
三、第二次探索,幼儿发现问题调整加固支架的方法
1、我发现这里还有一个支架,觉得这个支架怎样?(观察、交流)
2、小结:三角形越多,支架就越稳固,(形成加固支架的共性特点。)
3、这么多的支架中还藏着不稳固的支架,想不想再去把它变稳固,而把稳固的支架变的更稳固呢?拿起自己的支架再去试一试。
4、来看一下我们这一次的作品,想不想听老师给你们的评价:超级稳固
四、联系生活进行知识经验的迁移。
1、今天,我们玩了支架,开心吗?在我们的生活中哪里有三角形支架。
2、小结:小朋友平时观察都很仔细,的确,在我们生活中,有很多地方都利用了三角支架,变的更稳固。
五、延伸活动:提升经验,尝试给立体支架加固。
1、现在,老师要来考考你们:是不是添加的纸棒越多,支架就越稳固?
2、老师这里有一个支架,用了10根纸棒,你们觉得它稳固吗?为什么?
3、小结:添加纸棒要变三角形,才能稳固,三角形越多,支架就越稳固。
4、看,又来了一个支架,有什么不同?它稳固吗?这个支架又怎样来变稳固呢?我们呆会一起去试一试。(比较观察,尝试给立体支架加固)
活动反思:
1、探索发现,分享交流,提升经验
在活动中鼓励幼儿和支架直接互动,在玩一玩,变一变中观察支架,发现问题,从而得出结论:三角形支架不变形,最稳固。满足了幼儿的好奇、探究、尝试的欲望,为幼儿提供了交流的机会,在第一次加固时,老师没有否定幼儿的任何加固方法,而是让幼儿去试一试,有的用透明胶,有的用添加纸棒的方法等等,让幼儿在各种方法中比较,检验,寻找出稳固的方法,从而得出添加纸棒,图形支撑出三角形,能使支架更稳固的结论。第二次加固时,能满足每个幼儿的需要,没有加固成功的幼儿,可以重新选择方法加固,而一些能力较强已经加固成功的幼儿,可以在原有的基础上继续加固,让支架更稳固,这一次的加固并不是第一次的重复而是经验的提升:图形内部三角形越多,该图形越稳固。三个层次层层递进,环环相扣,让幼儿在尝试,验证中发现科学原理,在讨论交流中找到解决问题的方法。体现了科学教育的价值取向不再注重静态知识的传递,而是注重幼儿的情感态度和探究解决问题的能力,注重于他人的积极交流这一教育理念。
2、迁移经验,激发创造{活动的延伸}
在最后的交流中,谈到生活中的支架,空调外机支架,屋顶,广告牌,电视塔、伞架……处处有支架运用的影子。在初学经验的基础上,引发幼儿从平面到立体支架的深层次的探索,就这样扶一扶,放一放,试一试,让孩子们的经验得到了提升。
教学目标
1.使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180°。
2.使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。
教学重点:认识三角形,知道三角形的特性及三角形高和底的含义,会在三角形内画高。
教学难点:会在三角形内三条边上画高。
教学准备:师生分别准备木条(或硬纸条)钉成的三角形。
教学过程
第一课时
一、引入新课
1.展示课本第80页情境图:我们的城市日新月异,每天都有新的变化。瞧,这是正在建设中的会展中心,你在图上发现三角形了吗?学生先说说哪里有三角形,再请学生在不同物体上描出两个三角形。
2.生活中哪些物体上也有三角形呢?让学生说一说。
房顶、红领巾、标志牌、画出的圣诞树的形状、自行车身上……
3.出示一些生活中常见的物体上的三角形:电视接收塔上的三角形、铁桥上的三角形、交通标志牌上的三角形、晾衣架上的三角形等。
4.三角形在生活中有这么广泛的运用,究竟它有什么特点?这节课我们将对它进行深入的研究。(板书课题)
二、新课学习
1.发现三角形的特征。
请你画出一个自己喜爱的三角形。三角形有几个顶点、几条边、几个角?
让学生在自己画的三角形上尝试标出边、角、顶点。
教师根据学生的汇报板书,标出三角形各部分的名称。
2.概括三角形的定义。
大家对三角形有了一定的了解,能不能用自己的话概括一下,什么样的图形叫三角形?由三条线段围成的封闭图形叫三角形。请学生对照上面的说法,议一议:下面的图形是不是三角形?
讨论:对于“三角形”怎样说更准确?
阅读课本:课本是怎样概括三角形的定义的?你认为三角形的定义中哪些词最重要?组织学生在讨论中理解“三条线段”“围成”。
教师用准备好的三条线段的教具在黑板上摆放帮助理解关键词:
三条线段、围、相邻两个端点相连。
学生发现:只有具备了这三个条件才能准确无误地围成三角形。
3.认识三角形的底和高。
出示练习纸:三角形屋顶的房子和斜拉桥。
你能测量出三角形房顶和斜拉桥的高度吗?
学生在练习纸上操作。反馈:你是怎么测量的?
将三角形房顶下面的边做底,房顶做顶点,过顶点作底边上的垂线就是房顶的高。
师带领学生一起回顾作高的方法,首先强调底和高的概念:
从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
明确:三角形有几个底,每个底边对应的顶点在哪里(学生依次指出来),从哪里向哪里作高,这条高是谁的高?
出示教材第81页上的三角形。这是三角形的一组底和高吗?画出其他的底和高,画后提问:三角形有共几条高?
出示直角三角形(一条直角边作底),你能画出这条底边上的高吗?
学生试画,画后发现高是另一条直角边。出示另两条底边,学生在答题纸上画出对应的高。
4.用字母表示三角形
全班这么多同学我们是用什么来区分,不会认错的?(名字)黑板上这么多的三角形怎样很快说出每个三角形呢?
我们一般用字母来表示。标注A、B、C在顶点,我们叫它三角形ABC。
如果标注D、E、F在顶点,就叫做三角形DEF。
5.三角形的稳定性
(1)提出问题。
出示教材第81页插图:生产、生活中为什么要把这些部分做成三角形的,它具有什么特性?
(2)实验解疑。
学生拿出预先做好的三角形、四边形学具,分小组实验:拉一拉学具,有什么发现?
实验结果:三角形具有稳定性。
请学生举出生活中应用三角形稳定性的例子。
三、巩固练习
指导学生完成练习十四1、2、3题。
四、课堂总结
这节课我们学习了什么?你对三角形有了哪些进一步的认识?还有什么有关三角形的问题?
第二课时
一、引入新课
1.出示:课本82页例3情境图。
三角形教案
(1)这是小明同学上学的路线。请大家仔细观察,他可以怎样走?
(2)在这几条路线中哪条最近?为什么?(生:垂直线段距离最短)
教师出示不规则三角形路线图,现在还是垂直线段吗?为什么这一条路最近呢?
2.大家都认为走中间这条路最近,这是什么原因呢?
请大家看:连接小明家、商店、学校三地,近似一个什么图形?
连接小明家、邮局、学校三地,同样也近似一个什么图形?
大胆猜想:那走中间这条路,走过的路程是三角形的一条边,走旁边的路走过的路程实质上是三角形的另两条边的和,走三角形的两条边的和要比第三边大,那么,是不是所有的三角形的三条边都有这样的关系呢?
操作交流:请学生任意画一个三角形,量一量三角形三条边的长,看是否任意两边的和大于第三边。
学生得出:的确有“两边的和大于第三边”这样的关系。
猜想还要用实验来验证,证明猜想对任意三角形都适合才能成立。我们来做个实验。
二、探究
1.实验l:用三根小棒摆一个三角形。
在每个小组的桌上都有5根小棒(2厘米、4厘米、5厘米、6厘米、10厘米),请大家随意拿三根来摆三角形,看看有什么发现?学生动手操作,发现随意拿三根小棒不一定都能摆成三角形。接着引导学生观察和比较摆不成三角形的三根小棒,寻找原因,深入思考。
2.实验2:进一步探究三根小棒在什么情况下摆不成三角形。
请不能摆成三角形的同学,说出不能摆成三角形的三根小棒的长度。
任意抽出三组,请学生试一下,看是否摆不成。
再请能摆成三角形的学生汇报用哪些尺寸的小棒摆成了三角形。学生汇报。
我们一起来研究一下,能摆成三角形的三条边的有什么关系,不能摆成三角形的三条边又有什么关系?
(1)每个小组用黑板上汇报的数据用小棒来摆三角形,并作好记录。
(2)观察上表结果,说一说能摆成三角形的三根小棒又有什么关系?不能摆成三角形的三根小棒关系有怎样的不同?为什么?
大家说的既形象又有道理,我们在判断三根小棒能否拼成三角形时,就看任意两边之和是否大于第三边,通过实验也进一步证实了只要是三角形,任意两边的和一定大于第三边。
(3)三角形任意两边的和大于第三边。
三、应用
1.通过实验,我们知道了三角形三条边的一个规律,我们就能用它来解释小明家到学校哪条路最近的原因了。(学生说说)
2.请学生独立完成82页例题中三道题,说说能否拼成三角形。
我们是否要把三条线段中的每两条线段都相加后才能作出判断?
思考一下:有没有更快捷的方法?
(用较小的两条线段的和与第三条线段的关系来检验。)
做练习十四第四题,利用快捷方式判断。你能用下图中的三条线段组成三角形吗?有什么办法?
3.有两根长度分别为2cm和5cm的木棒。
(1)用长度为3cm的木棒与它们能摆成三角形吗?为什么?
(2)用长度为1cm的木棒与它们能摆成三角形吗?为什么?
(3)要能摆成三角形,第三边能用的木棒的长度范围是多少?
四、课堂总结
在这节课里,你有什么收获?学会了什么知识?是怎样学习的?
第三课时
一、引入新课
1.引导学生回顾锐角、直角和钝角的定义。
大于0小于90的角,叫做锐角;
等于90“的角,叫做直角;
大于90,小于180的角,叫做钝角。
2.让学生分别画出满足下列条件的三角形。
(1)画一个有一个角是锐角的三角形;
(2)画一个有二个角是锐角的三角形;
(3)画一个有三个角是锐角的三角形。
3.给学生足够的时间,教师可巡视班级,观察学生的学习情况。
4.一段时间后,让同桌的学生相互检查,验证所画的三角形是否满足要求。
5.肯定学生的积极表现,进一步指出:大家所画的三角形各不相同,由此我们可以知道三角形的种类很多,怎样对这些不同种类的三角形进行分类呢?本节课我们就来探讨这个问题。
二、新课学习
(一)从角的方面给三角形分类
1.多媒体展示三个图形,请学生观察。
2.提示学生先从角的方面人手,让学生观察上述三个三角形各内角,可以让学生先目测三角形内角大小,然后用量角器测量三角形内角大小。提问:这些角分别属于锐角、直角、钝角中的哪一类?
3.组织学生进行分组讨论。讨论的主题是:如何对三角形进行分类。教师可参与到学生的讨论中,及时了解学生的想法和状态,教师可作适当提示。
4.一段时间后,请各组派代表发言,介绍本组的讨论-情况。学生可能想到将三角形所含锐角个数分成三类,也可能想到将三角形分成锐角三角形,直角三角形,钝角三角形。
5.师生共同分析讨论,指出按三角形所含锐角的个数分类是不合理的,因为只含一个锐角的三角形是不存在的。
6.教师指出按照如下的分类是合理的,多媒体展示:
文本框:三个角都是锐角的三角形叫做锐角三角形;#13;#10;有一个角是直角的三角形叫做直角三角形;#13;#10;有一个角是钝角的三角形叫做钝角三角形。#13;#10;
7.指出已有图中,哪个是锐角三角形,哪个是直角三角形,哪个是钝角三角形。让学生任意画一个三角形,总可以将它归为上述三类三角形中的一类。因此,一个三角形要么是锐角三角形,要么是直角三角形,要么是钝角三角形。
多媒体展示下图:
(二)从边的方面给三角形分类
1.多媒体展示三个图形,请学生观察。
2.提示学生从边的方面考虑,可让学生自己或和同桌合作剪出如上的三角形纸片。
3.教师可巡视班级,监督学生的活动情况,随时给予学生指导。
4.请学生分别用直尺和量角器测出上述三个三角形的三条边的长度及各个角的度数。
5.学生发现其中一个三角形的三条边相等,三个角的度数都是60°。也有三角形有两条边相等,两个角相等;另一个三角形的三条边和三个角互不相等。
6.给出等腰三角形和等边三角形的定义。多媒体展示:
文本框:有两条边相等的三角形,叫做等腰三角形;#13;#10;三条边都相等的三角形,叫做等边三角形。#13;#10;
7.展示等腰三角形和等边三角形课件,讲解等腰三角形顶角、底角、腰和底的概念。
8.师生共同分析等腰三角形和等边三角形的性质。
性质l:等腰三角形的两腰相等,两底角相等。(板书)
性质2:等边三角形的三条边相等,三个角相等并且都是60°。(板书)
9.请学生列举生活中等边三角形和等腰三角形的例子,体会数学与现实的广泛联系。
三、课堂总结
引导学生回顾本节课的主要内容:三角形的分类。
从角的角度,三角形可以分为锐角三角形、直角三角形和钝角三角形;
从边的角度,三角形可以分为一般三角形、等腰三角形、等边三角形。
第四课时
一、引入新课
1.三角形按角的不同可以分成哪几类?
2.一个平角是多少度?1个平角等于几个直角?
3.如图,已知∠1=35°,∠2=75°,求∠3的'度数。
二、新课学习
1.投影出示一组三角形:(锐角三角形、钝角三角形、直角三角形)。三角形有几个角?三角形的这三个角,就叫做三角形的三个内角。(板书:内角)
2.三角形三个内角的度数和叫做三角形的内角和。(板书课题:三角形的内角和)今天我们一起来研究三角形的内角和有什么规律。
3.以小组为单位先画4个不同类型的三角形,利用手中的工具分别计算三角形三个内角的和各是多少度?
4.指名学生汇报各组度量和计算的结果。你有什么发现?
5.大家算出的三角形的内角和都接近180°,那么,三角形的内角和与180°究竟是怎样的关系呢?就让我们一起来动手实验研究,我们一定能弄清这个问题的。
6.刚才我们计算三角形的内角和都是先测量每个角的度数再相加的。在量每个内角度数时只要有一点误差,内角和就有误差了。我们能不能换一种方法,减少度量的次数呢?
提示学生,可以把三个内角拼成一个角,就只需测量一次了。
7.请拿出桌上的直角三角形纸片,想一想,怎样折可以把三个角拼在一起,试一试。
8.三个角拼在一起组成了一个什么角?我们可以得出什么结论?(直角三角形的内角和是180°)
9.拿一个锐角三角形纸片试试看,折的方法一样。再拿钝角三角形折折看,你发现了什么?(直角三角形和钝角三角形的内角和也是180°)
10.那么,我们能不能说所有三角形的内角和都是180°呢?为什么?(能,因为这三种三角形就包括了所有三角形)
11.老师板书结论:三角形的内角和是180°。
12.一个三角形中如果知道了两个内角的度数,你能求出另一个角是多少度吗?怎样求?
13.出示教材85页做一做。让学生试做。
14.指名汇报怎样列式计算的。两种方法均可。
∠2=180°-140°-25°=15°
∠2=180°-(140°+25°)=15°
三、巩固练习
1.88页第9题
这一题是不是只知道一个角的度数?另一个角是多少度,从哪看出来的?独立完成,集体订正。
直角三角形中的一个锐角还可以怎样算?
2.88页第10题
①等腰三角形有什么特点?(两底角相等)
②列式计算180°-70°-70°=40°或
180°-(70°×2)=40°
2.88页第10题
①连接长方形、正方形一组对角顶点,把长方形、正方形分成两个什么图形?
②一个三角形的内角和是180°,两个三角形呢?
四、课堂总结
通过这节课的学习你有什么收获?
生活中的三角形物品
三角形教案三角形教案
三角形教案三角形教案
雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。
活动内容:小鱼游(认识三角形)
活动目标:
1、知道三角形的主要特征,即三角形有三条边三个角。
2、根据三角形的特征在图中找出形状与三角形相似的小鱼。
3、乐意动手操作,提高幼儿的观察力和空间想象力。
活动重点、难点:
认识三角形的主要特征
知道三角形的主要特征是三角形由三条边和三个角组成。
活动准备:
三角板、小黄兔2只、萝卜1个、蘑菇1个、三角形、正方形、圆形若干、正方形纸每人一张、幼儿每人一个三角形积木活动过程:
1.故事导入:小黄兔过生日
师:今天是小黄兔的生日,早晨小黄兔高高兴兴地从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小黄兔拔起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。
2、观察小黄兔的出行路线
请小朋友将路线用线连起来,观察是什么图形(三角形)3、引导幼儿观察比较图形,幼儿每人一个三角形。
(1)通过自己数一数,试一试,感知图形特征,充分让幼儿表述,得出图形的特征。
(2)教师小结:三角形有三条边,三个角组成。
三角形的特征:有三条边,三个角4、引导幼儿动手操作
幼儿每人一张正方形纸,通过自己对三角形的认识,用正方形的纸折叠成三角形。
5、复习三角形的特征
(1)结合图形宝宝找朋友,让幼儿从众多几何卡片中找出三角形。并一一出示三角形,说说为什么?
(2)观察图形拼图,找出三角形,数一数用了几个三角形?(3)请幼儿在周围环境中找出三角形物品。
(4)完成课本20页《小鱼游》找出小河里三角形的小鱼,并把三角形的小鱼圈出来。
活动延伸:
让幼儿回家后和爸爸、妈妈一起运用各种材料制作一个三角形。课后小结:本节课以《小黄兔过生日》的故事引入课题,通过连接小黄兔所走的路线游戏以及其它操作活动让幼儿认识三角形的特征,知道三角形由三条边三个角组成。
教学目标:
1、知识目标:
(1)掌握已知三边画三角形的方法;
(2)掌握边边边公理,能用边边边公理证明两个三角形全等;
(3)会添加较明显的辅助线.
2、能力目标:
(1)通过尺规作图使学生得到技能的训练;
(2)通过公理的初步应用,初步培养学生的逻辑推理能力.
3、情感目标:
(1)在公理的形成过程中渗透:实验、观察、归纳;
(2)通过变式训练,培养学生“举一反三”的学习行为;
教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。
教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。
教学用具:直尺,微机
教学方法:自学辅导
教学过程:
1、新课引入
投影显示
问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?
这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素DD三条边。
2、公理的获得
问:通过上面问题的分析,满足什么条件的两个三角形全等?
让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)
公理:有三边对应相等的两个三角形全等。
应用格式:(略)
强调说明:
(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。
(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)
(3)、此公理与前面学过的公理区别与联系
(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。
(5)说明AAA与SSA不能判定三角形全等。
3、公理的应用
(1)讲解例1。学生分析完成,教师注重完成后的点评。
例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架
求证:AD⊥BC
分析:(设问程序)
(1)要证AD⊥BC只要证什么?
(2)要证∠1=
只要证什么?(3)要证∠1=∠2只要证什么?
(4)△ABD和△ACD全等的条件具备吗?依据是什么?
证明:(略)
活动目标
1、知道三角形的主要特征,即三角形由三条边,三个角组成。
2、能找出生活中和三角形相似的物体。
3、发展幼儿逻辑思维能力。
4、乐意参与活动,体验成功后的乐趣。
活动准备
1、小白兔、萝卜、蘑菇图片各一个,
2、图形组成的实物图片4张。
3、孩子人手3个三角形。
活动过程
一、故事:小白兔过生日今天是小白兔的生日,早晨小白兔高高兴兴的从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小白兔捡起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。
二、观察小白兔的出行路线请一个小朋友将路线用线连接起来,观察像什么图形。
三、引导幼儿观察比较图形,幼儿每人一个三角形。
1、通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
2、老师小结三角形特征,使幼儿获得的知识完整化。
四、复习巩固三角形的特征
1、给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。并一一出示三角形,并说出为什么?
2、观察图形拼图,找出三角形,数一数用了几个三角形?
3、请幼儿在周围环境中找出象三角形的东西。
活动反思:
小班幼儿的思维是具体形象思维,用故事引出开头吸引孩的注意,在拼拼摆摆的过程中加深孩子对三角形的认识,老师及时的小结使孩子获得知识的完整性。由于生活中属于三角形的物体少一些,所以孩子丰富的不是很多。
活动目标:
1、能将三角形组合拼贴成各种图形,并添画成各种物体。
2、发展幼儿的想象力,创造力,观察能力和操作能力。
3、巩固复习三角形的特征。和使用浆糊的方法。
4、让幼儿体验自主、独立、创造的能力。
5、鼓励幼儿乐于参与绘画活动,体验绘画活动的乐趣。
活动准备:
各种大小,形状,颜色不同的三角形每组若干;浆糊每组一盘;棉签每组若干支;水彩笔,图画纸人手一份。教师作品若干。
活动过程:
1、出示一个拟人大三角形,引导幼儿想象三角型的特点,像什么。幼儿边说,教师边用三角形在黑板上演示出来。并进行添画。让幼儿感受图形的变化。引起幼儿对拼贴画的兴趣。
2、欣赏教师用三角形拼贴的作品。说一说发现了什么。有什么感受。引导幼儿发现可以使用不同大小,不同颜色。多片三角形进行拼贴。并通过添画是画面更生动。
3、介绍材料。重点在三角形的颜色大小。
4、请小朋友们进行活动,重点讲解示范抹奖糊,贴三角形的方法(让幼儿先想一想要拼贴什么。再进行操作。)
5、教师巡回指导,重点指导幼儿可将两个以上的三角形进行组合添画。
6、展示幼儿作品。可请个别幼儿上来介绍自己的作品。教师适当的提出建议。
教学设计
北师大版义务教育课程标准实验教科书七年级下册第五章第一节第四部分“三角形的高线”。
教材分析:
本节是学生在认识了三角形,并且讨论过三角形角平分线,三角形的中线的定义及其性质,学生反反复复地折纸、画线、交流感受其意义,同时也在七年级上学期了解了两直线互相垂直等概念,会过一点作已知直线的垂线的基础上进一步的整理与探究。
“认识三角形的高线”主要研究的就是三角形的高线的定义及其性质,能在具体的三角形中作出它们。因为有了三角形的角平分线,三角形的中线的定义及其性质作为基础。在此,学生将进一步熟悉实验探究的基本方法,加深对三角形的理解和认识。这样,有利于知识的系统化和条理化。又因为我们研究的方法类似于研究三角形的角平分线和三角形的中线的定义及其性质的方法,所以我们要对照比较学习,找出它们之间的区别及其联系。在教学中,要充分地给学生动手、动脑的时间,让学生慢慢地思考、总结、归纳,积累数学思维的经验,从而提高学生分析问题和解决问题的能力。
教学内容:
认识三角形的高线
教学目标:
知识与技能:
1.认识三角形高线的定义。
2.会在任意一个三角形中画出三角形的三条高线。通过画图了解三角形三条高的位置随着三角形的形状的不同而不同。
过程与方法:
通过观察,操作,想象,推理,交流等活动,发展空间观念,培养学生动手动脑,发现问题及解决问题的能力,以及推理能力和有条理的表达能力。
情感与态度:
通过折纸,画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活。
教学重点:
理解三角形高线的定义。会画任意一个三角形的三条高,了解三角形的三条高(或所在的直线)交于一点。了解三角形三条高的位置随着三角形的形状的不同而不同;锐角三角形的三条高都在三角形的内部;直角三角形的两条高与直角边重合,斜边上的高在三角形的内部;钝角三角形有两条高在三角形的外部,一条高在三角形的内部。
教学难点:
1.钝角三角形高的画法及三角形三条高的位置关系与三角形的形状关系的理解。
2.区别三角形的角平分线、三角形的中线和三角形的高线。
教学时数:
1课时。
教学过程:
一.温故而知新
1.导入:
同学们,你还记得我们学过如何“过直线外一点作已知直线的垂线”吗?
由学生思考并动手画。
教师引导:我们曾经学习过“过直线外一点作已知直线的垂线”的方法,可以用五个字来概括“放、靠、移、过、画”。
如图,即放:指用一个三角板的一
边放与已知直线重合;靠:指将另外一
个三角板的一直角边紧靠前一个三角板
与直线重合的边;移:指将在上方的三
角板的直角边紧贴下方三角板的边移动;
过:指将上方的三角板移动过直线外一
点;画:指用铅笔沿着上方的三角板的
直角边画出已知直线的垂线。
待学生画完后,教师演示并画出已
知直线的垂线。
说明:直线的垂线仍然是一条直线。
2.学生动手:
任意画出一个锐角△abc,并画出三角形底边bc上的高ad。
学生边画教师边引导:方法就类似于画过直线外一点作已知直线的垂线,把底边bc看成已知直线,把底边bc所对角的顶点看成直线外一点即可完成。
设计意图
认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育是幼儿数学教育的重点内容。学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。根据小班幼儿的思维特点和活泼好动的性格,我将三角形的图形特征编成简短的故事,再结合图形拼摆,让孩子在玩中学、学中乐、乐中做。使幼儿养成动手、动口、动脑的好习惯,培养幼儿的创新意识。
活动目标
1、知道三角形的主要特征,即三角形由三条边,三个角组成。
2、能找出生活中和三角形相似的物体。
3、发展幼儿逻辑思维能力。
4、乐意参与活动,体验成功后的乐趣。
活动准备
1、小白兔、萝卜、蘑菇图片各一个,
2、图形组成的实物图片4张。
3、孩子人手3个三角形。
活动过程
一、故事:小白兔过生日今天是小白兔的生日,早晨小白兔高高兴兴的从家里出来,它要去采蘑菇,走着走着它看到一个大萝卜,小白兔捡起大萝卜继续往前走,走到蘑菇地里采了一个大蘑菇高兴的回家了。
二、观察小白兔的出行路线请一个小朋友将路线用线连接起来,观察像什么图形。
三、引导幼儿观察比较图形,幼儿每人一个三角形。
1、通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。
2、老师小结三角形特征,使幼儿获得的知识完整化。
四、复习巩固三角形的特征
1、给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。
并一一出示三角形,并说出为什么?
2、观察图形拼图,找出三角形,数一数用了几个三角形?
3、请幼儿在周围环境中找出象三角形的东西。
活动反思:
小班幼儿的思维是具体形象思维,用故事引出开头吸引孩的注意,在拼拼摆摆的过程中加深孩子对三角形的认识,老师及时的小结使孩子获得知识的完整性。由于生活中属于三角形的物体少一些,所以孩子丰富的不是很多。
一、教学目的
(一)知识与技能
1.掌握用两边及夹角正弦表示的三角形面积公式;
2.理解正弦定理、余弦定理及其推导过程。
(二)过程与方法
1.从直角三角形迁移到斜三角形,运用从特殊到一般的数学方法猜想、论证正弦定理和余弦定理;
2.培养学生从旧知识中感悟、思考出新知识的能力,学会温故知新。
(三)情感、态度与价值观
通过大胆猜想,激发学生的创新意识和探索;通过温故知新的教学方式,教学生事事学会反思;通过相互讨论,养成团结互助的良好品质。
二、教学重点和难点
(一)教学重点
正弦定理、余弦定理的`推导和应用。
(二)教学难点
1.余弦定理及其变形式的推导过程;
2.解斜三角形时何时选取正弦定理,何时选取余弦定理。
三、教学设计说明
初中时,学生们学习了解直角三角形的相关知识。解斜三角形的思路与之类似,通过旧知识引入新课是很自然的一种思路。又由于本节的主要内容是要去解三角形,所以新课讲授时,以如何“知三求三,解三角形”展开,紧扣基本主题。鉴于复旦附中学生基础较好,课堂内容的深度和容量要符合学生特点,在夯实基础的前提下做了比较系统化的,让学生能够宏观地、整体地去把握这节课内容。在例题的选择方面,坚持覆盖全面,难度适宜的原则。在行课过程中,还设计了对个别学生的提问和与整个班级的问答环节,以调动学生的积极性,增加参与度。
四、教学过程
(一)复习引入
*解直角三角形
六个元素: “知三求三” (知的不能是三个角)
三个角∠A∠B∠C
3条边a b c
(1)已知a b∠C(直角)
(2)已知a∠A∠C(直角)
(3)求面积
(二)归纳猜想
在给定的三角形是直角三角形的时候,我们可以完成“知三求三”。那么如果是斜三角形呢?还能不能“知三求三”呢?如果可以的话,式子的形式和直角时有什么关系呢?
说明与同学们互动,群策群力,想出解斜三角形的思路!
(3)论证探究
*解斜三角形
“ 知三求三”(知的不能是三个角)
(1)问:已知a b∠C
思考没有直角,那我们把要求的边放到直角三角形的里面
过B作为AC边的垂线,垂足为D( 钝角、锐角考虑周全)
得到两个直角三角形,三角形BCD和三角BAD
=
=
=
=
所以,C得以求出
余弦定理:三角形的一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦值的乘积的两倍。
提问这个式子和勾股定理有什么关系?
勾股定理是∠C=90°时余弦定理的特殊情况。
思考这里,我们给了两边和它们的夹角,可以求第三边的长,那么,如果给的是三边的长,可不可以求角呢?
(2)问:已知a b c
说明把上面(1)中的式子变形,就得到了角的求法。
(3)求面积
(4) 上面的面积公式每个表达式都含3个角或边,考虑同除,进行简化
分子分母倒过来写(为什么到过来写,下节课介绍)
==.
三角形中,各边与它所对角的正弦值的比相等,这就是正弦定理。
运用它可以解已知所有“两角一边”的及部分“两边一角”的三角形。
(4)举例应用
例1(1)已知的三边之比为,求最大的内角。
解设的三边长为a,b,c且a:b:c=
由三角形中大边对大角可知:∠A为最大的角.由余弦定理
所以∠A=120°.
(2)中,AB=2,AC=3,∠A=,求BC和三角形面积。
解由余弦定理可知
BC2=AB2+AC2-2AB×AC・cosA
所以BC=7.
由面积公式有
S==
选题目的
1.介绍完公式,选择简单的题目,作为公式的简单应用。
2.(1)(2)两个小题分别涉及余弦定理和它的变形式,涵盖了运用余弦定理的两个方面。
3.在实例中引导学生发现,“已知三边”,“已知两边夹角”的情况下,应选用余弦定理解三角形。
例2: 在中,已知,解三角形.
解:.
因为=,
所以
又因为=,所以
选题目的
1.选择正弦定理相关题目,和上面例1配合,涵盖本节课主要知识点。
2.引导学生在实例中发现,“已知两角和一边”的解三角形问题,可以利用正弦定理来解决。
例3某林场为及时发现火情,在林场中设立了两个观察点A和B,某日两个观察点的林场人员分别观测到C处出现火情。在A处观测到火情发生在北偏西40°方向,而在B处观测到火情在北偏西60°,已知B在A的正东方向10千米处。现在要确定火场C距A,B多远?
解:在三角形中,∠C=180°-∠A -∠B=20°
有正弦定理知:
b=
选题目的
1. 通过应用问题,培养学生从实际问题中抽象出数学模型的能力。
2. 让学生意识到,在生活中处处存在数学问题,培养学生经常用数学去观察思考生活中的各种问题。
(五)
1.新内容:正弦定理、余弦定理、面积公式
2.典型题目:解斜三角形,包括以下几类:
已知三边的,用余弦定理;
已知两边夹角,用余弦定理;
已知两边一角(非夹角),用正弦定理,注意多解;
已知两角(也就是三角)一边,用正弦定理。
(六)作业
练习5.6(1)1.2.3练习5.6(2)1.2.3.4.5
说明作业中包括用正弦定理、余弦定理求解三角形和面积公式的应用。
五、教学反思
1.板书的整体把握有所提高,对黑板的实际“容量”有了清楚认识。
2.互动不少,学生的积极性得以调动,但对生成问题的处理还有欠经验。
3.整堂课还是比较丰富、流畅的,但在部分内容的表达上,还不够清晰准确。
4.第一次上新课,准备过程及实践上课都使人受益匪浅。
《生活中的三角形》大班教案
教学目标:
1、认识三角形,能用三角形观察概括三角形物品。
2、掌握三角形的画法,能凭记忆画出生活中三角形物品,大胆选用合适的色彩。
3、感知生活中三角形的造型美,激发丰富的联想和记忆。
4、能展开丰富的想象,大胆自信地向同伴介绍自己的作品。
5、体验想象创造各种图像的快乐。
教具准备:
课件、实物投影仪、录音机。
教学过程:
一、导入新课。
出示正方形纸,对折一下我们看,是什么?
二、联想生活中三角形物品
小朋友们想一想:在我们身边有哪些东西是三角形的?或接近三角形的?
小结:在我们身边有许多物品都是三角形,或者接近三角形的物品。
三、图形刺激,引导幼儿欣赏图片
1、出示图片1,请看:画面上蓝天、白云、碧蓝的大海、洁白的风帆,这是一幅多么美丽的画面!在这幅画面中,你发现什么是三角形的?(风帆)谁知道风帆具有什么作用?(调节风力)。
2、出示图片2,请看这一幅:画面上夕阳西下,阳光照映着这几座小亭子。谁来小亭子是什么样的?从整体上看,这些小亭子是什么形状?(三角形)
小结:这幅画之所以这么美,关键是美在亭子的造型上。
3、出示图片3,请看这一幅:这是一座雪山,在蓝天的`映照下,给人一种稳重的美。雪山的外形也是三角形的。
4、出示图片4,小朋友请看:这是在高空拍摄下的一幅城市建筑图,这蓝色的三角形建筑都是楼顶,你们谁知道这座楼顶为什么要建成三角形的呢?(美观)除了美观还有什么作用呢?(稳健)
小结:三角形不仅外形美观,而且具有稳定、坚固的作用,许多房屋、桥梁、都是由三角形的支架构成的。
5、辨别认识图片中的三角形物品
问:谁能说说这幅画上有哪些物品是三角形的?
小结:切成块的西瓜,瓜尖最甜,小朋友们最爱吃。火炬冰激凌下部宽,上部尖,拿在手里既方便又好看。热带鱼的边缘线虽然不像三角形那样规则,但我们从整体上看,可以把它看成是三角形的。蝴蝶的翅膀我们从整体上看,也是三角形。
四、演示三角形物品的画法。
1、画任何三角形物品,都要先画出它的基本形即三角形,然后再具体描绘。
2、屏幕显示:看到这个三角形,你想到了什么?
3、老师演示画法。
4、拓展:你们知道吗?古代埃及有一种著名的建筑叫什么?金字塔它的外形也是三角形的。
5、小结:看来小朋友心里早己想好了很多要画的三角形物品。下面,我们就开始画。比一比,谁想得多,画得多。
五、幼儿作画,教师巡视辅导。
提醒幼儿掌握三角形的画法,大胆选用合适的色彩。
六、展示作品,互相欣赏。
小结:今天,小朋友画出了许许多多的三角形物品,这说明小朋友们平时对生活观察得很仔细。只要我们多观察生活,我们就会发现生活中到处都有美。
大班健康活动《人体的支架-骨骼》教案
设计意图
1、教学目标的设计
对于自己的身体幼儿一直充满认识的兴趣,为了让幼儿对人体骨骼有一个比较全面的认识,在教学中,我将教材分解为三个教学目标:
第一,让幼儿了解人体内哪些部位有骨头,在这一过程中,通过让幼儿捏一捏,说一说,发挥幼儿的主观能动性,激发幼儿的兴趣。
第二,通过模型课件,多让幼儿了解骨骼的特性及作用,在这一过程中,我主动与模型接触,消除孩子初次接触模型的恐惧心理。注重幼儿的交流体会及自身感受,并做到了动静结合,实现形式与内容的有机统一,为活动提供了良好氛围,让孩子享受活动的快乐。
第三,让幼儿了解保护骨骼的方法,通过看、说、学、做、等活动,让幼儿自然而然地掌握保护骨骼的方法,发展了幼儿的观察力、动手操作能力,培养了幼儿的.合作意识。
望你都做到了面向全体幼儿,深入浅出,寓教于乐,幼儿在活动中丰富了知识,发展能力,享受到了快乐。
2、教学媒体的设计
教学媒体的选择要求依据具体的教学目标、教学内容、教学方法和教学对象而定。
根据大班幼儿好奇心强,爱好活动的特点,这堂课主要选用了课件、录音、实物等媒体,并力求教学软件色彩鲜艳,声音动听,有动感。
教学过程说明
1、出示娃娃㈠幼儿经验讲述
师:老师带来了一位小客人,他的手臂怎么了,他手臂上的骨头怎么会断呢?(幼儿利用生活经验,讲述受伤原因)
2、捏一捏,说一说,人体的哪些部位有骨头
a、捏捏自己的手臂,有没有硬硬的东西,这就是——骨头。
b、摸一摸,除了手臂上有骨头,还有哪些地方也有硬硬的骨头,可以你摸摸我,我摸摸你,也可以自己摸一摸。
c、谁来介绍一下,你在哪里摸到了骨头
幼儿说到哪,全体幼儿跟着摸一摸,同时说:“我在××摸到了硬硬的骨头”。
3、出示模型,初步了解骨骼的构造和特征
师:原来我们身上的许多地方都有骨头,这些骨头是什么样的呢?老师为你们准备了人体骨骼模型,我们一起来看一看。
a、教师一边触摸模型一边讲述:人的身体有两百多块骨头,头上有头骨。[要张开嘴吃饭、说话靠的是(颔骨)]这是手骨和腿骨,它能帮助我们做什么?摸下胸口,一排一排的肋骨,这是一节一节的背板骨,它能让我们弯腰……
b、交流体会,你看到的骨头是怎么样的,像什么?
幼儿说到哪个部位的骨头,教师利用课件㈡出示该部位骨头,并简介该骨头的作用,如肋骨像笼子保护着我们的心脏、肺等内脏。
c、了解骨骼的支护作用
提问:这些骨骼长得一样吗?人体的骨骼有的长有的短,有的粗有的细,有的扁有的圆,这些骨头连结在一起,像一个架子把我们人支撑起来,使我们可以站起来,并且灵活地活动。
如果没有手骨会怎么样?如果一根骨头都没有,我们会是什么样(一堆软的肉)
如果没有腿骨会怎么样?站不起来(看课件演示㈢)
4、随音乐活动:让身体动起来
你们能站起来吗?(能)有骨骼支撑着我们,让我们可以灵活地活动,来跟音乐让我们的身体动起来。利用课件㈣让幼儿了解
5、保护骨骼的方法
a、出示课件四,幼儿观察正确及不正确的坐站姿及其背板骨的形状,
b、说一说、做一做怎样才能坐得好,站得好,(幼儿发言示范)
c、学儿歌:老师把你们的好方法总结成了一首儿歌,一起来学一下。
d、坐要挺直腰,站要挺起胸,不歪也不斜,抬头精神好。欣赏军人站行走的录像片断,并模仿。
f、还要怎样保护骨骼(课件五)
幼儿自由发言:①不要从高处往下跳,注意安全
②不挑食,多吃含钙的食品
③冬天多晒太阳,适当锻炼身体等等
6、操作活动:制作骨架
师:今天我们认识了骨骼,了解了保护骨骼的方法,现在我们自己动手来做一个骨架吧。
幼儿分组操作,教师巡回指导,简评结束。
初中数学用支架教学解决三角形内角和
刘 颖
(上海市嘉定区杨柳初级中学)
概念是思维的基本单位。由于概念的存在和应用,人们可以对复杂实物做出简化、概括或分类的反应;由于概念是在揭示了经验的内在联系,获得了实物的本质特征以后形成的,所以,概念增加了经验的意义。概念将事物依其共同属性而分类,依其属性的差异而区别,因此,概念的形成可以帮助学生了解事物之间的从属或相对关系。
数学概念是人类对现实世界的空间形式和数量关系的简明、概括的反映,并且都由反映概念本质特征的符号来表示,这些符号使数学比别的学科有更加简明、清晰、准确的表述形式。在中学数学教学中,正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想的基础,对数学概念的理解和掌握既是正确思维的前提,又是提高数学解题能力的必要条件。而数学概念形成的主要途径可以说是教学。
三角形的内角和这一定理在初中的数学中有着举足轻重的地位,它是初中数学最基础、最重要的内容之一,是以后学习多边形内角和的基础,特别是现代生活中的“镶嵌”,也离不开三角形的内角和定理。学习它,特别是学习它的推理证明,可以发展学生的思维品质,培养他们自主学习、合作探究、推理论证等能力。
根据皮亚杰的认知发展理论,学生在遇到新概念时,总是先用已有认知结构去同化,如果获得成功,就得到暂时的平衡;如果同化不成功,则会调节已有认知结构或重新建立新的认知结构,以顺应新概念,从而达到平衡。本文以《14.2(1)三角形的.内角和》为题目,说说我是怎样依据学生概念学习的这种机制,利用新概念与学生已有认知结构之间的差异来设置出相应的教学情境,以使学生能够意识到这种不平衡,从而引起学生的认知需要,促使学生展开积极主动的学习活动。
本节课的教学目标有:(1)经历对三角形内角和进行猜测、说理证实的研究过程,体会直观感知与理性思考的联系和区别,感受添加辅助线的依据;(2)掌握三角形的内角和性质,能运用这一性质进行简单的说理计算。本节课的教学难点是:感受辅助线生成的过程,证实三角形内角和的性质。本节课是由实验几何向论证几何过渡,初步经历和体验几何推理的过程。
作为几何证明的重要组成部分,这节课所涉及的内容对于几何证明的学习显得十分重要。其原因一方面在于,这是添加辅助线、进行几何证明的首次学习,学生对此普遍感到困难;另一方面,这是《义务教育数学课程标准》下的“几何公理体系”第一次循环的综合运用,即“两直线平行,内错角相等”“内错角相等,两直线平行”的综合应用。
我认为本节课的重点和难点是证明三角形内角和为180° 的辅助线的添法。为了证明的需要,在原来的图形上添画的线叫做辅助线,辅助线通常画成虚线。三角形的内角和为180°,这个定理学生小学已经学过,而且用操作的方法进行了初步的验证,因此,本节课主要是定理的证明。在证明的过程中,设置了一个小提示,“180°是在什么情况下出现的?你可以怎样建构。”由于刚刚学习过平行线,因此,学生多数都能联想到两直线平行,同旁内角互补;也能想到,平角为180°,学生有了初步的想法:添加平行线。然后我根据学生的特点安排了分组讨论证明,学生经过小组讨论,一共获得了如下几种证明的方法:
方法1:作AD//BC,根据两直线平行,内错角相等和同旁内角互补,得到∠C=∠DAC,∠B+∠BAD=180°,再根据等量代换,得∠BAC+∠B+∠C=180°。
方法2:过点A作ED//BC,根据两直线平行,内错角相等,得到∠C=∠DAC,∠B=∠EAB,再由等量代换和平角的意义从而得∠BAC+∠B+∠C=180°。
方法3:过点A作ED//BC,延长BA,根据直线平行同位角和内错角相等,得到∠C=∠DAC,∠B=∠EAD再由等量代换和平角的意义得∠BAC+∠B+∠C=180°。
方法4:过点A,B,C作AD//BE//CF,根据两直线平行,内错角相等则∠ACD=∠DAC,∠EBA=∠BAD,再由两直线平行,同旁内角互补,得∠BAC+∠ABC+∠ACB=180°。
方法5:过点A,B,C作AD⊥BC,BE⊥BC,CF⊥BC,由垂直的意义,得到∠EBC=∠FCD=90°,再由两直线平行内错角相等,得∠ACF=∠DAC,∠EBA=∠BAD,最后由两直线平行,同旁内角互补得到∠BAC+∠ABC+∠ACB=180°。
此时,本节课的重点和难点自然突破,在探索的过程中,无论是优等生还是学困生都获得了极大的成功感,优等生能掌握更多的方法,而学困生也能掌握1~2种。
学生在探索添加辅助线证明这一部分一共用了25分钟,后面的练习题分配的时间就相对少了,但是笔者认为,多种辅助线的添加,不仅锻炼了学生的思维品质,还培养了他们自主学习、合作探究、推理论证等能力。本节课中三角形内角和的熟练掌握也为学生今后学习多边形的内角和等知识打下了良好的基础。
一、教材分析
“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
二、教学目标
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
三、教学重难点
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
四、学情分析
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
五、教学法分析
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。领悟转化思想在解决问题中的应用。
六、课前准备
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
七、教学过程
(一)、创设情境,激趣导入
导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。
(二)、自主探究、合作交流
1、探索特殊三角形内角和
拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°
90°+45°+45°=180°
从刚才两个三角形内角和的计算中,你发现了什么?
2、探索一般三角形的内角和
一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。
3、汇报交流
请小组代表汇报方法。
1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)
没有统一的结果,有没有其他方法?
2)剪D拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)
3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)
4)教师课件验证结果。
请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?
学生回答后教师板书:三角形的内角和是180°
为什么有的小组用测量的方法不能得到180°?(误差)
4、验证深化
质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)
谁能说一说不能画出有两个直角的三角形的原因?
(三)、应用规律,解决问题:
揭示规律后,学生要掌握知识,就要通过解答实际问题。
1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。
第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)
第二关,提高练习,
①已知等腰三角形的底角,求顶角。②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。
让学生灵活应用隐含条件来解决问题,进一步提高能力。
2、小组合作练习,完成相应做一做。
(四)、课堂总结,效果检测。
一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。
(五)作业课下继续探究三角形,看你有什么新发现。
活动目标:
1.在操作中体验图形整体与部分之间的关系。
2.能用几个小三角形拼成一个大三角形。
3.对图形之间的拼组关系感兴趣。
活动准备:
1.教师演示用的大三角形纸卡:红色两个,绿色,蓝色个一个。
2.幼儿用的红色三角形纸卡每人一个,幼儿剪刀每人一把。
3.幼儿用书。
活动过程:
一:三角形一次分割练习,理解图形整体与部分之间的关系。
1、出示红色大三角形。
教师:这是什么图形?它是什么颜色的?
2、取一个红颜色的大三角形,教师演示。
教师:三角形会变魔术,你们相信吗?
教师:你们看,一个大三角形变成了什么?
3、再取一个红颜色的大三角形,教师演示。
教师:它们还可以怎么变呢?
教师:你们看,一个大三角形变成了什么?
4、请幼儿折一折,剪一剪,再拼一拼。
教师 :请你们每人取一个红色的三角形,折一折,剪一剪,让它变一变魔术把!再把剪下来的图形拼一拼,看还能不能拼成原来的形状。
二:三角形两次分割演示。
1、教师:你们还想看三角形变魔术吗?教师把绿色的纸卡折两下,并沿折线剪下来。
2、教师:再将小图形拼一拼,看还能不能拼成原来的形状。
三:三角形三次分割演示。
1、教师把蓝色的纸卡折三次 ,(三条折线不交叉)或这两次(两条折线交叉) 请幼儿数一数共分成了几部分(四部分),都是什么形状的(至少有一个三角形)
2、教师:再将小图形拼一拼看还能不能拼成原来的形状。
四:打开幼儿用书,完成操作练习。
1、调动幼儿操作的愿望和兴趣。
2、教师帮助幼儿理解操作的要求,并指导帮助能力差的幼儿。
3、幼儿之间相互检查,交流讨论。
教学目标:
1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。
3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点:对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
1、猜谜语:(课件)
形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一图形名称)三角形(板书)
2、猜三角形(课件)
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?
师:提问第3个图形时问:被遮住的两个角是什么角?
会是两个直角吗?为什么?
(引导学生开始对“三角形的内角和是多少”进行思索。)
3、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。
(多让几个学生说一说)
2、猜一猜。
师:这个三角形的内角和是多少度?
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
(4)数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的`内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662) ,法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
5、巩固知识。
(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。
(2)解决课前问题,为什么画不出1个含有2个直角的三角形?
1个三角形中有没有2个钝角?
(3)师:我们对三角形的认识已经非常清晰,
出示2个三角形,生分别说出内角和。
把两个小三角形拼在一起,问:大三角形的内角和是?度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数
2、书上88页10题。
教师:刚才,我们利用了三角形的什么?
3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、判断。
5、求4边形、5边形内角和。
下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。)
四、总结。
师:这节课你有什么收获?
一、教材分析
本节教材是学生对小学阶段三角形有初步了解的基础上进一步认识三角形的特点和性质。三角形是最简单、最基本,很常见的一种几何图形,在工农业生产和日常生活中有广泛的应用价值。对学生更好地认识现实世界,拓展空间观念都有非常重要的作用,同时对今后学习三角形全等、相似和解直角三解形,解决相关的实际问题,都有不可低估的作用。
二、教学目标
1、结合实物和图形理解三角形定义。
2、找到所有三角形的共同特点。
3、会用三角形顶点的三个大写字母和形象符号(“△”)来记一个三角形。
4、初步了解任意三角形三边之间的大小关系。
5、能应用所学知识解决日常生活中与三角形有关的实际问题。
6、初步感受三角形简单、广泛地适用性。
7、培养学生动手、动脑、合作、交流、探究意识。
三、教学重难点
重点:三角形共同特点的理解及三角形三边关系性质的.理解。
难点:应用三边关系性质解决简章的实际问题。
四、教具及材料准备
三角板、实物的三角形、包装带、剪刀、头钉、白纸、透明胶等。
五、学生情况及教学构思
七年级学生年龄较小,思维正处在由具体形象思维向抽象逻辑思维转化的阶段,针对这一特点,在教学中设计了以下教学环节:从实际出发说三角形、找三角形、记三角形、画三角形、算三角形、感悟三角形、剪三角形、做三角形、小结三角形的教学环节。
六、教学实施
1、师:在小学我们进一步了解了三角形,今天我们在一起进一步认识三角形的定义、记法及其相关性质,随之在黑板上板书课题(1 认识三角形)哪位同学能列举日常生活中与三角形有关的实例(同学们争先举手答问)。
生:像铁塔,空调器支架、铁桥、教室里饮水机支架、屋顶支架等都是由许多三角形构成的。
师:在黑板上画出同学熟悉的屋顶框架图。
2、师:既然小到生活小事,大到交通、建筑等随处可见三角形的图形,那么三角形有哪些共同特点呢?
甲生:每一个三角形都有三个内角,三个顶点。
乙生:每一个三角形都由三条线段组成。
丙生:任意三角形的三内角之和都等于180°。
(同学们发言积极)
师:为了方便通常用三角形三顶点的大写字母来记一个三角形、并在三个大写字母前面加上符号“△”。如图中可记作“△ABC”,(并在黑板上板书 △ABC),同时规定每个顶点的大写字母所对边就用它的小写字母表示,顶点A所对的边BC用a表示,边AC、AB分别用b、c表示。
师:请同学们在屋顶框架图中至少找出5个不同的三角形,并用三个大写字母记出相关的三角形,并与同伴交流。
【设计意图】
让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的”横空出现“。
猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢?
【设计意图】
引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度。
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】
利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中, 学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。
深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗?
观察:指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。
结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°, 另外两个角都是0°。
【设计意图】
小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用”角的大小与边的长短无关“的旧知识来理解说明。
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。
【设计意图】
习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。
教学内容
人教版小学数学第八册第五单元第85页。
任务分析
教材分析: 《三角形的内角和》是义务教育课程标准实验教科书(数学)四年级下册第五单元《三角形》中的一个教学内容。这部分内容是在学生学习了角的度量,角的分类,三角形的认识,三角形的分类的基上进行教学的。它是三角形的一个重要性质,有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。教材通过实际操作,引导学生用实验的方法探索并归纳出这一规律,即任意一个三角形,它的内角和都是180度。教材在编写上也深刻的体现出了让学生探究的特点,通过动手操作探究发现三角形内角和为180度。教学内容的核心思想体现在让学生经历猜想—验证—结论的过程,来认识和体验三角形内角和的特点。
学情分析:通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。在四年级上册《角的度量》的学习中,学生有接触到两把三角尺的内角和是180°;并在相关的补充习题和数学练习册的练习中,也有要求测量任意三角形的三个内角的度数并求出它们的和的练习,很多学生已经知道了三角形的内角和是180°。但是要真正理解和掌握需要进行验证,因此,学生在这节课上的主要任务是通过实验操作验证三角形的内角和是180°。
教学目标
1、通过实验、操作、推理归纳出三角形内角和是180°。
2、能运用三角形的内角和是180°这一规律,求三角形未知角的度数并运用解决实际生活问题。
3、通过拼摆,感受数学的转化思想。
教学重点
探究发现和验证“三角形的内角和180度”。
教学难点
验证三角形的内角和是180度。
教学准备
多媒体课件,锐角三角形、直角三角形、钝角三角形,剪刀,量角器等。
教学过程
一、复习旧知,学习铺垫
1、一个平角是多少度?等于几个直角?
2、如下图,已经∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解规律
1、说明三角形的三个内角和:
说出手中三角形的类型(锐角三角形,直角三角形,钝角三角形)并说出三角形有几个角?
师(指出):三角形的这三个角叫做三角形的三个内角,这三个内角的度数和叫做三角形的内角和。
板书课题:“三角形的内角和”。
揭示课题:今天我们一起来探究三角形的内角和有什么规律。
2、探究三角形的内角和规律
探究1:量一量,算一算
以小组为单位,用量角器计算出三种三角形的内角和各是多少度?
生讨论汇报,并引导学生发现:三角形的内角和接近180°。
师:三角形的内角和接近180°,那它到底与180° 有怎样的关系呢?
学生预设:有学生可能会说出三角形的内角和就是180°,这时老师可以提问,为什么就是180°?我们要进行验证,你有什么办法呢?
探究2:摆一摆,拼一拼
引导:我们刚刚每个三角形都量了三次角,每一次度量都有误差,所以量出来的内角和有误差。能不能换一种方法减少度量的次数,减少误差呢?
生可能很难想到,可以提示学生:把三个内角拼成一个角就只要量一次角。让我们一起动手做一做
如图:
(1)
锐角的三个内角拼成了一个平角,引导学生说出:锐角三角形的内角和是180°。
(2)
让学生小组合作用同样的方法,发现:直角三角形的内角和也是180°。
(3)
让学生独立用同样的方法,发现:钝角三角形的内角和也是180°。
引导学生归纳:三角形的内角和是180°。
是不是所有的三角形的内角和都是180°呢?
【设计理念】
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。《数学课程标准》指出,让学生学习有价值的数学,让学生带着问题、带着自己的思想、自己的思维进入数学课堂,对于学生的数学学习有着重要作用。因此,我尝试着将数学文本、课外预习、课堂教学三方有机整合,在质疑、解疑、释疑中展开教学,培养学生提出问题、分析问题和解决问题的探究能力。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
【学情分析】
学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。四年级的学生已经初步具备了动手操作的意识和能力,并形成了一定的空间观念,能够在探究问题的过程中,运用已有知识和经验,通过交流、比较、评价寻找解决问题的途径和策略。
【学习目标】
1、通过测量、剪、拼等活动发现、探索和发现“三角形内角和是180°”。
2、学会根据“三角形内角和是180°”这一知识求三角形中一个未知数的度数。
3、在课堂活动中培养学生的观察、归纳、概括能力和初步的空间想象力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
4、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
【教学重点】
探索和发现“三角形的内角和是180°”。
【教学难点】
运用三角形的内角和解决实际问题。
【教学准备】
教师:多媒体、剪好的不同类型的三角形。
学生:量角器、剪刀、剪好的不同类型的三角形。
【教学过程】
一、创设情景,引出问题
1、猜谜语。
师:同学们,你们喜欢猜谜语吗?今天老师给你们带来了一则谜语。请同学们读一下(出示谜语)。
师:打一几何图形。猜猜看!
学生猜谜语。
根据学生的回答,出示谜底。
师:真是三角形,同学们的反应真快!
2、复习三角形的内容。
其实,三角形我们并不陌生,它是一种特别的平面图形。关于三角形,你们已经掌握了哪些知识?
指名学生回答。
3、引出课题。
师:同学们知道的还真不少,可见你们平时学习很用功。知道吗?其实三角形的这三个角就是三角形的三个内角,而这三个角的度数和就是三角形的内角和。你们知道三角形的内角和是多少度吗?今天这节课就让我们一起走进三角形内角和,探索其中的奥秘。
(板书课题:三角形的内角和)
二、探究新知
1、讨论、交流验证知识的方法。
师:那同学们用什么方法来研究三角形的内角和呢?赶紧商量一下。(同桌交流)
学生汇报:
①用量的方法;
②用拼的方法;
③用折的方法。
2、操作验证。
师:同学们的点子还真多!现在请同学们拿出准备好的三角形。
选1个自己喜欢的三角形,选择自己喜欢的方法进行验证。等研究完了我们再交流,发现了什么,好吗?好,现在开始!
3、学生汇报。
师:如果你们已经完成了,就把你的小手举起来示意老师。老师有点迫不及待了,想赶紧分享一下你们研究的成果。谁先来说?
学生汇报,教师适时板书。
①用量的方法:
指名学生汇报度量的结果,教师板书。(指两名学生汇报)
教师白板演示测量方法,并计算和板书出结果。
教师:同样是测量的方法,有的同学得了180,有的不是180°,为什么会出现这种情况?(指名学生说)
师:可能我们测量的时候会有误差,但是同学们选择比较精确的测量工具,使用正确的测量方法,还是可以得到精确的.结果。看来这个办法不能使人很信服,有没有别的方法验证?
②用拼的方法
a、学生汇报拼的方法并上台演示。
我这里也有一个钝角三角形,请两名同学上台演示。
b、请大家四人小组合作,用他的方法验证其它三角形。
c、展示学生作品。
d、师展示。
师:我们用量、拼得到了180度,还有什么方法?
③用折的方法
师:还想向同学们请同学们看一看他是怎么折的(演示)。
师:刚才我们用量的方法、拼的方法和折的方法研究了锐角三角形、直角三角形和钝角三角形内角和,得出什么结论了?
教师根据学生板书:(任意)三角形的内角和是180度。
④数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°,到初中我们还要更严密的方法证明三角形的内角和是180°。其实,早在300多年前就有一位伟大的数学家,用科学的数学方法见证了任意三角形的内角和都是180度。这位伟大的数学家就是帕斯卡(出示帕斯卡),他是法国著名的数学家、物理学家。他在12岁时发现了三角形内角和定律,17时写出了《圆锥截线论》19岁设计了第一架计算机。
三、巩固练习
数学家发现了知识,今天我们也能够总结出知识。你们棒不棒?真厉害,接下来白老师要考考你们。眼睛看好啦!
1、出示:我是小判官(对的打“√”错的“×”。)。
强调:把两个小三角形拼在一起,问:大三角形的内角和是多少度?
教师:为什么不是360°?学生回答。
2、接下来我要奖励你们一个游戏:《帮角找朋友》。
3、求未知角的度数。
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
①出示第一个三角形,学生尝试独立完成,教师巡视。
教师:刚才,我们利用了三角形的什么?
②教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?求出下面三角形各角的度数。
a、我三边相等。
b、我是等腰三角形,我的顶角是96°。
c、我有一个锐角是40°。
教师:如果我们去求一个三角形内角的度数的时候,首先我们要去观察三角形,找出它的特点,找出它给出的已知角的度数,然后再去计算三角形未知的内角的度数。
四、拓展延伸
师:看来三角形内角和的知识难不倒你们了,我们来一个挑战题。你们敢接受挑战吗?(出示四边形)你知道它的内角和是多少吗?指名生回答,并说出理由。同学们,你们能用今天学的知识算出它的内角和吗?
接着让学生尝试求5边形和6边形的内角和。
教学目标:
1.托班科学教案在操作活动中认识长方形、正方形、三角形、圆,体会“面在体上”。
2.初步体会长方形、正方形、三角形和圆的特征,以及在生活中普遍存在。
3.通过印、描、画等活动,培养学生动手操作能力、主动探索的精神和与人合作的意识。
教学重点:认识长方形、正方形、三角形和圆,初步感知其特点,正确辨认这几种图形。
教学难点:通过各种操作活动,体会“面由体来”。
养成教育训练点:激发学生的学习兴趣和探索欲望,体会生活中处处有数学。
教学准备:一些图形纸制品、多媒体课件。
教学过程:
一、创设情景,导入新课。
导入:小朋友们,今天,老师给你们带来了几位新朋友,你们想认识它们吗?
二、通过活动,认识图形。
1.起名字。
出示长方形、正方形、圆、三角形让学生认一认,并说出物体的名称。(课件出示)
2.新朋友的家―面从体来。
课件演示平面图形从立体图形上移下来的过程。
学生拿物体,摸一摸,大家找找看,互相说说:你从什么物体上找到了什么图形?
3.给新朋友照相―描图形。
学生讨论,汇报交流,动手操作,进一步体会“面从体来”。
4.介绍新朋友―托班美术教案平面图形的特征。
师当妈妈,学生试着向师介绍新朋友。
三、找朋友。
生找一找教室里面的图形,并用完整的语言表达出来。
你们的学具盒里有这些物体吗?请小朋友挑出自己喜欢的物体,挑好了吗?
四、动手画一画,练一练。
1.师示范描一描的方法,学生学着画出四种新图形。
2.完成课本37页练习题。
五、小结。
今天,我们每个同学都做了小小设计师,只要大家努力学习,长大后,一定会成为著名的设计师。老师相信经你们之手,一定会把我们的祖国设计的更加美丽、壮观!
课后反思:
“面从体来”比较抽象,孩子们很难理解,针对这一环节,我设计了“找家”的活动,孩子们观察各种形状,迫切希望能找到答案,都很兴奋地投入到学习中去,有效地突破了难点,上面就是小编详细整理的托班数学教案的全部内容,涉及到圆形、三角形、正方形、长方形等方面,希望各位幼儿园工作者有所启示,在活动时候要注意道具安全,更多相关的教案等待您的发现。