下面是小编帮大家整理的14篇西师八册数学小数的近似数教案设计,希望对大家带来帮助,欢迎大家分享。
西师八册数学小数的近似数教案设计
小数的近似数 第11周教案 第一课时 【教学内容】 四年级(下)第84页例1,例2,第85页课堂活动第1,2题及练习十七第2,3题。 【教学目标】 1.理解并掌握用“四舍五入法”保留一定的小数位数的方法,能根据要求用“四舍五入法”保留一定的小数位数,求出小数的近似数。 2.知道求一个小数的近似数在现实生活中的广泛应用,感受所学知识与现实生活的紧密联系。 3.在学习过程中发展学生的分析能力和类推能力,发展学生的合作意识。 【教具、学具准备】 卡片 【教学过程】 一、学习准备 1.下面各数省略万位后面的尾数,求出近似数。 276354 7904910 362095 740980 2.说一说怎样用“四舍五入法”求一个数的近似数。 二、引入新课 教师:我们已经学过求一个整数的近似数,在现实生活中,有时也需要求出一个小数的近似数。这节课我们就来研究怎样求一个小数的近似数。 (板书课题) 三、教学新课 1.体会小数的近似数的意义 教师:同学们先看这样一个例子。教师:我国有13亿人,这个13亿实际上是一个近似数,根据我国进行的全国百分之一人口抽样调查,当时我国人口应该是1306280000人,写成“亿”作单位的数是13.0628亿人。同学们想一想,为什么我们一般生活中不说是13.0628亿人,而说成是13亿人呢? 学生讨论后回答。引导学生说出: (1)不说13.0628亿人而说13亿人是因为13亿比13.0628亿更好记忆; (2)13亿非常接近13.0628亿; (3)由于我国每时每刻都有人在出生或死亡,因此不可能非常精确地统计出我国人口总数,就是13.0628亿也是一个近似数,所以用13亿这个近似数更有利于我们记忆。 2.教学例1 教师:生活中像这样用到小数的近似数的情况比较多,下面我们就来研究一下怎样求一个小数的近似值。我们先来看这样一个问题。出示鲸鱼图和鲸鱼的对话框 教师:这里要求用近似数来表示鲸鱼的体重,你知道为什么要用近似数来表示鲸鱼的体重吗?引导学生说出取近似数的理由。 比如吨后面的第三位小数表示千克,几千克的体重对整只鲸鱼体重的影响不大;近似数比精确数更好记忆等。 教师:老师也赞同同学们的这些理解。下面我们研究怎样求表示鲸鱼体重的这个小数的近似数,在研究这个问题之前,先想一想我们通常用什么方法求一个整数的近似数? 学生:通常是用“四舍五入法”求一个整数的近似数。 教师:我们也用同样的方法求一个小数的近似数。 我们先来研究如果要保留两位小数,我们应该怎样做。 教师板书。 (鲸鱼的体重:1009465吨)教师:先来看看要保留的小数。 (将100.94用红颜色粉笔复写一遍)这部分是要保留的,这部分(指65)应该怎样处理呢? 学生讨论后回答:按“四舍五入法”的要求,这里的6个千分之一看作1个百分之一向百分位进1。 教师:为什么这里省略了65后要向前一位进1呢?我们看看下面这个图。 教师:从图中可以看出100.9465离100.94的距离近些还是离100.95的距离近些?学生:离100.95的距离近些。 教师:也就是说100.9465更接近100.95,所以100.9465保留两位小数的近似数是100.95。 从100.9465≈100.95中你知道怎样保留两位小数呢? 学生讨论后回答:求一个小数的近似数,同样用“四舍五入法”。 要保留两位小数,就要看小数右边第三位,第三位上是5或者比5大,就要省略小数点右边第二位后面的数,同时在百分位上加“1”。 教师:这种保留近似数的方法与整数保留近似数的方法基本上是一样的,不同的是,要保留两位小数,就看小数部分的第三位,由这一位上的数决定舍还是入。 下面我们再来研究这只鲸鱼的体重,如果要求你保留一位小数呢? 学生:就看小数点右边第二位,第二位上的数是“4”,按“四舍五入法”应该舍去,所以100.9465≈100.9。 教师:同学们赞同他的想法吗? 学生:赞同。 教师:老师也赞同他的想法。 再给同学们一个表现的机会,如果要把这只鲸鱼的体重保留到整数,又该怎样想呢? 学生:要保留整数,就看小数点右边第一位,第一位上的数是“9”,按“四舍五入法”应该作为“1”加在前一位上,所以100.9465≈101。 教师:现在同学们知道怎样求一个小数的近似数了吗? 同桌之间说一说,然后老师再请两个同学在全班介绍。 学生相互说后抽学生回答,引导学生说出:保留整数,就看小数点右面的第一位,保留一位小数,就看小数点右面的第二位……,总之比保留的位数多看一位,然后按“四舍五入法”决定是舍还是入 教师:同学们总结得不错。 下面请同学们用这个方法完成课堂活动第1题,学生完成后集体订正。 然后再请学生完成练习十七第2题,完成后集体订正。 两次订正时都要求学生说一说是怎样找到这个小数的近似数的,通过学生说自己找近似数的过程巩固学生掌握的求近似数的方法。 3.教学例2 教师:同学们已经掌握了求一个小数的近似数的方法,下面请同学们把1.396分别保留两位小数和一位小数,求出这个小数的近似数。 学生作业后汇报:1.396保留两位小数是1.40,1.396保留一位小数是1.4。 教师:能说一说你是怎样保留的吗? 学生:把1.396保留两位小数,看小数右面第三位上的数是“6”,把这个数看作“1”加在百分位上,加上1.39后是1.40;把1.396保留一位小数,看小数右面第二位上的数是“9”,把这个数看作“1”加在十分位上,加上1.3后是1.4。 教师:下面老师提出一个更难的问题,1.4与1.40这两个近似数有哪些不同,近似数140末尾的0能去掉吗?指导学生讨论,让学生议出这两个小数不一样,1.4是保留一位小数后的`近似数,1.40是保留两位数后的近似数,这两个小数反映了小数的不同保留方式,也反映了小数的精确程度,所以1.40末尾的0不能去掉。 引导学生进行课堂活动第2题“你问我答”的活动。 四、巩固练习完成练习十七第3题,学生集体判断正误,说一说错误的原因。 第二课时 【教学内容】 四年级(下)第85页例3,课堂活动第3题,练习十七第1,4,5,6题和思考题。 【教学目标】 1.进一步理解并掌握求一个小数的近似数的方法,知道数的改写与求一个数的近似数的区别,能把一个数改写成用“万”或“亿”作单位的小数后再求这个小数的近似数。 2.进一步体会求一个小数的近似值在现实生活中的广泛应用,会用所学知识解决生活中的简单问题,发展应用意识。 【教具、学具准备】 卡片 【教学过程】 一、复习引入 1.填空690000=万 68000000=()万 120000000000=()亿 学生完成后,让学生说一说各数的改写方法。 2.根据下面的要求写出下面小数的近似数 保留两位小数:2.7384203.7482 保留整数:409.912374.99 3.把下面各式的得数保留两位小数 7474÷1006 26÷1070 75÷10 学生完成后让学生说一说怎样求一个小数的近似数 二、进行新课 1.揭示课题今天这节课我们继续研究求一个小数的近似数。 (板书课题) 2.教学例3 教师:先来看这样一个问题。 教师:从小男孩的这句话中,你知道什么? 引导学生回答:我知道我国的高速公路总长已有45300 km。 教师:小女孩要求我们做些什么呢? 学生:要求我们把这个数改写成“万km”作单位的数,再保留一位小数。 教师随学生的回答板书:先改写,再求近似数。 教师:分几次完成?学生:两次。 先进行数的改写,再求这个数的近似数。 教师:我们先来研究怎样进行数的改写 同学们会把150000改写成“万”作单位的数吧?(学生:会) 请一个同学来说一说你是怎样改写的。 引导学生说出把150000改写成“万”作单位的数,先要找到万位,把万位后面的0去掉,同时添上“万”字。 教师随学生的回答板书:150000=15万。 教师:想想把45300改写成“万”作单位的数,和刚才的改写有哪些地方相同,哪些地方不同呢? 学生讨论后回答,指导学生说出相同的都是改写成“万”作单位的数,不同的是把45300改写成用“万”作单位的数时,万位后面不全是0。 教师:怎样处理这个情况呢?我们可以这样想,把一个数改写成“万”作单位的数,就是把这个数缩小多少倍呢?学生:缩小10000倍。 教师:根据我们前面学习的小数点的移动,就应该把小数点向哪个方向移动多少位呢? 学生讨论后回答:把一个数缩小10000倍,就要把小数点向左移动4位。 教师:你能找到45300的小数点在哪儿吗?学生:在个位的后面。 教师:把45300缩小10000倍后是多少?引导学生说出45300÷10000=453。 教师:我们在这个小数后面添上“万”就行了,所以45300=453万。 这和150000=15万的改写相比,它们哪些地方相同,哪些地方不同呢? 引导学生说出相同的地方都要把这个数缩小10000倍,再写上“万”字;不同的是150000缩小10000倍后是整数,而45300缩小10000倍后是小数。 教师:那么你能根据我们原来学习的改写方法说一说45300怎样改写成“万”作单位的数吗? 引导学生说出在改写时,只要找到万位,然后在万位的右下角点上小数点,去掉小数末尾的0,再添上“万”字就可以了。 教师随学生的回答板书:45300 km=453万km。 教师:你能把这个小数用“四舍五入法”保留一位小数吗?引导学生讨论后回答:能。 保留一位小数,看小数点右边的第二位,因为第二位上的数是3,3<5,所以去掉百分位的3时不要在十分位上加1,453万保留一位小数是45万。 教师随学生的回答完善板书:45300 km=453万km≈45万km。 教师:能解释为什么教学目标
1、使学生会根据需要,用“四舍五入法”保留一定的小数位数,求出积的近似值。
2、培养学生根据具体情况解决实际问题的能力。
教学重点
用“四舍五人法”截取积是小数的近似值的一般方法。
教学难点
根据题目要求与实际需要,用“四舍五入法”截取积是小数的近似值。
教学工具
多媒体课件
教学过程
一、激发兴趣
1、口算
1.2×0.3、0.7×0.5、0.21×0.8、1.8×0.5
1-0.82、.3+0.74、1.25×8、0.25×0.4
2、用“四舍五入法”求出每个小数的近似数。(投影出示)
2.095、4.307、1.8642
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五入法”将这些小数保留整数、一位小数或两位小数,取它们的近似值?
(2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、尝试
谈话引出例题:同学们你们知道什么动物的.嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,所以狗能闻出坏蛋身上的气味。狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、列式,板书:0.049×45。
4、独立计算出结果,指名板演并集体订正,说一说是怎样算的。
5、引导学生观察、思考:
(1)积的小数位数这么多。可以根据需要保留一定的小数位数。学生独立探究,指名说说取近似值的过程和理由。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?强调横式中应当用约等号,而不能用等号。
6、专项练习(根据下面算式填空)
3.4×0.91=3.094积保留一位小数是,保留两位小数是()。
7、计算下面各题。
0.8×0.9(得数保留一位小数)1.7×0.45(得数保留两位小数)
三、运用
一千克白菜的价钱是6.78元,妈妈买了0.8千克,应付多少题?(虽然此题没要求保留两位小数,但在日常生活中没有比分更小的钱币,所以应保留两位小数。)
课后小结
谁来小结一下今天所学的内容?
课后习题
1、根据下面算式填空。
3.4×0.91=3.094
积保留一位小数是( )积保留两位小数是( )
2、两个因数的积保留两位小数的近似数是3.58,准确值(三位数)可能是下面哪个数?
3.059 3.578 3.574 3.583 3.585
3、两个因数的积保留整数的近似数是14,精确值可能是哪些数?个位上的数是4,十分位的数是4、3、2、1、0;个位上的数是3,十分位上的数是5、6、7、8、9。
板书
积的近似数
2.45×2.5≈6.13(元)
竖式
答:
教学目标
知识与技能:使学生会根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。
能力目标用“四舍五人法”截取积是小数的近似值的一般方法。
情感目标情感态度与价值观:培养学生解决实际问题的能力。
教学重难点
根据题目要求与实际需要,用“四舍五人法”截取积是小数的近似值。
教学过程
一、激发:
1、口算。 0.8×2= 6×0.9= 5×0.5 = 40×0.2= 7×0.8= 25×4 = 300×0.4= 1.5×0.8=
2、用“四舍五人法”求出每个小数的近似数。(投影出示)
保留一位小数保留两位小数保留三位小数
4.51692
328.9604
思考并回答:(根据学生的回答填空)
(1)怎样用“四舍五人法”将这些小数保留一位小数或两位小数,取它们的近似值? (2)按要求,它们的近似值各应是多少?
3、揭题谈话:在实际应用中,小数乘法乘得的积往往不需要保留很多的小数位数,这时可以根据需要,用“四舍五人法”保留一定的小数位数,求出积的近似值。(板书课题:积的近似值)
二、合作探究
谈话引出例题:同学们你们知道什么动物的嗅觉最灵敏吗?(生回答)所以人们常用狗来帮助侦探、看家。那狗的嗅觉到底有多灵呢?我们一起来看一组数据:
1、出示例6:人的嗅觉细胞约有0.049亿个,狗的嗅觉细胞个数是人的45倍,狗约有多少个嗅觉细胞?
2、读题,找出已知所求。
3、生列式,板书:0.049×45
4、生独立计算出结果,指名板演并集体订正。
5、引导学生观察、思考:
(1)积的小数位数这么多!可以根据需要保留一定的小数位数。
(2)保留一位小数,看哪一位?根据什么保留?
(3)横式中的结果应该怎样写?
6、专项练习:
得数保留一位小数0.8×0.9 ≈
得数保留两位小数1.7×0.45≈
三、拓展应用
1、按要求完成下面各题
2、小刚的体重是21.5千克,
他爸爸的体重是他的3.3倍。
小刚的爸爸的体重大约是多少千克?
(得数精确到十分位)
3、两个因数的积保留两位小数的近似数是3.58,准确数可能是下面哪个数?
3.059 3.578 3.574 3.583 3.585
四、总结
谁来小结一下今天所学的内容?
五、作业布置
P.13页2题
教学目标
1、使学生学会用“四舍五入”法取商的近似数。
2、培养学生的实践能力和思维的灵活性,培养学生解决实际问题的能力。
3、引导学生根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学重难点
教学重点
知道为什么要求商的近似数,会用“四舍五入”法取商的近似数。
教学难点
能根据生活中的实际情况多角度思考问题,灵活地取商的近似数。
教学工具
多媒体课件
教学过程
一、复习
1、按“四舍五入法”,将下列各数保留一位小数。
6.03、7.98
2、按“四舍五入”法,将下列各数保留两位小数。
8.785、7.602、4.003、2.897、3.996
3、计算0.38×1.14。(得数保留两位小数)
二、新课
1、教学例6:
教师出示例6,口述图意, 再列式计算。当学生除到商为两位小数时,还除不尽。教师问:“实际计算钱数时,通常只算到分,应该保留几位小数?除的时候要除到哪一位?为什么?(应该保留两位小数,只要算出三位小数,然后按“四舍五入法”省略百分位后面的尾数。)
教师问:表示计算到“角”需要保留几位小数?除的时候要除到哪一位?应该约等于多少?
教师要让学生想一想:“怎样求商的近似值?”(首先要看题目的要求,应该保留几位小数;其次,求商时,要比需要保留的小数位数多除出一位,然后再“四舍五入”。)
我们学习班了求积的近似值和求商的近似值,比一比这两者有什么相同点和不同点?
2.P32做一做:
教师让学生按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对。做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数。)
三、巩固练习
1、求下面各题商的近似数:
3.81÷7、32÷42、246.4÷13
2、P36第1题。
四、作业
P36第4题。
课后小结
全课总结
师:同学们,这节课都有什么样的收获?
课后习题
1、计算下面各题(商保留一位小数)。
14.36÷2.7 8.33÷6.2 7÷0.03 3)
2、计算下面各题(商精确到百分位)。
32÷42 1.25÷1.2 2.41÷0.7 4)
3、竖式计算下面各题(得数保留到百分位)。
5.63÷6.1 2.84×0.03 4.2÷4.5 0.382×0.13 6.64÷3.3 38.2÷2.7
板书
1.看——需要保留几位小数或整数。
2.除——除到比需要保留的小数位数多一位。
3.取——用“四舍五入”法取商的近似数
数学小数的近似数随堂练习题精选
一、判断题。(对的'打“√”,错的打“×”)
1.1.96保留一位小数约是2.0。
2.2和2.0相等,计数单位相同。()
3.8.45扩大10倍等于845缩小100倍。()
4.57860000000≈578.6亿()
5.去掉小数末尾的零,小数大小不变。()
6.10.1小于10.0999。()
7.2.049精确到十分位约是2.1。()
8.精确到千分位,就是保留三位小数。()
9.3.090=3.09=3.0900()
10.9.993保留两位小数是10.00。()
二、填空题。
1.5.82保留整数位约是()。
2.6.995保留两位小数约是()。
3.8.479精确到百分位约是()。
4.578600人改成用“万人”作单位的数是()。
5.9830000000册改成用“亿册”作单位的数是()。
6.把50780000000吨省略亿后面的尾数约是()亿吨。
7.5.433精确到百分位是()。
8.7.998精确到十分位是()。精确到百分位是()。
四年级数学小数的近似数训练题
判断题。(对的打“√”,错的打“×”)
1。1。96保留一位小数约是2。0。
2。2和2。0相等,计数单位相同。()
3。8。45扩大10倍等于845缩小100倍。()
4。57860000000≈578。6亿()
5。去掉小数末尾的零,小数大小不变。()
6。10。1小于10。0999。()
7。2。049精确到十分位约是2。1。()
8。精确到千分位,就是保留三位小数。()
9。3。090=3。09=3。0900()
10。9。993保留两位小数是10。00。()
这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法――四舍五入法,在求小数近似数的过程中,重点把握了三个...
这节课是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数,在学习之前,我先让学生复习了求整数的近似数的方法――四舍五入法,在求小数近似数的过程中,重点把握了三个教学重难点,即:理解“保留几位小数;精确到什么位;省略什么位后面的尾数”这些要求的含义;表示近似数的时候,小数末尾的.“0”必须保留,不能去掉;连续进位的问题。
1.从生活出发,让学生感受数学与实际的联系
在创设情境环节,结合教科书的主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。
2.注重过程,让学生在探索中学习
在求小数近似数的过程中,引导学生理解保留几位小数的含义。保留一位小数就是精确到十分位,省略十分位后面的尾数;保留两位小数就是精确到百分位,省略百分位后面的尾数。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。
虽然求小数的近似数的方法与整数的近似数相似。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。
课堂也存在一些问题:
一些基础差的学生在求小数的近似数时却还是遇到了一些困难。最典型的就是他们忘了精确到哪一位,以为精确到哪一位就是看哪一位。还有些同学甚至“连环进位”,让他保留两位小数,他就把千分位、百分位、十分位的数都往前进一了。这不仅说明这些同学基础差,还说明了反馈练习的重要性。如果没有反馈,我们就不知道每个学生的课堂学习效果,也就不能帮助接受能力弱的同学,提升有巨大潜力的学生了。
四年级下册数学小数的近似数练习题
1.填空
(1)38000平方分米=平方米9.8平方米=()平方厘米
(2)345厘米=()分米=()米9.87吨=()千克=()克
(3)6.70千米=()千米()米4.6小时=()小时()分钟
2.判断
(1)80吨50千克=80.50吨()
(2)4.3米=4米30厘米()
(3)把6.5米改写为以厘米为单位的数是650厘米()
(4)80平方分米改写为以平方米为单位的.数是0.8平方米()
(5)把低级单位的数量改写为高级单位的数量,只要把小数点向右移动()
教学目标
(一)使学生能根据要求用四舍五入法求一个小数的近似数.
(二)使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点和难点
求一个小数的近似数及把较大数改写成以“万”或“亿”作单位的小数是教学重点.
把较大数改写成以“万”或“亿’作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点.
学习新课
(一)复习准备
我们已经学过求一个整数的近似数,请大家回忆一下:23956省略万后面的尾数约是多少?省略千后面的尾数约是多少?
启发学生说出:省略万后面的尾数,看千位上的数是3,根据“四舍五入”法要舍去,得出23956≈2万;省略千位后面的尾数,要看百位上的数是9,应该入上去,23956≈24千.
师:求一个整数的近似数用的是“四舍五入”法.在实际应用小数的时候,往往没必要说出它的准确数,只要说出它的近似数就够了.例如,量得大新身高是1.625米,平常不需要说得那么准确,只说大约1.6米或1.63米.
求一个小数的近似数与求整数的近似数相似,我们今天来研究怎样求一个小数的近似数.
板书课题:求一个小数的近似数.
(二)学习新课
1.求一个小数的近似数.
例1 2.953保留两位小数、一位小数和整数,它的近似数各是多少?
(1)首先要理解保留整数、一位小数、两位小数……的含义.还可以怎样表述?
引导学生理解,保留整数就是省略整数后面的尾数;保留一位小数就是省略十分位后面的尾数,或者说精确到十分位;保留两位小数就是精确到百分位,也就是省略百分位后面的尾数
(2)求一个小数的近似数的方法是什么?
引导学生明确,仍然采用“四舍五入”法,看省略部分的最高位,是5以上的数,省去后在前一位加1,是4以下的数舍去.
在明确上述两点的基础上,让学生自己试算,得出:2.953≈2.95.
板书:2.953≈3.0 2.953≈3
引导学生分别说明省略的方法.
提问:
(1)上面求出的近似数3.0,为什么末尾的0不能去掉?
(2)上面求出的两个近似数3.0和3,哪个更精确些?
引导学生讨论后明确:3.0是保留一位小数,表示精确到十分位,3是保留整数,表示精确到个位,所以3.0要更精确些.由此可知近似数末尾的0是不能去掉的,因为它表示近似数的精确度的.
总结求近似数应注意什么?
在学生议论的基础上,概括出注意两点:
(1)要根据题目的要求取近似值.保留整数,就要看十分位;保留一位小数,就要看百分位……然后按照“四舍五入”法决定舍还是入.
(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,应保留,不能去掉.
反馈:完成115页“做一做”(上面).
订正时说明保留的方法.
2.改写成以“万”或“亿”作单位的数.
例2 1992年我国生产洗衣机7127000台.把这个数改写成用“万台”作单位的数.
提问:
(1)把7127000台改写成用“万台”作单位的数,应该用多少来除?
(2)应该把7217000缩小多少倍?
(3)小数点应该向哪个方向移动几位?
学生回答后,教师说明,为了简便只在万位后面点上小数点,去掉小数末尾的0.
板书;7127000台=712.7万台
反馈:把348000改写成以“万’作单位的数.
348000=34.8万
师启发提问:既然把一个数改写成以“万”作单位的数,只要在万位后面点上小数点,再写上单位“万”,那么要把一个数改写成以“亿”作单位的数,应该怎么办?
3.改写成以亿作单位的数后,再求近似数.
例3 1991年我国生产原油139000000吨.把这个数改写成用“亿吨”作单位的数.
学生独立改写成139000000吨=1.39亿吨,并说出改写的方法.
提问:如果要求保留一位小数怎么办?
启发学生自己得出(接上题)≈1.4亿吨,并说出保留一位小数的方法.
反馈:完成115页下面“做一做”
订正时要注意,防止改写与省略混淆.
4.区别对比.
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?
引导学生讨论后明确:
(1)求近似数需要省略某位后面的尾数.保留整数,表示精确到个位,就要看十分位是几,……然后按照“四舍五入”法决定是舍还是入.求出的是近似数,应用“≈”表示,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.最后要注意别忘记写单位“万”或“亿”,遇有单位名称的要写上单位名称.
(2)把一个数改写成以“万”或“亿”作单位的数,求的是准确数,就在“万”或‘亿”位后面点上小数点,小数末尾的0要去掉,遇有单位名称的要写上单位名称,应用“=”表示,并写上单位“万”或“亿”.
(三)巩固反馈
1.我国第二大岛海南岛的面积是32200平方千米,把这个数改写成以“万平方千米”作单位的数,再保留一位小数.
2.把135000000人改写成以“亿人”作单位的数,再保留一位小数.
(四)作业
练习二十四第1~5题.
课堂教学设计说明
本节课把求一个数的近似数与把一个数改写成以“万”或“亿”作单位的数两个概念同时进行,便于学生区别对比.
求一个数的近似数与求一个整数的近似数一样,也是根据需要用“四舍五入”法保留位数.由于保留的位数不同,求得的近似数的精确度也不一样,特别是末尾的0不能去掉的道理要让学生明白.
把一个数改写成以“万”或“亿”作单位的数,也是在前边学习的基础上进行的,最后通过对比明确这两个概念的区别,从意义、方法、符号以及末尾0的处理几方面分清,共同点是都不要忘记写单位“万”或“亿”及单位名称.
练习时采用讲练结合方式,最后通过综合练习形成熟练技巧.
板书设计
求一个小数的近似数
例1 2.953保留两位小数,一位小数和整数,它的近似数各是多少?
“四舍五入”法
2.953≈2.95 省略百分位后面的尾数
2.953≈3.0 省略十分位后面的尾数
2.953≈3 省略个位后面的尾数
例2 1992年我国生产洗衣机7127000台,把这个数改写成用“万台”作单位的数.
7127000台=712.7万台
例3 1991年我国原油产量是139000000吨,把这个数改写成用“万吨”作单位的数.再保留一位小数.
139000000吨=1.39亿吨
≈1.4亿吨
求近似数与改写的区别
意义上
方法上
符号上
小数末尾0的处理上
教学目标
1.使学生能根据要求正确地运用“四舍五入法”求一个小数的近似数.
2.使学生学会把较大的整数改写成以“万”或“亿”作单位的小数.
教学重点
求一个小数的近似数及把较大的数改写成以“万”或“亿”作单位的小数.
教学难点
使学生能够区别求近似数与改写求准确数的方法.
教学步骤
一、铺垫孕伏.
1.把下面各数省略万后面的尾数,求出它们的近似数.(卡片出示)
986534
58741
31200
50047
398010
14870
2.下面的□里可以填上哪些数字?
32□645≈32万
47□05≈47万
学生填完后,说一说是怎么想的.
二、探究新知.
1.导入新课.
我们学过求一个整数的近似数.在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了.如:量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米,那么如何求一个小数的近似数呢?今天我们就来学习这一内容.(板书课题:求一个小数的近似数)
2.教学例1:求一个小数的近似数.
(1)教师谈话:求一个小数的近似数,同求整数的近似数相似,根据需要用“四舍五入法”保留一定的小数位数.
(2)出示例1:2.953保留两位小数、一位小数和整数,它的近似数各是多少?
教师提问:保留两位小数,要看哪一位?怎样取近似数?
使学生明确:2.953保留两位小数,就要看千分位,千分位不满5,舍去,求得近似值数2.95.
学生讨论:2.953保留一位小数和整数,要看哪一位?怎样取近似数?
使学生明确:2.953保留一位小数,就要看百分位,百分位满5,向十分位进1,求得近似数3.0.2.953保留整数就要看十分位,十分位上满5,向前一位进一得到3.
分组讨论:保留一位小数3.0十分位上的“0”能不能去掉?为什么?
教师总结说明:保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位……
(3)求下面小数的近似数.
3.781(保留一位小数)
0.0726(精确到百分位)
(4)讨论分析:3.0和3数值相等,它们表示精确的程度怎样?
①教师出示线路图:(投影出示)
②引导学生小组讨论交流:
使学生明确保留一位小数是3.0,原来的长度在2.95与3.05之间.保留整数为3,原来的准确长度在2.5与3.5之间,所以3.0比3精确的程度高一些.也就是小数保留的位数越多,精确的程度越高.
(5)小结.
教师提出问题:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留些数,就看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是合还是人.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉.
(6)分组合作学习,填表.
在下表的空格里按照要求填出近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
4.3808
3.教学例2:我国生产家用电风扇61581400台.把这个数改写成用“万台”作单位的数.
(1)教师提问:把61581400台改写成用“万台”作单位的数,应该用多少来除?缩小多少倍?小数点应该向哪个方向移动几位?
(根据学生回答教师板书:61581400台=6158.14万台)
教师总结说明:把较大数改写成用“万”作单位的数,只要在万位的右边,点上小数点,在数的后面加写“万”宇.
(2)做一做.
把248000改写成用“万”作单位的数.
4.教学例3:19我国生产水泥573000000吨.把这个数改写成用“亿吨”作单位的数.再保留一位小数.
(1)学生讨论:把一个数改写成用“亿吨”作单位的数,应该怎么办?
学生独立改写成573000000吨=5.73亿吨≈5.7亿吨,并说出改写的方法.
教师提问:如果要求保留一位小数怎么办?
启发学生自己得出≈1.4亿吨,并说出保留一位小数的方法.
教师总结说明:把较大数改写成用“亿”作单位的数,只要在亿位的右边,点上小数点,在数的后面加写“亿”字.如果小数位数比较多,可以根据需要保留前几位小数.
(2)“做一做”第2题.
把750000000改写成用“亿”作单位的数.
“做一做”第3题.
把34562800000改写成用“亿”作单位的数后,保留两位小数.
5.区别对比.
例2、例3的学习中,有的数需要把它改写成以“万”或“亿”作单位的数,有的则还需要保留位数求近似数,它们有什么区别?应该注意什么?(引导学生讨论)
三、巩固发展.
1.填空.
求一个小数的近似数,要根据需要用法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……
2.填空.
近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.
3.下面各小数在哪两个相邻的自然数之间?它们各近似于哪个自然数?
5.2812.714.867.05
4.按照四舍五入法写出表中各小数的近似数.
保留整数
保留一位小数
保留两位小数
保留三位小数
9.9564
0.9053
1.4639
5.(1)1999年北京市从事工程技术的人员共120100人,改写成用“万人”作单位的数.
(2)1999年我国出版图书7320000000册(张),改写成用“亿册(张)”作单位的数.
四、全课小结.
今天我们学习了怎样求一个小数的近似数,求小数的近似数的方法与求整数的近似数相似.要用“四合五入”法保留小数位数.要注意保留小数位数越多,精确程度越高.
五、布置作业.
1.把下面各小数四舍五入.
(1)精确到十分位:3.470.2394.08
(2)精确到百分位:5.3446.2680.402
2.把下面各数改写成用“亿”作单位的数.
(1)保留一位小数:3672800000648500000
(2)保留两位小数:4853900000288160000
板书设计
求一个小数的近似数
例12.95保留二位小数,一位小数和整数,它的近似数各是多少?
2.953≈2.95
2.953≈3.0
2.953≈3
求一个小数的近似数要注意:
①要根据题目的要求取近似值.
②取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉.
例261581400台=6158.14万台
在万位右边点上小数点,在数的后面加写万字.
例3573000000吨=5.73亿吨.5.7亿吨
在亿位右边点上小数点,在数的后面加写亿字.
数学《求一个小数的近似数》教学反思
师:今天,我们来认识另外一种数,[教学反思]求一个数的近似数教后感。下面,把书本打开,看看书本上是怎样介绍另外一种数的。
生看书自学课文第一、二自然段。
师:同桌交流一下,你看到的数叫什么,生活中碰到过这样的数吗?举例说一说。
全班交流。
生:我知道另一种数叫近似数,它表示大概有多少。
生:我知道近似数就是不是很准确的,只要接近这个数,大约是多少。比如说,我身高大约1米30。
生:我来说,我家离学校骑车大约要10分钟。
……
师:那我们怎样求一个准确数的近似数呢?再来看书本例5例6和下面的那段话。把不懂的地方划出来。同桌交流。
学生再次看书自学。
生:我知道用四舍五入法可以求一个数的近似数。
四人小组讨论什么叫四舍五入法,汇报,请学生结合具体的数来讲一讲。请学生做小老师,到讲台上来讲给学生听,数学论文《[教学反思]求一个数的近似数教后感》。
生:我说101约等于100,我看十位上的数是0,它不满5,直接把尾数舍去。
生:我说289约等于300,我是看十位上的8,它比5大,把尾数舍去后还要向前一位进一,所以约等于300。
师:你们都说得很好。再来讨论一下,你认为979省略最高位后面的'尾数约是多少?919呢?4919呢?4499呢?
生依次回答,对4499出现的错误较多,认为应该约等于5000。
师:再来把书本上介绍的四舍五入法齐读一遍,想一想,它到底应该等于几。
生:哦,我看明白了,4499的最高位是千位,我们要看尾数左起第一位,它是百位上的4,4不满5,所以直接把尾数舍去。4499约等于4000,而不是5000。
师:弄懂了四舍五入的意思,我们一起来练一练。
学生做练习第一题。
师:学了求一个数的近似数,对我们的数学有什么好处呢?再次自学书本例7。
生:学了求一个数的近似数,我们可以进行估算。有时,可以帮我们检查计算是不是正确。
师:一起来估算一下328×4约等于多少?
生:我把328省略最高位后面的尾数,约等于300,300×4=1200,所以328×4的结果跟1200接近。
课后反思
在几年的课堂实践中,我发现我对数学书的利用率不是很高。教应用题时,把例题写在小黑板上讲解;教式题、计算题时,有时干脆直接把题目写在大黑板上进行讲解。只有在让学生做练习题时,才叫学生把书本打开。所以有时候,我
上到第几页,学生都没处找。在本节课中,我没有按照惯例出示例题,进行示范、讲解,学生被动的接受。而是充分利用教
小学数学说课稿《求一个小数的近似数》
一、说教材
1、教学内容
<<求一个小数的近似数>>是人教版数学第八册的内容,求一个小数的近似数在生产和日常生活有广泛的应用。这部分知识是在学习了小数的意义和小数的基本性质得基础上教学的,是本套教材内容的第四单元。而本节课内容是这个单元的最后一节课,主要属于掌握知识教学。学生学好这部分知识,可以用来解决日常生活中一些具体的问题。
2、教学目标
根据新课标要求和教材的特点,结合四年级学生的实际水平,可以确定以下教学目标:
(1)、使学生掌握求一个小数的近似数的方法。
(2)、能正确地按需要用“四舍五入法”保留一定的小数位数。
(3)、使学生理解保留小数位数越多,精确程度越高。
3、教学重、难点
通过旧知迁移新知的.方法,让学生掌握、理解用“四舍五入法”求一个小数的近似数的方法。
4、教法、学法
根据本教材内容和编排特点,为了更好地突出,突破重、难点,按学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“动手操作——观察、比较——概括——应用”的学习过程中掌握知识。
二、说程序设计
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于些我设计了以下的教学设计。
(一)、复习导入
1、把下面各数省略万后面的尾数,求出它们的近似数。
9865345874131200398210
2、下面的里可以填上哪些数。
32()645≈32万47()050≈47万
问:(1)你是怎么想的?(2)四舍是什么意思?五入呢?
(二)、新授课
1、导入新课
(1)、有时我们和爸爸妈妈一起到商店买菜,电子称上显示价钱是7.53元,可是商店阿姨只收我们7.5元,这是为什么呢?在实际生活中我们往往只需要一个小数的近似数就可以了,那如何求一个小数的近似数呢?今天我们就一起来学习这一内容.(板书:求一个小数的近似数)
2、讲授新课
(1)、出示例题情境图。
师:同一个小数根据不同的需要它有不同的说法即小数的近似数,那我们该如何求小数的近似数呢?
生:思考。
师:求一个小数的近似数,同求一个整数的近似数相似,都可以根据“四舍五入法”保留一定的小数位数.
3、以该同学的身高为例进行讲解保留两位小数,保留一位小数,保留整数的方法。
4、把课本上的例题以练习的形式让学生做。
师:作必要的讲解和分析。
5、总结求一个小数的近似数的方法(生齐读),
注意:保留两位小数,就要看第三位是舍还是入。保留一位小数,就要看第二位。保留整数,就要看小数部分的第一位即十分位的数。
问:1.0和1数值相等,它们表示的程度怎样?
a、让学生明确保留一位小数是1.0,原来的准确长度在0.95与1.04之间。
b、让学生明确保留整数1,原来准确长度在0.5与1.4之间。
即小数保留的位数越多,精确的程度越高。保留一位小数1.0,它是一个近似数,因此十分位上的0不能去掉。
6、求一个小数的近似数应该注意什么?
a、要根据题目的要求取近似数值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;......,然后按“四舍五入法”决定是舍还是入。
b、取近似值时,在保留的小数位置里,小数末一位或几位是0的。0应当保留,不能去掉。
(三)、完成课本74页的“做一做”。
独立完成,个别上讲台演做。提问其思考的过程。
(四)、巩固练习
1、完成课本75页练习十二的第1题。
2、完成课本75页练习十二的第2题。
3、把下面各小数四舍五入。
(1)、精确到十分位
3.470.2394.08
(2)精确到百分位
5.3346.2680.495
4.思考
9.996保留两位小数是()。
(五)、布置作业。
三、说教学反思。
这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。
但是上完之后,我总觉得:学生掌握得不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。整节课时间比较紧张,后面巩固练习和课小结的环节有点匆匆过场的味道,与自己曾设想的场景有一定的差距。自己激励性的语言还欠缺,这也将影响到学生的学习情绪。
我觉得通过这一节课我学到了好多,作为一名教师,不能完全按照自己的意愿去设计课程,要考虑到学生。在今后的日子里,还得在实践中不断完善自己的教学方法。
四、说板书设计。
更多相关的小学数学说课稿推荐:
小学数学说课稿《秒的认识》
小学数学说课稿《角的度量》
小学数学说课稿《分数的初步认识》
小学数学说课稿 《求比一个数多几的应用题》
小学数学面试说课稿《长方体和立方体的认识》
四年级数学求一个小数的近似数教案
教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。
教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。
教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。
教学过程:
一、复习
先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。
1295356089020114536697010
二、新课
教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。
我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。
教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?
教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)
省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)
接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)
教师板书:2.9532.95
教师:谁能连贯地把做这题的过程说一说。
指名让学生说一说,然后教师总结:
做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。
教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?
教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)
省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)
用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)
2.9加上进上来的1就是3.0。所以2.9533.0。
教师板书:2.9533.0
教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。
教师:谁能连贯地把做这题的过程说一说。
指名让学生说一说,然后教师总结:
做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。
教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?
教师板书:2.953
教师:谁能做出这题并且说一说应该怎样做?
指名让学生做这题,并且说一说是怎样做的`。
根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。
教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)
指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:
教师:那么,上面的三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。
教师用投影片(或小黑板)出示图如下:
教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。
教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。
教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。
指名让学生发言,在学生发言的基础上教师总结:
1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。
2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。
三、课堂练习
1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。
2.做练习二十四的第3题。
教师先提问:精确到十分位是什么意思?(保留一位小数。)
精确到百分位是什么意思?(保留二位小数。)
然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。
四、课堂作业
练习二十四的第1-2题。
四年级数学的小数的近似数随堂检测题
1.把下列小数精确到十分位。
9.46≈( ) 15.788≈( ) 26.07≈( ) 0.991≈( )
2.把下列小数精确到百分位。
24.189≈( ) 0.0794≈( ) 3.922≈( ) 2.1873≈( )
重难疑点,一网打尽。
3.先把下列各数改写成用“万”作单位的数,再把结果保留一位小数。
(1)450600=( )万≈( )万 (2)1376500=( )万≈( )万
4.先把下列各数改写成用“亿”作单位的数,再把结果保留两位小数。
(1)1485600000=( )亿≈( )亿 (2)46090000=( )亿≈( )亿
5.在里填上“=”或“≈”。
79500079.5万 518050001亿
180630000018.1亿 6704000670万