有理数教案(华师大七年级数学有理数教案)

作为一位杰出的教职工,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。那要怎么写好教案呢?这次帅气的小编为您整理了有理数教案【优秀6篇】,可以帮助到您,就是小编最大的快乐。

有理数优秀教案 篇一

【目标】:

1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生数学的兴趣。

【重点难点】:

正数和负数概念

【导学指导】:

一、知识链接:

1、小学里学过哪些数请写出来:

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗有没有比0小的数如果有,那叫做什么数

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示、

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂小练】:

1、 P3第一题到第四题(直接做在课本上)。

2、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,—4万元表示________________。

3、已知下列各数: 3、14,+3065,0,—239;

则正数有_____________________;负数有____________________。

4、下列结论中正确的是 ( )

A、0既是正数,又是负数 B、O是最小的正数

C、0是最大的负数 D、0既不是正数,也不是负数

5、给出下列各数:—3,0,+5+3、1,2004,+2010;

其中是负数的有 ( )

A、2个 B、3个 C、4个 D、5个

【要点归纳】:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1、零下15℃,表示为_________,比O℃低4℃的温度是_________。

2、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为—5米,其中最高处为_______地,最低处为_______地、

3、甲比乙大—3岁表示的意义是______________________。

4、如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

有理数优秀教案 篇二

[教学目标]

1.掌握有理数的概念,会对有理数按照一定的标准进行分类;

2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3.体验分类是数学上常用的处理问题的方法。

[教学重点]

正确理解有理数的概念

[教学难点]

正确理解分类的标准和按照定的标准进行分类

[教学过程]

一、创设情境,引入新课(2分钟)

在前两个学段,我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数。现在请同学们任意写出3个数(找3个同学在黑板上写),把它们分类,并说出你的理由。

二、出示自学提纲(8分钟)

认真阅读课本P7-8内容,完成P8练习并回答下面的问题:

有理数有几种分类方法?分类的标准是什么?

正整数、0、负整数统称_______,正分数和负分数统称__________

整数和分数统称____________

三、检查自学效果(10分钟)

1.把下列各数填入它所属于的集合的圈内:

15,-,-5,,,0.1,-5.32,-80,123,2.333.

2.把下列数填在相应的大括号里:

-4,0.001,0,-1.7,15,.

正数集合{…},负数集合{…},

正整数集合{…},分数集合{…}

3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?

四、讨论更正,合作探究(8分钟)

1.学生自由更正,各抒已见。

2.引导学生讨论,说出错因和更正的道理。

3.引导学生归纳,上升为理论,指导以后的运用。

五、课堂小结(2分钟)

教师指导学生总结归纳本节课所学知识

六、当堂检测(见下页)(12分钟)

七、布置作业

预习P8-9数轴,完成P14习题1.2第1题

当堂检测内容:

1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数?

+7,-5,,,79,0,0.67,,+5.1

3.最小的自然数是_______,最大的负整数是_______,最小的非负整数是_______。

4.-2.18是。

(A)是负数不是分数(B)不是分数是有理数

(C)是负数也是分数(D)是分数不是有理数

5.下列说法正确的是。

(A)零是最小的整数(B)有这样的一种数,它既是正数也是负数

(C)有这样的一种数,它既不是正数也不是负数(D)有理数中有最小的数,没有最大的数

6.在下列各数中,所属集合正确的是。

-2,0.23,-,0,8,-0.1,3,-2.5

(A)正整数集合:{0,3,8}(B)整数集合:{-2,0,3,8}

(C)负数集合:(D)负分数集合:

初一上册数学《有理数》教案 篇三

教学目的:

1、了解计算器的性能,并会操作和使用;

2、会用计算器求数的平方根;

重点:用计算器进行数的加、减、乘、除、乘方和开方的计算;

难点:乘方和开方运算;

教学过程:

1、计算器的使用介绍(科学计算器)

初一上册数学一单元教案。png

2、用计算器进行加、减、乘、除、乘方、开方运算

例1用计算器求下列各式的值。

(1)(-3.75)+(-22.5) (2)51.7(-7.2)

解(1)

初一上册数学一单元教案。png

(-3.75)+(-22.5)=-26.25

(2)

初一上册数学一单元教案。png

51.7(-7.2)=-372.24

说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入。

随堂练习

用计算器求值

1.9.23+10.2 2.(-2.35)×(-0.46)

答案1.37.8 2.1.081

有理数优秀教案 篇四

【教学目标】

知识目标:

1.理解自然数、分数的产生和发展的实际背景。

2.通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。

能力目标:

1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。

2.从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。

【教学重点、难点】

重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。

难点:用自然数、分数(小数)的计算解决简单的实际问题。

【教学过程】

一、新课引入

小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。

二、新课过程

用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。

师问:你在这段报道中看到了哪些数?它们都属于哪一类数?

学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:

⑴属于计数如8万辆、5年后、6车道 ⑵表示测量结果如全长36千米 ⑶表示标号和排序如2003年6月8日、第一座等

显示以下练习让学生口答

下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?

(1)2002年全国共有高等学校2003所。 (标号和排序 计数)

(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。(标号和排序 标号和排序)

(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。 (测量结果,计数,标号和排序,标号和排序)

做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。如

(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(18 )

(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?(1.68米)

由于分配和测量等实际需要而产生了分数(如第(1)题)和小数(如第(2)题),它们是表示量的两种不同方式,分数小数之间可以互相转化。分数可以化为小数,因为分数可以看作两个整数相除 如35 =35=0.6,13 =0.333反过来小学里学过的小数都可以化为分数,如0.31=31100

三、典例分析

利用自然数、分数的运算可以解决一些实际问题

例1 (多媒体展示)详见书本合作学习第1题

师:请同学们分小组进行讨论,帮助小惠合理地安排时间,在列算式之前,首先解决以下几个问题

(1)从温州出发到21:40在杭州上火车,这一段时间包括哪几部分时间?

(2)市内的交通和检票进站要花30到40分钟,这两个数据在计算时用哪个数据?

(3)最迟的含义是什么?

由一学生回答,而后给出解题思路

用自然数列: 400100=4(时)

21时40分4时40分=17时

用分数列: 400100=4(时)

2123 时4时23 时=17时

由上题可以看到许多实际问题可以通过自然数和分数的运算得到解决。

例2 (多媒体展示)详见书本合作学习第2题

师:请同学们思考我们要解决的问题涉及哪几个量?他们之间有怎样的数量关系?

生:有销售总额度,发行成本,社会福利资金,中奖者奖金

他们之间的关系:销售总额度=发行成本+社会福利资金+中奖者奖金

发行成本=15% 销售总额度

(1)中奖者奖金总额:4000-15%4000-1400=2000(万元)

(2)以小组为单位进行探究活动,而后由一学生回答给出解题思路

思路1:在社会福利资金提高10%,发行成本保持不变,中奖者奖金总额减少6%的情形下:

销售总额度为:600+1400(1+10%)+2000(1-6%)=40204000 所以方案不可行。

思路2:在销售总额度不变的条件下,为使社会福利资金提高10%,发行成本保持不变

这时中奖者奖金总额变为:4000-1400(1+10%)-600=1860(万元)

原来的奖金总额是2000万元,减少了(2000-1860)2000=7%6% 所以方案不可行。

思路3:销售总额度=发行成本+社会福利资金+中奖者奖金 在这个式子中,由于销售总额与发行成本保持不变,当提高的社会福利资金等于减少的中奖者奖金额时,这种方案可行,否则不可行。所以问题(2)可以用如下算式求解:20006%=120(万元) 140010%=140(万元)因为120140,所以方案不可行。

也可以用20006%-140010%=120-140

算式中被减数小于减数,能否用已学过的自然数和分数来表示结果?看来数还需作进一步的扩展,这就是我们下节课要讲的内容,在很多实际生活中,还存在着许多自然数、分数还不能满足人们生活和生产实际的需要的例子,请举个例子?(气温零上温度与零下温度的表示,飞机上升5米与下降5米的表示等)

课内练习见书本1和2 (注第2题首先让学生了解一米有多长,再估计)

四、探究学习

1 .由于商场在搞活动,一件衣服的价格先上涨了10%,后又下降了10%,则此时这件衣服的价格比原价是贵了还是便宜了?

五、小结

可采用先让学生谈谈本节课所学,然后教师补充的形式。本节课主要讲了自然数、分数的意义及会用自然数、分数的计算解决简单的实际问题。

六、布置作业

有理数教案 篇五

【教学目标】

知识目标:1.理解自然数、分数的产生和发展的实际背景。

2、通过身边的例子体验自然数与分数的意义和在计数、测量、标号和排序等方面的应用。

能力目标:会运用自然数、分数(小数)的计算解决简单的实际问题,并从实际中体验由于需要而再次将数进行扩充的必要性。

情感目标:1.通过同学之间的交流、讨论,以面对面互动的形式,完成合作交流,培养良好的与人合作的精神,感受集体的力量,体验成功的喜悦。

2、从具体的例子使学生感受数学来源于生活,生活离不开数学,从而增加学习数学的兴趣。

【教学重点、难点】

重点:自然数和分数的意义及运用自然数、分数的计算解决简单的实际问题。

难点:用自然数、分数(小数)的计算解决简单的实际问题。

【教学过程】

一、新课引入

小学里,我们学习了自然数和分数,这节课我们就来回顾一下这部分的内容:从自然数到分数。

二、新课过程

用多媒体展示杭州湾大桥效果图,并显示以下报道:世界上最长的跨海大桥杭州湾大桥于2003年6月8日奠基,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,是中国大陆的第一座跨海大桥,计划在5年后建成通车。

师问:你在这段报道中看到了哪些数?它们都属于哪一类数?

学生很快解决这两个问题之后,由上面这几个数,师生共同得出自然数的几个应用:

⑴属于计数(★)如8万辆、5年后、6车道

⑵表示测量结果如全长36千米

⑶表示标号和排序如2003年6月8日、第一座等

显示以下练习让学生口答

下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?

(1)2002年全国共有高等学校2003所。 (标号和排序 计数)

(2)小明哥哥乘1425次列车从北京到天津,然后乘15路公交车到了小明家。(标号和排序 标号和排序)

(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止是世界上第5高楼。 (测量结果,计数,标号和排序,标号和排序)

做完练习之后师:随着生活和生产的需要,自然数已经不能满足实际需要了。如

(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(18 )

(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?(1.68米)

由于分配和测量等实际需要而产生了分数(如第(1)题)和小数(如第(2)题),它们是表示量的两种不同方式,分数小数之间可以互相转化。分数可以化为小数,因为分数可以看作两个整数相除 如35 =35=0.6,13 =0.333反过来小学里学过的小数都可以化为分数,如0.31=31100

三、典例分析

利用自然数、分数的运算可以解决一些实际问题

例1 (多媒体展示)详见书本合作学习第1题

师:请同学们分小组进行讨论,帮助小惠合理地安排时间,在列算式之前,首先解决以下几个问题,

(1)从温州出发到21:40在杭州上火车,这一段时间包括哪几部分时间?

(2)市内的交通和检票进站要花30到40分钟,这两个数据在计算时用哪个数据?(3)最迟的含义是什么?

由一学生回答,而后给出解题思路

用自然数列: 400100=4(时)

21时40分4时40分=17时

用分数列: 400100=4(时)

2123 时4时23 时=17时

由上题可以看到许多实际问题可以通过自然数和分数的运算得到解决。

例2 (多媒体展示)详见书本合作学习第2题

师:请同学们思考我们要解决的问题涉及哪几个量?他们之间有怎样的数量关系?

生:有销售总额度,发行成本,社会福利资金,中奖者奖金

他们之间的关系:销售总额度=发行成本+社会福利资金+中奖者奖金

发行成本=15% 销售总额度

(1)中奖者奖金总额:4000-15%4000-1400=2000(万元)

(2)以小组为单位进行探究活动,而后由一学生回答给出解题思路

思路1:在社会福利资金提高10%,发行成本保持不变,中奖者奖金总额减少6%的情形下:

销售总额度为:600+1400(1+10%)+2000(1-6%)=40204000 所以方案不可行。

思路2:在销售总额度不变的条件下,为使社会福利资金提高10%,发行成本保持不变

这时中奖者奖金总额变为:4000-1400(1+10%)-600=1860(万元)

原来的奖金总额是2000万元,减少了(2000-1860)2000=7%6% 所以方案不可行。

思路3:销售总额度=发行成本+社会福利资金+中奖者奖金 在这个式子中,由于销售总额与发行成本保持不变,当提高的社会福利资金等于减少的中奖者奖金额时,这种方案可行,否则不可行。所以问题(2)可以用如下算式求解:20006%=120(万元) 140010%=140(万元)因为120140,所以方案不可行。

也可以用20006%-140010%=120-140

算式中被减数小于减数,能否用已学过的自然数和分数来表示结果?看来数还需作进一步的扩展,这就是我们下节课要讲的内容,在很多实际生活中,还存在着许多自然数、分数还不能满足人们生活和生产实际的需要的例子,请举个例子?(气温零上温度与零下温度的表示,飞机上升5米与下降5米的表示等)

课内练习见书本1和2 (注第2题首先让学生了解一米有多长,再估计)

四、探究学习

1 .由于商场在搞活动,一件衣服的价格先上涨了10%,后又下降了10%,则此时这件衣服的价格比原价是贵了还是便宜了?

五、小结

可采用先让学生谈谈本节课所学,然后教师补充的形式。本节课主要讲了自然数、分数的意义及会用自然数、分数的计算解决简单的实际问题。

六、布置作业

有理数优秀教案 篇六

教学目标

知识与技能:

熟记有理数的减法法则,能熟练进行有理数减法运算。

过程与方法:

1、借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;

2、经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。

情感态度价值观:

通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。

教学重、难点

重点:有理数减法法则和运算

难点及突破:有理数减法法则的推导

教学用具

多媒体

教学过程设计

一、导入

我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?

生:减法

师:今天我们一起来学有理数的减法!

二、一起研究

下表是中央气象台发布的xx年1月28日天气预报中部分城市的和最低气温统计表

城市/°C最低气温/°C

昆明92

杭州6-2

北京-2-12

温差怎么表示?(温差=-最低气温)

1、那么怎么表示这一天的温差呢?学生填表回答

城市表示温差的算式观察到的温差/°C

昆明9-27

杭州

北京

结论:昆明的温差可表示成9-2=7°C

杭州的温差可表示成6-(-2)=8°C

北京的温差可表示成-2-(-12)=10°C

2、现在我们来看这样一组算式,填空:

9+________=7; 6+______=8; -2+_______=10

3、比较:9-2=7 9+(-2)=7

6-(-2)=8 6+2=8

-2-(-12)=10 -2+(+12)=10

思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。

怎样把加法转化为减法运算?

法则:减去一个数,等于加上这个数的相反数。

4、对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?

例1(略)

注意:减法转化为加法时,减数一定要改变符号

例2 (略)

三、小结

1、理解有理数减法运算的法则。

2、熟悉有理数减法运算的两个步骤

3、有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。

四、板书设计

1、6 有理数减法

1、减法法则:减去一个数,等于加上这个数的相反数

a-b=a+(-b)

2、例

热门教案

学诗词

学名句