有理数的乘方教案精选6篇(有理数的乘方教案第一课时)

作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。那么应当如何写教案呢?下面是整理的有理数的乘方教案精选6篇,在同学们参考的同时,也可以分享一下给您的同桌。

《有理数乘方》反思小结 篇一

这次公开课选了有理数的乘方,本来想能讲的很好,但效果不是很好。

(1)从自身原因分析:自己刚开始很重视这节课,但是由于领导比较忙,不去听课自己的懈怠了很多。从准备有点不重视。

(2)从课堂的整体气氛来说刚开始我和学生都有些紧张,因为毕竟是初一来第一次讲公开课,学生看到那么多听课的老师有些害怕。但后来气氛越来越好。

(3)从整体课堂环节来看,在课内探究的时候由于学案和多媒体内容不一致,加之有理数的乘方运算是一种新的运算。学生接触起来有点难,尤其是乘方运算的符号的确定。导致学生一直在讨论,没有结束。最后我还是不忍心打算了学生。但通过小组的展示来看:讨论效果不好。

最近班里的事情太多了,也感觉自己个性发展的时间都没有了。

有理数的乘方教案 篇二

教学目标

1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;

2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;

3.会用科学记数法表示较大的数。

教学重点

1.有理数乘方的意义,求有理数的正整数指数幂;

2.用科学记数法表示较大的数。

教学难点

有理数乘方结果(幂)的符号的确定。

教学过程(教师)

问题引入

手工拉面是我国的传统面食。制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条。你能算出拉扣6次后共有多少根面条吗?

乘方的有关概念

试一试:

将一张报纸对折再对折……直到无法对折为止。你对折了多少次?请用算式表示你对折出来的报纸的层数。

你还能举出类似的实例吗?

有理数的乘方:同步练习

1.对于式子(-3)6与-36,下列说法中,正确的是()

A.它们的意义相同

B.它们的结果相同

C.它们的意义不同,结果相等

D.它们的意义不同,结果也不相等

2.下列叙述中:

①正数与它的绝对值互为相反数;

②非负数与它的绝对值的差为0;

③-1的立方与它的平方互为相反数;

④±1的倒数与它的平方相等。其中正确的个数有()

A.1B.2C.3D.4

有理数的乘方教学反思 篇三

有理数乘方的教学反思

有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。一、要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘。本节课主要有以下转变

1、教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生动手实践发现结论,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变:学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课学生与学生,学生与教师之间以“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值在教学上应该抓住以下几点:

一、乘方是一种运算。相当于+、-、×、÷。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与和、差、积、商一样。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果。

二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,0的任何次幂是正,是0,负数的正数次幂是负数,负数的偶数次幂是正数,教师教学时强调做乘方时先确定符号再计算,

三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的'先算括号,同时注意教学生的书写格式。分清与的区别。

四、注意讲清有理数乘方中的常见错误。写法不同计算的结果不同。同时分清分数的乘方的书写。与分清小数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。同时讲清楚区别与联系。

小学数学《有理数的乘方》教案 篇四

有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘方运算顺序。有理数乘方书写格式,有理数乘方常见错误等五个方面来教学。

根据新课程标准要求和学生的知识水平,要求学生深刻理解有理数乘方的意义。即一般地n个相同的因数相乘即。在教学上应该抓住以下几点:

一、乘方是一种运算。相当于“+、-、×、÷”。教师在教学时要让学生明白这一点,同时要求学生掌握其书写方法,及格式。强调幂的意义,幂的意义与“和、差、积、商”一样。如的结果是8。所以说的幂是8。与2×4一样,2×4=8.所以不能说8是幂,说成的幂是8。同时强调具有两种意义,它既表示n个a相乘。又表示乘方的运算结果。

二、在有理数乘方的教学中主要强调它的运算,所以特别注意有理数乘方符号法则的教学。法则是:正数的任何次幂是正数,负数的奇数次幂是负数,负数的偶数次幂是正数。

三、教有理数综合运算时应该强调运算顺序。即先算乘方,再算乘除,最后算加减,有括号的先算括号,同时注意教学生的书写格式。分清区别。注意–5的平方与1/2的平方的书写方法。

四、注意讲清有理数乘方中的常见错误。如的区别前者是表示2的平方的相反数,后记者是表示–2的平方,写法不同计算的结果不同。同时分清分数的乘方的书写与分清负数的乘方的书写有理数乘方是在乘法的基础之上的一种运算,要结合乘法来教乘方。

这节课课堂气氛很活跃,学生的积极性很高,也很勇于回答问题,表达清晰,讲解到位。但是课堂还有很多的不足,如:板书不够工整,关注学生不够,课堂内容有点多,给学生充分表现的时间较少。

有理数的乘方教案 篇五

一、 学什么

1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。

2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。

二、 怎样学

归纳概念

n个a相乘aaa= ,读作: 。 其中n表示因数的个数。

求 相同因数的积的运算叫作乘方。乘方运算的结果叫幂。

例1:计算

(1)26 (2)73 (3)(3)4 (4)(4)3

例2:(1) ( )5 (2)( )3 (3)( )4

【想一想】1.(1)10,(1)7,( )4,( )5是正数还是负数?

2、负数的幂的符号如何确定?

思考题:1、(a2)2+(b+3)2=0,求a和b的值。

2、计算 ( 2)20 09 +(2)20xx

3、在右 边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三 学怎样

1、某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这 种细菌由1个可分裂成( )

A 8个 B 16个 C 4个 D 32个

2、一根长1cm的绳子,第一次剪去一半。第 二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( )

A ( )3m B ( )5m C( )6m D( )12 m

3、(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是 。

4、计 算

(1)(3)3 (2)(0.8)2 (3)02004 (4 )12004

(5)104 (6)( )5 (7)-( )3 (8) 43

(9)32(3)3+(2)223 (10)-18(3)2

5、已知(a2)2+|b5|=0,求(a)3( b)2.

2.6有理数的乘方(第2课时)

一、学什么

会用科学计数法表示绝对值较大的数。

二、怎样学

定义:一般地,一个大于10的数可以写成 的形式,其中 ,n是正整数,这种记数法称为科学记数法。

例题教学

例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。截至20xx年12月人们最后一次收到它发回的信号时,它已飞离地球1220000000 0km。用科学记数法表示这个距离。

例2:用科学记数法表示下列各数。

(1)10000000 (2) 57000000 (3) 123000 0000 00

例3.写出下列用科学记数法表示的数的原数。

2.31105 3.001104

1.28103 8.3456108

思考:比较大小

(1)9.2531010 与1.0021011

(2)7.84109与1.01101 0

学怎 样

1、用科学记数法表示314160000得 ( )

A.3.1416108 B. 3.1416109 C. 3.1416101 0 D. 3.1416104

2、稀土元素有独特的性能和广泛的应用,我国的稀土资源总储藏量约为1050000000吨,是全世界稀土资源最丰富的国家,将1050000000吨用科学记数法表示为( )

A.1.051010吨 B. 1.05109吨 C.1.051 08吨 D. 0.105101 0吨

3、人类的遗传物质是DNA,DNA是很 大的链,最短的22号染色体也长达30000000个核苷酸,3000000 0用科学记数法表示为 ( )

A.3108 B. 3107 C.3106 D. 0.3108

4、第五次全国人口普查结果表示:我国的总人口已达到13亿。请用科学记数法表示13亿为 。

5 。比较大小:

10.9 108 1.11010 ; 1.11108 9.99107 。

6、用科学记数法表示下列各数。

(1)32000 (2) -80000000 000 (3)2895.8 (4)- 389999900000000

七年级数学《有理数的乘方》教案设计 篇六

教学目标:

1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:

(一)创设情境,导入新课

提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?

a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)

(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?

1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.

(二)合作交流,解读探究

一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

(4)乘方是一种运算,幂是乘方运算的结果。

(三)应用迁移,巩固提高

【例1】(1)(-4)3;(2)(-2)4;(3)-24.

点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

(2)注意(-2)4与-24的区别。

根据有理数的乘法法则得出有理数乘方的符号规律:

负数的奇次幂是负数,负数的偶次幂是正数;

正数的任何次幂都是正数,0的任何正整数次幂都是0.

【例2】计算:

(1)()3;     (2)(-)3;

(3)(-)4; (4)-;

(5)-22×(-3)2; (6)-22+(-3)2.

(四)总结反思,拓展升华

1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。

2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值。

乘方的含义:(1)表示一种运算;(2)表示运算的结果。乘方的读法:(1)当an表示运算时,读作a的n次方;(2)当an表示运算结果时,读作a的n次幂。

乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数。注意(-a)n与-an及()n与的区别和联系。

(五)课堂跟踪反馈

1.课本P42练习第1、2题。

2.补充练习

(1)在(-2)6中,指数为    ,底数为    .?

(2)在-26中,指数为    ,底数为    .?

(3)若a2=16,则a=    .?

(4)平方等于本身的数是    ,立方等→←于本身的数是    .?

(5)下列说法中正确的是(  )

A.平方得9的数是3

B.平方得-9的数是-3

C.一个数的平方只能是正数

D.一个数的平方不能是负数

(6)下列各组数中,不相等的是(  )

A.(-3)2与-32 B.(-3)2与32

C.(-2)3与-23 D.|2|3与|-23|

(7)下列各式中计算不正确的是(  )

A.(-1)2003=-1

B.-12002=1

C.(-1)2n=1(n为正整数)

D.(-1)2n+1=-1(n为正整数)

(8)下列各数表示正数的是(  )

A.|a+1| B.(a-1)2

C.-(-a) D.||

第2课时 有理数的混合运算

教学目标:

1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序。

2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律。

教学重点:根据有理数的混合运算顺序,正确地进行有理数的混合运算。

教学难点:有理数的混合运算。

教学过程:

一、有理数的混合运算顺序:

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

【例1】计算:

(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);

(2)1-×[3×(-)2-(-1)4]+÷(-)3.

强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值。

【例2】观察下面三行数:

-2,4,-8,16,-32,64,…;①

0,6,-6,18,-30,66,…;②

-1,2,-4,8,-16,32,….③

(1)第①行数按什么规律排列?

(2)第②③行数与第①行数分别有什么关系?

(3)取每行数的第10个数,计算这三个数的和。

【例3】已知a=-,b=4,求()2--(ab)3+a3b的值。

二、课堂练习

1.计算:

(1)|-|2+(-1)101-×(0.5-)÷;

(2)1÷(1)×(-)÷(-12);

(3)(-2)3+3×(-1)2-(-1)4;

(4)[2-(-)3]-(-)+(-)×(-1)2;

(5)5÷[-(2-2)]×6.

2.若|x+2|+(y-3)2=0,求的值。

3.已知A=a+a2+a3+…+a2004,若a=1,则A等于多少?若a=-1,则A等于多少?

三、课时小结

1.注意有理数的混合运算顺序,要熟练进行有理数混合运算。

热门教案

学诗词

学名句