平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。这次为您整理了平行四边形教案【优秀8篇】,希望能够为您的写作带来一些帮助。
教学目标
1、使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高。
2、通过观察。动手操作,培养学生抽象概括能力和初步的空间观念。
教学重点
掌握平行四边形的意义及特征。
教学难点
理解平行四边形与长方形。正方形的关系。
教学过程
一、复习准备。
我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形。
教师提问:我们学过哪些四边形呢?
学生举例。
说说哪些物体表面是平行四边形?
教师出示下图,让学生初步感知平行四边形。
二、学习新课。
1、理解平行四边形的意义。
首先出示一组图形。
教师提问:这些图形是什么形?它们有什么特征?
(1)看到这个名称你能想到什么?(板书:平行。四边形)
教师提问:你认为什么是四边形?你学过的什么图形是四边形的?
(2)动手测量。
指名到黑板上用三角板检验一下,每个图形的对边怎样。
(3)抽象概括。
根据你测量的结果,能说说什么叫平行四边形吗?
小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义。(板书:两组对边分别平行的四边形叫做平行四边形。)
教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”。
(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】
2、平行四边形的特征和特性。
(1)教师演示。
教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角。
(2)动手操作。
学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行。
(3)归纳平行四边形特性。
根据刚才的实验。测量,引导学生概括出:平行四边形具有不稳定性。(板书:易变形)
(4)对比。
三角形具有稳定性,不容易变形。平行四边形与三角形不同,容易变形,也就是具有不稳定性。
这种不稳定性在实践中有广泛的应用。你能举出实际例子来吗?
(如汽车间的保护网,推拉门。放缩尺等。)
3、学习平行四形的底和高。
(1)认识平行四边形的底和高。
教师边演示边说明:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。这条对边叫做平行四边形的底。
(2)找出相应的底和高。【继续演示课件“平行四边形”】
引导学生观察:图中有几条高?它位相对应的底各是哪条线段?
使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC。
(3)画平行四边形的高。【继续演示课件“平行四边形”】
教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在平行四边形内,不要求把高画在底边的延长线上。
①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形。(还可以把平行四边形变成长方形)
引导学生比较长方形和平行四边形的异同点,使学生明确:
相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形。不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形。
②引导学生比较正方形和平行四边形的相同点和不同点。
使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形。因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形。
③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】
三、巩固练习。【继续演示课件“平行四边形”】
1、判断下列图形哪些是平行四边形?
2、指出平行四边形的底,并画出相应的高。
3、在钉子板上围出不同的平行四边形。
4、数一数下图中有( )个平行四边形。
四、教师小结。
1、提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)
2、组织学生对所学知识提出质疑,并解疑。
3、教师提问:我们已学过的长方形。正方形是平行四边形吗?它们有什么关系?(因为长。正方形也具备平行四边形的特点所以长。正方形是特殊的平行四边形)
五、布置作业。
1、用一套七巧板拼出不同的平行四边形。
2、在下面每个平行四边形中分别画出两条不同的高。
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的`距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
教学目的:
1、深入了解平行四边形的不稳定性;
2、理解两条平行线间的距离定义(区别于两点间的距离、点到直线的距离)
3、熟练掌握平行四边形的定义,平行四边形性质定理1、定理2及其推论、定理3和四个平行四边形判定定理,并运用它们进行有关的论证和计算;
4、在教学中渗透事物总是相互联系又相互区别的辨证唯物主义观点,体验“特殊--一般--特殊”的辨证唯物主义观点。
教学重点:
平行四边形的性质和判定。
教学难点:
性质、判定定理的运用。
教学程序:
一、复习创情导入
平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
二、授新
1、提出问题:平行四边形有哪些性质:判定平行四边形有哪些方法:
2、自学质疑:自学课本P79-82页,并提出疑难问题。
3、分组讨论:讨论自学中不能解决的问题及学生提出问题。
4、反馈归纳:根据预习和讨论的效果,进行点拨指导。
5、尝试练习:完成习题,解答疑难。
6、深化创新:平行四边形的性质:
边:对边平行(定义);对边相等(定理2);对角线互相平分(定理3)夹在平行线间的平行线段相等。
角:对角相等(定理1);邻角互补。
平行四边形的判定:
边:两组 对边平行(定义);两组对边相等(定理2);对角线互相平分(定理3);一组对边平行且相等(定理4);两组对角分别相等(定理1)
7、推荐作业
1、熟记“归纳整理的内容”;
2、完成《练习卷》;
3、预习:(1)矩形的定义?
(2)矩形的性质定理1、2及其推论的内容是什么?
(3)怎样证明?
(4)例1的解答过程中,运用哪些性质?
思考题
1、平行四边形的'性质定理3的逆命题是否是真命题?根据题设和结论写出已 知求证; 2、如何证明性质定理3的逆命题? 3、有几种方法可以证明? 4、例2的证明中,运用了哪些性质及判定?是否有其他方法? 5、例3的证明中,运用了哪些性质及判定?是否有其他方法?
跟踪练习
1、在四边形ABCD中,AC交BD 于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )
2、在四边形ABCD中,AC交BD 于点O,若OC= 且 ,则四边形ABCD是平行四边形。
3、下列条件中,能够判断一个四边形是平行四边形的是( )
(A)一组对角相等; (B)对角线相等;
(C)两条邻边相等; (D)对角线互相平分。
创新练习
已知,如图,平行四边形ABCD的AC和BD相交于O点,经过O点的直线交BC和AD于E、F,求证:四边形BEDF是平行四边形。(用两种方法)
达标练习
1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。
2、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BM∥DN,且BM=DN 。
综合应用练习
1、下列条件中,能做出平行四边形的是( )
(A)两边分别是4和5,一对角线为10;
(B)一边为4,两条对角线分别为2和5;
(C)一角为600,过此角的对角线为3,一边为4;
(D)两条对角线分别为3和5,他们所夹的锐角为450。
推荐作业
1、熟记“判定定理3”;
2、完成《练习卷》;
3、预习:
(1)“平行四边形的判定定理4”的内容 是什么?
(2)怎样证明?还有没有其它证明方法?
(3)例4、例5还有哪些证明方法?
教学目标
1.能够从图中全面感知平行四边形现象,体会平行四边形在生活情景中的存在。,
2.通过观察、操作等活动,认识平行四边形的一些特征。
3.经历探索平行四边形的过程,了解它的基本特征,进一步发展空间观念。
教学重点
通过观察、操作等活动,认识平行四边形的一些特征
教学难点
经历探索平行四边形的过程,了解它的基本特征
教学过程
激发兴趣
一、(出示主题图)
我们已经认识了平行四边形,请同学们仔细
观察主题图,图中都有些什么物体,这些物体
都反映出一些什么现象?
这些现象正是我们本单元所要研究和学习
的平行四边形。(板书课题)
仔细观察
小组活动
探索、感知
探索新知 1.拉一拉。
师:拿出你们准备的长方形木框,用手捏住相对的两个角,向相反的方向拉动,边拉动,边观察你有什么发现?与原来的长方形有什么相同和不同?
生:可以拉成不一样的平行四边形。……
师:说明平行四边形易变形。(板书:易变形)
2.画一画,比一比 。
(拉到一定的位置不变)师将拉成的'平行四边形画在黑板上。学生将拉成的平行四边形画在纸上。 观察平行四边形,你发现了什么?
生:相对的两条边互相平行……
抽生演示测量两组对边分别平行。
师课件演示两组对边分别平行。
师小结:两组对边分别平行平行的四边形叫做平行四边形。
3.量一量,填一填,说一说。
师:先给平行四边形的边和角编上号。每位同学都用直尺量一量平行四边形的四条边,用三角板量一量四个角,然后填表。
长边 长边 短边 短边 边 ∠1 ∠2 ∠3 ∠4 角
观察表格,你有什么发现?
将自己的发现在小组交流,然后讨论平行四边形都有哪些特点?作好记录。
全班汇报。你们组发现了平行四边形都有哪些特点?
师:几组同学的汇报都有哪些相同的地方?你们有吗?
平行四边形都有哪些特征?
总结:1.两组对边分别相等。2.两组对角分别相等。
3.四个内角的和是360
学生操作
抽生汇报
先独立思考,在小组讨论。
独立观察后,同桌交流。然后全班交流。
学生操作,先拉平行四边形,再画。
独立观察
小组交流
抽生汇报
学生发言,其余注意倾听。
独立思考,汇报。
1组:我们发现左右两边的长都是……,上下两边的长都是……
一组对角都是……,另一组对角都是……
2组:……
课堂小结
今天这节课我们学习了些什么?你都有哪些收获?
多边形面积的计算教学内容:(机动1课时)1.平行四边形面积的计算(2课时)2.三角形面积的计算(2课时)3.梯形面积的计算(3课时)4.实际测量(1课时)5.组合图形的面积(1课时)6.整理和复习(2课时)教学要求:1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。教学重点:1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。 2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。教学难点: 1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。1. 使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。
平行四边形面积的计算
第一课时 教学内容:平行四边形面积的计算(例题和做一做,练习十七第1—3题。) 教学要求: 1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。 2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。 3. 引导学生运用转化的思想探索规律。 教学重点:理解并掌握平行四边形面积的计算公式。 教学难点:理解平行四边形面积计算公式的推导过程。 教学过程: 一、激发 1.提问:怎样计算长方形面积? 板书:长方形面积=长×宽 2.口算出下面各长方形的面积。 (1)长1.2厘米,宽3厘米。 (2)长0.5米,宽0.4米。 3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。 4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习“平行四边形面积的计算(板书课题:平行四边形面积的计算) 二、尝试 1.用数方格的方法计算平行四边形面积。 (1)请大家打开书64页(指名读第2段)。 (2)指名到投影上数。边数边讲解:我先数……,它是……平方厘米;再数……,它是……平方厘米;两部分合起来是……平方厘米。 (3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。 (4)观察比较两个图形的关系,提问:你发现了什么? 引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。 2.通过操作,将平行四边形转化成长方形。 (1)自由剪、拼,进一步感知。 ①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。 ②互相讨论。提问:你发现了什么规律? 通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形——长方形。这种剪法最简便。 (2)揭示转化规律 任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述) ①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。 ②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。 ③学生根据刚才的演示模仿操作,体会平移的过程。 3.归纳总结公式 (1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。 引导学生明确:你发现了什么?互相讨论,汇报讨论结果。 ①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书) ②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书) (2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。 板书: 平行四边形的面积=底×高 4.教学字母公式 (1)介绍每个字母所表示的意义及读法。板书s=a×h (2)说明在含有字母的式子里,字母和字母中间的乘号可以记作“·”,也可以省略不写。所以平行四边形面积的计算公式可以写成“s=a·h或“s=ah”。(同时板书) (3)提问:计算平行四边形面积,需要知道哪些条件? 三、应用 1.p.66页例题:一块平行四边形钢板(如下图),它的面积是多少? (得数保留整数) 3.5厘米 4.8厘米 ①读题,理解题意。 ②学生试做,指名板演。提醒学生注意得数保留整数。 ③订正。提问:根据什么这样列式? 2.完成p.72页做一做第1、2题。 订正时提问:计算时注意哪些问题? 3.填空 任意一个平行四边形都可以转化成一个( ),它的面积与原平行四边形的面积( )。这个长方形的长与原平行四边形的( )相等。这个长方形的( )与原平行四边形的( )相等。因为长方形的面积等于( ),所以平行四边形的面积等于( )。 4.判断,并说明理由。 (1)两个平行四边形的高相等,它们的面积就相等( ) (2)平行四边形底越长,它的面积就越大( ) 5.你能求出下列图形的面积吗?如果能,请计算出面积。 (单位:厘米) 16 20 15 20 6.练习十七第3题 四、体验 今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的? 五、作业 练习十六节第2题。
第二课时 教学内容:平行四边形面积计算的练习 (p.74~75页练习十七第4~9题。) 教学要求: 1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。 2.养成良好的审题习惯。 教学重点:运用所学知识解答有关平行四边形面积的应用题。 教学过程: 一、基本练习 1.口算。(练习十六第4题) 4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49 530+270 3.5×0.2 542-98 6÷12 2.平行四边形的面积是什么?它是怎样推导出来的? 3.口算下面各平行四边形的面积。 ⑴底12米,高7米; ⑵高13分米,第6分米; ⑶底2.5厘米,高4厘米 二、指导练习 1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米? ⑴生独立列式解答,集体订正。 ⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件? ②生独立列式,集体讲评: 先求这块地的面积:250×780÷10000=1.95公顷, 再求共收小麦多少千克:7000×1.95=13650千克 ⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想? 与⑵比较,从数量关系上看,什么相同?什么不同? 讨论归纳后,生自己列式解答:58500÷(250×78÷1000) ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。 2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米 2.5厘米 ⑴你能找出图中的两个平行四边形吗? ⑵他们的面积相等吗?为什么? ⑶生计算每个平行四边形的面积。 ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。) 3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。 28平方米 7米 分析与解:因为平行四边形的面积=底×高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。 三、课堂练习 练习十六第7题。 四、作业 练习十六第5、8、9、11题。
教学目的
1.使学生掌握用平行四边形的定义判定一个四边形是 平行四边形;
2.理解并掌握用二组对边分别相等的四边形是平行四 边形
3.能运这两种方法来证明一个四边形是平行四边形。
教学重点和难点
重点:平行四边形的判定定理;
难点:掌握平行四边形的性 质和判定的区别及熟练应用。
教学过程
(一)复习提问:
1. 什么 叫平行四边形 ?平行四边形有什么性质?(学生口答,教师板书)
2. 将 以上的性质定理,分别用命题形式 叙述出来。(如果……那么……)
根据平行四边形的定义,我们研究了平行四边形的其它性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平 行四边形性质定理的逆命题是否成立?
(二)新课
一.平行四边形的判定:
方法一(定义法):两组对边分别平行的四边形的平边形。
几何语言表达定义法:
∵AB∥C D,AD∥BC,∴四边形ABCD是平行四边形
解析:一个四边形只要其两组对边 分别互相平行,
则可判定这个四边形是一个平行四边形。
活动:用做好的纸条拼成一个四边形,其中强调两组对边分别相等。
方法二:两组对边分别相等的四边形是平行四边形。
设问:这个命题的。前提和结论是什么?
已知:四边形ABCD中,AB=CD,AD=BC
求 证:四边ABCD是平行四边形。
分析:判定平行四边形的依据目前只有定义,也就是须证明两组对边分别平行,当然是借助第三条直线证明角等。连结BD。易 证三角形全等。(见图1)
板书证明过程。
小结:用几何语言 表达用定义法和刚才证明为正确的方法证明一个四边形是平行四边形的方法为:
判定一:二组对边分别相等的四边形是平行四边形
∵AB=CD,AD=BC, ∴四边形A BCD是平行四边形
练习:课本P103练习题第1题。
例题讲解:
例1已知:如图3,E、F分别为平行四边形ABCD两边AD、BC的中点,连结BE、DF。
求证:
分析:由我们学过平行四边形的性质中,对角相 等,得若证明四边形EBFD为平行四边形,便可得到 ,哪么如何证明该四边形为平行边形呢?可通过证 明ΔABE≌ΔCDF得BE=DF;由AD=BC ,E、F分别为AD和BC的中点得ED=FB。
练习:2. 已知如 图7, E、F、G、H分别是平行四边形ABCD的边AB、BC、CD、DA上的点,且AE=CG,BF=DH。
求证:四边 形EFGH是平行四边形。
(一)教学目标
1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。
2.使学生掌握平行四边形和梯形的特征。
3.通过多种活动,使学生逐步形成空间观念。
(二)教材说明和教学建议 教材说明
本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。
例题
具体内容及要求
垂直与平行
例1
认识同一平面内两条直线的特殊位置关系:平行和垂直。
例2
学习画垂线,认识“点到直线的距离”。
例3
学习画平行线,理解“平行线之间的距离处处相等”。
平行四边形和梯形
例1
把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。
例2
认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的各部分名称。
学习画高。
教学建议
1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。
教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。
2.理清知识之间的内在联系,突出教学的重点。
由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。
3.注重学用结合,就地取材,充实教材内容。
尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的`一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。
4.加强作图的训练和指导,重视作图能力的培养。
这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。
5.本单元可用6课时完成。
人教版五年级上册第六单元第一课时p87-88
1.理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。
2.通过操作、观察、比较等活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力、发展学生的空间观念。
3.感受数学在生活中的作用,体验学习数学的乐趣。
教学重点:探索并掌握平行四边形的面积计算公式,并能正确地计算平行四边形的面积。
教学难点:使学生理解平行四边形面积计算公式的推导过程。
教具学具:课件、一个平行四边形、剪刀
一、创设情境,生成问题
1.故事导入
2.从平行四边形的地中引出课题“平行四边形的面积”。
二、探索交流,解决问题
1.用数方格的方法计算面积。
(1)课件出示教材第87页方格图:现在请同学们用这个方法算出这个平行四边形和这个长方形的`面积。说明要求:一个方格表示1平方米,不满一格的都按半格计算。把数出的数据填在表格中(见教材第87页表格)
(2)学生完成,汇报结果。
(3)观察表格的数据,你发现了什么?
通过学生讨论,得到:平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等;这个平行四边形面积等于长方形的面积。
2.推导平行四边形面积计算公式。
(1)提问:如果不数方格,能不能计算平行四边形的面积呢?
(2)引导解决方法:把平行四边形转化成长方形
(3)学生动手操作:拿出你们准备的平行四边形,以同桌为一小组,用课前准备的平
行四边形和剪刀进行剪拼,教师巡视指导。
(4)学生汇报演示剪拼的过程及结果。
(5)教师用课件演示剪—平移—拼的过程。
(6)我们已经把一个平行四边形转化成一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?
(7)出示讨论题,小组讨论。
(8)小组汇报交流,教师归纳:
把平行四边形转化成一个长方形,它的面积与原来的平行四边形面积相等。
这个长方形的长与平行四边形的底相等,
这个长方形的宽与平行四边形的高相等,
因为 长方形的面积=长×宽,
所以 平行四边形的面积=底×高。
3.教师指出如果用s表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式用字母怎样表示?
s=ah
三、巩固应用,分层提高
1.教学例1
例1、一块平行四边形花坛的底是6米,高是4米,它的面积是多少?
(1)读题并理解题意。
(2)学生试做,交流做法和结果。
s=ah=6×4=24(m2),
答:它的面积是24平方米。
2.练一练
(1)一个停车位是平行四边形,它的底长5米,高2.5米。它的面积是多少?
(2)判断题
(3)选择题
(4)求平行四边形的面积
(5)扩展题
四、回顾整理,反思提升
1.通过这节课的学习,你有哪些收获?
2.用本课所学的知识证明老财主没有偏心。
五、板书
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
s=ah