惯性是物体的一种固有属性
表现为物体对其运动状态变化的一种阻抗程度,质量是对物体惯性大小的量度。当作用在物体上的外力为零时,惯性表现为物体保持其运动状态不变,即保持静止或匀速直线运动;当作用在物体上的外力不为零时,惯性表现为外力改变物体运动状态的难易程度。
在同样的外力作用下,加速度较小的物体质量大惯性较大,加速度较大的物体质量小惯性较小。所以物体的惯性,在任何时候(受外力作用或不受外力作用),任何情况下(静止或运动),都不会改变,更不会消失。惯性是物质自身的一种属性。
惯性与惯性定律的`区别
A、惯性是物体本身的一种属性,而惯性定律是物体不受力时遵循的运动规律。
B、任何物体在任何情况下都有惯性,(即不管物体受不受力、受平衡力还是非平衡力),物体受非平衡力时,惯性表现为“阻碍”运动状态的变化;惯性定律成立是有条件的。
☆人们有时要利用惯性,有时要防止惯性带来的危害。利用:跳远运动员的助跑;用力可以将石头甩出很远;骑自行车蹬几下后可以让它滑行。防止:小型客车前排乘客要系安全带;车辆行使要保持距离;包装玻璃制品要垫上很厚的泡沫塑料。
具有惯性的'原因
牛顿首先定律掩饰:物体具有保持原先匀速直线运动状态或静止状态的一种性质,我们把这个性质叫做惯性。
牛顿首先定律也叫做惯性定律。描述物体惯性的物理量是它们的质量。物体质量越大,惯性越大,反之则越小。
惯性就是物体保持原先运动状态不变的性质,不论这种运动状态是静止还是平动,或是转动。最初是由惯性原理揭示出物体的惯性,一切物体都具有惯性。
速度与惯性的关系
速度是表示物体运动快慢的物理量,而惯性是物体保持其运动状态不变的`本性。我们说“物体甲的惯性比物体乙的惯性大″,是说“物体甲的质量比物体乙的质量大″。在同样的外力作用下,物体甲的速度变化较慢(即加速度较小,其运动状态较难改变),物体乙的速度变化较快“即加速度较大,其运动状态容易改变”。因此,那种“物体有速度时才有惯性”、“物体只有速度变化时才有惯性”、“推静止的物体比推运动的物体用力大,说明静止的物体惯性大″的说法都是错误的。其实质是对“惯性和速度″穊念理解不清。
一、教材分析
1.教材地位
惯性是运动和力的关系知识中的一个重要概念,又与实践知识紧密相联.明确惯性概念,理解惯性现象,既是学习运动和力的关系乃至整个力学的基础,又是培养学生理论联系实际的重要途径.惯性是一个抽象的科学概念,在教学中还应重视发展学生的思维能力,开发学生的智力.
2.教学目的
1)知道惯性现象,知道任何物体在任何状态下都有惯性.
2)会解释简单的惯性现象
3)知道惯性和牛顿第一定律的区别
3.重点、难点
惯性是物体固有属性的理解,用惯性解释生活和生产中的有关现象.
二、教学思路
本课题按照“展示现象→分析思考→整理扩展→巩固应用”的模式展开教学.通过教学程序的设计,充分发挥教师的主导作用和学生的主体作用,利用惯性实验的新奇,激发学生的学习兴趣,通过惯性概念的建立和应用,发展学生抽象思维的能力,分析问题和解决问题的能力。
三、教学过程
1.观察抽象 建立概念
概念是从具体事例、实验事实中抽象出来的,只有首先为学生提供丰富典型的感性材料,才能从中抽象出本质特征,形成概念.
为此,在引出惯性概念之前,先演示惯性球、抽纸条等实验,学生看到:当突然抽去底下物体的时候,上面的物体能保持原位不动,这个结果出乎学生的意料,激起学生的探究欲望.由此得出:静止的物体有保持静止的性质.既然静止的物体有保持静止的性质,那么运动的物体又有什么性质呢?
举例:离开枪口的子弹失去了推力,还能继续前进.演示:运动的小车突然停止,车上的木块继续前滑.两个事例表明:运动的物体有保持原来运动速度和运动方向的性质.
小结:静止的物体有保持静止状态的性质,运动的物体有保持匀速直线运动的性质.进一步归纳得出:任何物体都有保持原来运动状态的性质,这种性质叫做惯性.接着让学生举出生活和生产中的惯性例子.初步建立起惯性的概念.
2.虚拟想象 强化概念
虚设一个与真实情况相反的物理条件,并以此推出一系列想象性的荒谬结果,用反面的荒谬启迪人们对正面真实的认识,这就是虚拟情景.
对于惯性,学生常有疑问:物体真的有惯性吗?对此,教师引导发问:“假如某一时间地球上的物体突然失去了惯性,这对我们生活的世界将有什么样的影响呢?”引起学生的想象和讨论.
正在进行比赛的运动场上,所有的球离开球拍后,因没有惯性而无法前行,掉落地上.足球、篮球、排球、羽毛球、乒乓球,甚至跳远、跳高等运动项目都将无法进行.
离开枪口的子弹,因没有惯性无法向前射出,至多掉落在开枪者自己的眼前.美国霸权主义者最先进的核弹,如果正用来打击别国,也只能落在自己的跟前爆炸而自取灭亡.
地球以360米/秒的速度不停地自西向东自转,离开地面的人因没有惯性而不会随地球一起运动,当他重新落回地面时,将落在原位置的西边.假如一个中国人离开地面数小时,当他降落到地面时,或许已经站在加拿大的国土上.
许多物理现象自然形成,永久存在,人们司空见惯,习以为常,对其中隐藏着的科学真理难有深刻的理解.虚拟情景以其“虚”、“谬”、“奇”的特点,与真实世界形成强烈的反差,使人虚中见实,无中见有,从反面看到真实的直观,从而加深了对客观世界真理性的认识.
3.比喻联想 深化概念
惯性是一切物体的固有属性,在任何情况下,物体的惯性都始终存在.学生却提出这样的问题:“惯性是物体保持原来运动状态的性质,那么,当物体的运动状态改变(即做变速运动或曲线运动)时,它的惯性岂不消失了吗?”要消除这样的疑问,无论用理论的推导或实验的证明都是困难的.然而我们却可以用下面的比喻来解除疑问.每个学生都有阅读的本领,但并不是每时每刻都在阅读,即使在劳动,阅读的本领照样存在;每个人都有睡觉的习性,但并不是每时每刻都在睡觉,即使在学习,睡觉的习性仍旧存在.同样的道理,物体有惯性,即有保持原来运动状态的性质,即使它的运动状态发生变化(做变速运动或曲线运动),它的惯性也同样存在,只不过没有直接表现出来罢了.惯性是物体的固有属性,不管这个物体在做什么运动,是否受到力的作用,物体的惯性始终存在.
4.对照比较 辨别概念(惯性 惯性定律区别)
比较是物理教学中较为常用的一种思维方法,对既有联系又有区别的不同知识进行比较,可以区别它们的相同点和不同点,使知识系统化,加深理解和记忆的效果.学生容易把惯性和惯性定律混淆起来,两者的区别和联系可列表对比如下:
区别:1.前者是物体的固有属性,后者是物体的运动规律
2.前者在任何情况下都存在,后者只有当物体不受外力作用时才遵守
联系:惯性定律是物体在不受外力作用时,物体惯性的直接表现
5.实例分析 应用概念
从具体事例中抽象出惯性概念,这只是实现了从感性认识上升到理性认识的第一次飞跃.学习的目的在于应用,教学中应指导学生从理性认识回到实践,实现认识上的第二次飞跃.应用惯性知识解释实际问题的例子是很多的.如:
1)汽车突然开动、刹车、转弯时,车内乘客的倒向如何?
2)匀速向前行驶的汽车里的乘客,向外跳车时,向哪个方向跳不容易摔倒?
3)在匀速向前行驶的车厢里的乘客,分别向前跳远和向后跳远,哪一次跳得更远?
4)在匀速向前行驶的车厢里的乘客向外掷石子,以相等的速度分别向前和向后掷出,哪一次掷得更远?
5)在匀速、加速、减速向前行驶的车厢里的乘客,竖直上跳,当他落下时,分别落在原位置的哪一侧?
上述各例,从惯性知识的单一应用,到惯性与速度知识的综合应用,从简单的匀速问题到较复杂的变速问题,层层深入,步步提高.在分析讲解中,引导学生掌握解答惯性问题的思路与方法,不但加深了学生对惯性知识的透彻理解,而且大大提高了学生分析问题和解决问题的能力.
小结
1.惯性的概念,一切物体在任何情况下都有惯性。
2.惯性与牛顿第一定律的区别
惯性是自然界中的物体所具有的一种性质,这种性质表现为物体总要保持原来的运动状态,即静止或匀速直线运动状态;而惯性定律是一条客观规律,这一规律说明了正是由于物体具有惯性这种性质,所以当没有外力改变物体运动状态时,物体将保持原来的运动状态,即静止或匀速直线运动状态。因此,惯性和惯性定律是完全不同的两回事,前者是物体具有的一种性质,后者是物体在不受力时遵循的一条客观规律。
四、作业
准备锤头和锤把,通过实践分析:
(1)把锤头固定在锤把上,有几种方法?
(2)把锤头从锤把上卸下来,有几种方法?并加以解释。
惯性是物体抵抗其运动状态被改变的性质。物体的惯性可以用其质量来衡量,质量越大,惯性也越大。艾萨克·牛顿在《自然哲学的数学原理》里定义惯性为:惯性,或物质固有的力,是一种抵抗的现象,它存在于每一物体当中,大小与该物体相当,并尽量使其保持现有的状态,不论是静止状态,或是匀速直线运动状态。
惯性
为什么运动的物体都存在惯性?
我们乘火车或者汽车的时候,常常遇到这么一个情况,当急刹车时人体不由自主朝前倾,甚至有时造成事故。 这是为什么呢?原来是由于物体具有惯性。 物体具有保持原有运动状态的性质叫惯性。在行驶的火车或汽车中,人和车原来具有相同的速度(运动状态) ,当急刹车时车的运动状态急剧改变,人仍然要保持原有运动状态(即速度) ,所以造成刹车时朝前倾的现象。惯性的大小用质量来表示,质量越大的物体,惯性越大。以同样速度行驶的空汽车和载重汽车, 空车容易刹车、载重车难刹车, 是因为载重车惯性大,运动状态难于改变的原因。物体静止时同样有惯性,质量较小的足球我们容易踢出去, 而质量大的篮球踢起来就很困难。这是由于质量大的篮球保持原有运动状态—静止的能力强,不易改变的原因。
惯性百科
物体保持静止状态或匀速直线运动状态的性质,称为惯性。惯性是物体的一种固有属性,表现为物体对其运动状态变化的一种阻抗程度,质量是对物体惯性大小的量度。当作用在物体上的外力为零时,惯性表现为物体保持其运动状态不变,即保持静止或匀速直线运动;当作用在物体上的外力不为零时,惯性表现为外力改变物体运动状态的难易程度。在同样的外力作用下,加速度较小的物体惯性较大,加速度较大的物体惯性较小。所以物体的惯性,在任何时候(受外力作用或不受外力作用),任何情况下(静止或运动),都不会改变,更不会消失。
惯性
运动的物体都存在惯性的原因:
我们乘火车或者汽车的时候,常常遇到这么一个情况,当急刹车时人体不由自主朝前倾,甚至有时造成事故。 这是为什么呢?原来是由于物体具有惯性。 物体具有保持原有运动状态的性质叫惯性。在行驶的火车或汽车中,人和车原来具有相同的速度(运动状态) ,当急刹车时车的运动状态急剧改变,人仍然要保持原有运动状态(即速度) ,所以造成刹车时朝前倾的现象。惯性的大小用质量来表示,质量越大的物体,惯性越大。以同样速度行驶的空汽车和载重汽车, 空车容易刹车、载重车难刹车, 是因为载重车惯性大,运动状态难于改变的原因。物体静止时同样有惯性,质量较小的足球我们容易踢出去, 而质量大的篮球踢起来就很困难。这是由于质量大的篮球保持原有运动状态—静止的能力强,不易改变的原因。
惯性,或物质固有的性质,是一种抵抗的现象,它存在于每一物体当中,大小与该物体相当,并尽量使其保持现有的状态,不论是静止状态,或是匀速直线运动状态。一个不受任何外力(或者合外力为0)的物体将保持静止或匀速直线运动。一般是指物体不受外力作用时,保持其原有运动状态的属性。惯性现象就是物体保持原来运动状态的一种现象。
目录简介认识历史辨析与区别诠释收缩展开简介在物理学里,惯性(inertia)是物体抵抗其运动状态被改变的性质。物体的惯性可以用其质量来衡量,质量越大,惯性也越大。艾萨克・牛顿在巨著《自然哲学的数学原理》里定义惯性为: 惯性,或物质固有的力,是一种抵抗的现象,它存在于每一物体当中,大小与该物体相当,并尽量使其保持现有的状态,不论是静止状态,或是匀速直线运动状态。 更具体而言,牛顿第一定律表明,存在某些参考系,在其中,不受外力的物体都保持静止或匀速直线运动。也就是说,从某些参考系观察,假若施加于物体的合外力为零,则物体运动速度的大小与方向恒定。惯性定义为,牛顿第一定律中的物体具有保持原来运动状态的性质。满足牛顿第一定律的参考系,称为惯性参考系。稍后会有关于惯性参考系的更详细论述。 惯性原理是经典力学的基础原理。很多学者认为惯性原理就是牛顿第一定律。遵守这原理,物体会持续地以现有速度移动,除非有外力迫使改变其速度。 在地球表面,惯性时常会被摩擦力、空气阻力等等效应掩蔽,从而促使物体的移动速度变得越来越慢(通常最后会变成静止状态)。这现象误导了许多古代学者,例如,亚里斯多德认为,在宇宙里,所有物体都有其“自然位置”──处于完美状态的位置,物体会固定不动于其自然位置,只有当外力施加时,物体才会移动。
定义
惯性是一切物体的固有属性,无论是固体、液体或气体,无论物体是运动还是静止,都具有惯性。一切物体都具有惯性。 惯性定义:我们把物体保持运动状态不变的属性叫做惯性。惯性代表了物体运动状态改变的难易程度。惯性的大小只与物体的质量有关。质量大的物体运动状态相对难于改变,也就是惯性大;质量小的物体运动状态相对容易改变,也就是惯性小。 当你踢到球时,球就开始运动,这时,因为这个球自身具有惯性,它将不停的滚动,直到被外力所制止。 任何物体在任何时候都是有惯性的,它要保持原有的运动状态。
幻想
北京有个人,曾提出选一个无风的日子,乘坐气球在高空观看大地向东移动,以此来环游世界,这是否可行呢?显然不能,但这又是为什么呢?这就是惯性。当有人乘坐气球离开地球表面时,由于惯性,人和气球仍以地球自转的速度运动着。
注意
1、惯性不等同于惯性定律。惯性是物体本身的性质,而惯性定律讲的是运动和力的关系(力不是维持物体运动的原因,力是改变物体运动的原因)。 2、惯性是物体固有的一种属性,不能说“由于惯性的作用”。 3、惯性是物体固有的一种属性,不能说“获得惯性”。
认识历史早期认知
文艺复兴之前,在西方哲学里最被广泛接受的运动理论是建立于大约 335 BC至322 BC的亚里斯多德的学说。亚里斯多德表明,假设没有“暴力”(violent force)施加,所有(在地球上的)物体最终都会停止运动,静止于其自然位置,但只要有暴力促使物体运动,物体会持续其运动状态。当抛物体被抛掷出去时,抛掷者的暴力转移到抛物体周围的空气,使这些空气流动,成为新的推动者,继续不停地促使抛物体移动。 在之后大约两千年内,亚里斯多德的运动概念广泛地被接受,只有几位著名哲学家对这概念提出质疑。例如,在第6世纪,约翰・斐劳波诺斯严厉批评亚里斯多德关于物体运动的不一致理论:亚里斯多德认为真空不可能存在,因为,在真空里,没有任何介质促使物体移动,但是,他又表示,介质的阻力与其密度成正比:假设空气的密度是水的一半,则物体通过同样路径所用掉的时间,在空气中是在水中的一半,那么,物体通过真空所用掉得时间应该更少。 斐劳波诺斯主张,介质只能阻碍抛物体的运动,不能促使抛物体移动;在真空里,没有任何介质,抛物体反而比较容易移动。斐劳波诺斯建议,促成抛物体持续运动的因素与周围介质无关,而是在运动刚开始时,加诸于抛物体的某种性质,这性质逐渐在运动时消耗殆尽。虽然这建议与当今惯性概念仍有所差异,至少它已朝着正确方向跨出基要的脚步。 但是,在那时期与之后很多年,他的想法没有得到重视,很多亚里斯多德派学者都给予强烈反对,包括汤玛斯・阿奎那(约1225年-1274年)和艾尔伯图斯・麦格努斯(约12-1280年)在内。只有奥卡姆的威廉(约1288年-1348年)反对亚里斯多德物理学。他质疑亚里斯多德所提到的运动的“推动者”到底在哪里?虽然他否定亚里斯多德公理的正确性,认为抛物体的运动不需要随时随地都有推动者伴随。但是,他也没能给出任何替代答案。
让・布里丹
在第14世纪,法国哲学家让・布里丹提出冲力说。他称呼促使物体运动的性质为冲力,这冲力是由推动者传送给物体,促使物体运动。他否定了冲力会自己消耗殆尽的想法。布里丹认为永存不朽的冲力是被空气阻力或磨擦力等等逐渐抵销,只要冲力大于阻力或磨擦力等等,物体就会继续移动。布里丹的冲力与物体密度和体积成正比;速度越大,冲力也越大;物体内部的物质越多,就能够接受越多的冲力。 从日常观察中,布里丹想出许多反例来反驳亚里斯多德的理论: 假设一个陀螺或磨石绕着固定轴旋转,请问空气怎样在这些物体的后面推动旋转? 铸模,将这铸模包在旋转物外面,不让在旋转物与铸模之间有任何空隙。这样,在旋转物与铸模之间,不会存在任何空气,请问空气怎样推动旋转? 设想一艘拖船拖曳著另一艘船,航行于风平浪静的静止大海。然后,将拖绳切断,则因为海水阻力与空气阻力,被拖的船会慢慢的停止航行。在这时候,站在甲板上、面向船前方的海员会感觉到空气对着脸面吹拂,从船前方吹向船后方,试图减慢船的航行;他不会感觉到空气对着后背吹拂,从船后方吹向船前方,试图推动船的航行。 思考石头与羽毛这两种物质,空气应该比较容易推动羽毛。但是,为什么用同样的力分别将石头与羽毛抛射出去,石头移动的距离比羽毛远了很多? 尽管与惯性的现代概念很相似,布里丹只把自己的理论视为亚里斯多德基本哲学的微小修正,坚持许多其他亚里斯多德派的观念,例如,他认为运动状态与静止状态是两种不同的状态。布里丹又主张,冲力不但适用于直线运动,也适用于圆周运动,促使物体(例如,星体)呈圆周运动。 萨克森得阿尔伯特是布里丹的学生。他将布里丹的学说广传至意大利与中欧。在牛津大学墨顿学院的思想家赫特斯柏立得威廉最先表述出平均速率定理:在同样时间间隔内,假若等速度物体的速度是等加速度物体的最初速度和最终速度的总和的一半,则此二物体移动的距离相等。这定理是自由落体定律的基础。早在伽利略・伽利莱之前,他们就已做实验证实了这定理。
尼克尔・奥里斯姆
尼克尔・奥里斯姆又将他们的研究结果加以发挥,他创立了用曲线图来解释运动定律的方法,并且用几何方法证明平均速度定理。奥里斯姆于1377年发表的著作《天地通论》提出,当自由落体在加速时,其重量并没有增加,而是冲力增加。假设,挖掘一条直线隧道,从地球表面的A点,穿过地心,挖掘到地球表面的B点,然后将一个重物落入这隧道,则它会从A点,经过地心,移动到B点,就好像单摆从一边摇摆到另外一边。但是,从地心到B点的路途中,它是呈升起状态,而重量只能造成物体掉落,因此冲力与重量不同。 这些研究发展逐渐地侵蚀了学者们对于亚里斯多德物理学的信心。在伽利略发表惯性原理之前不久,于1585年,意大利物理学者乔望尼・本尼得棣将越加成熟的冲力说限制为只能适用于直线运动: 本尼得棣特别举出甩石机弦的例子,当旋转甩石机弦时,其皮袋内的石头,由于被其皮绳约束,原本的直线运动被迫变为圆周运动;但若将石头扔出,脱离皮绳的约束,则石头会呈直线运动,而其直线轨迹会正切圆周于扔出点。
尼古拉・哥白尼
尼古拉・哥白尼于1543年发表著作《天体运行论》,主张地球(与处于其表面的所有物体)从未停止不动,而是持续地绕着太阳做公转。面对这崭新的理论,亚里斯多德式的地心说──地球是宇宙的中心,因此绝对地固定不动──显得漏洞百出、难以招架。在发表著作之前,哥白尼为了证实自己的理论,早已于1530年就完成了观测行星轨道运动的实验。
开普勒
德国天文学者开普勒,在从16至16分三阶段发表的著作《哥白尼天文学概要》里,最先提出术语“惯性”,拉丁语为“懒惰”的意思,与当今的诠释不太一样。开普勒以对于运动变化的抗拒来定义惯性,这仍旧是根据亚里斯多德的静止状态为自然状态的前提。一直要等到后来伽利略的研究与牛顿将静止与运动统一于同一原理,术语惯性才能应用于当今其所赋有的概念。
伽利略
惯性原理是伽利略在1632年出版的《关于托勒密和哥白尼两大世界体系的对话》书中发表的,它是作为捍卫日心说的基本论点而提出来的。 根据亚里士多德的物理学,保持物体以匀速运动的'是力的持久作用。但是伽利略的实验结果证明物体在引力的持久影响下并不以匀速运动,而是相反地每次经过一定时间之后,在速度上就有所增加。物体在任何一点上都继续保有其速度并且被引力加剧。如果引力能够截断,物体将仍旧以它在那一点上所获得的速度继续运动下去。伽利略在金属球在斜面滚动的实验中观察到,金属球以匀速继续滚过一片光滑的平桌面。从以上这些观察结果就得到了惯性原理。这个原理阐明物体只要不受到外力的作用,就会保持其原来的静止状态或匀速运动状态不变。 他主张,施加外力改变的是物体的速度而不是位置;维持物体速度不变,不需要任何外力。为了证实他的主张,伽利略做了一个思想实验。如右图所示,让静止的小球从点A滚下斜面AB,滚到最底端后,小球又会滚上斜面BC,假设两块斜面都非常的平滑、摩擦系数极小,而且空气阻力微弱,以至于可以忽略不计,则小球会滚到与点A同高度的点C;假设斜面是BD、BE或BF,小球也同样地会滚到与点A同高度的位置。只不过斜面越长,往上滚的时候,单位时间内速度的减少量会变得越小。假设斜面逐渐延长,最后变成水平面BH,则基于“连续性原则”该小球“本应当”回到与点A同高度的位置,然而由于事实上BH是水平的,小球永远不可能滚到先前的高度,而速度的减少量将变成0,因此小球会不停地呈匀速直线运动。伽利略总结,假若不碰到任何阻碍,那么运动中的物体会持续地做匀速直线运动。他将此称为惯性定律。 这理论刚被提出时并不被其他学者接受,因为当时大多数学者不了解摩擦力与空气阻力的本质,不过伽利略的实验以可靠的事实为基础,经过抽象思维,抓住主要因素,忽略次要因素,更深刻地反应了自然规律。 值得注意的是,后来,伽利略从惯性定律推论,假若没有任何外在参考比较,则绝对无法分辨物体是静止不动还是移动。这观察后来成为爱因斯坦发展狭义相对论的基础。 伽利略的惯性原理是近代科学的起点,它摧毁了反对哥白尼的所谓缺乏地球运动的直接证据的借口。
笛卡尔
笛卡尔等人又在伽利略研究的基础上进行了更深入的研究,他认为:如果运动物体,不受任何力的作用,不仅速度大小不变,而且运动方向也不会变,将沿原来的方向匀速运动下去.
牛顿
而被现代社会所普遍认知的惯性原理,来自于牛顿的《自然哲学的数学原理》(Mathematical Principles of Natural Philosophy, 1687),定义如下: 惯性定律就是牛顿第一定律。 一切物体都将一直处于静止或者匀速直线运动状态,直到出现施加其上的力改变它的运动状态为止。 写出牛顿第一定律后,牛顿开始描述他所观察到的各种物体的自然运动。像飞箭、飞石一类的抛体,假若不被空气的阻力抗拒,不被引力吸引坠落,它们会速度不变地持续运动。像陀螺一类的旋转体,假若不受到地面的摩擦力损耗,它们会永久不息地旋转。像行星、彗星一类的星体,在阻力较小的太空中移动,会更长久地维持它们的运动轨道。在这里,牛顿并没有提到牛顿第一定律与惯性参考系之间的关系,他所专注的问题是,为什么在一般观察中,运动中的物体最终会停止运动? 他认为原因是有空气阻力、地面摩擦力等等作用于物体。假若这些力不存在,则运动中的物体会永远不停的做匀速运动。这想法是很重要的突破,需要极为仔细的洞察力与丰富的想像力才能达成。 牛顿的惯性原理是经典物理学的基础之一,并且对惯性原理的理解也随着现代物理学的发展而出现了改变。牛顿说:“我只是站在巨人的肩膀上!”
马赫
马赫对牛顿的惯性概念做了重要的补充,认为惯性来源于物体与宇宙其余部分的相互作用。(不仅仅是物体本身的质量决定的)。
爱因斯坦及相对论
对于惯性认识的一个重要进展是惯性与能量的关系。 阿尔伯特・爱因斯坦于19在论文《论动体的电动力学》里提出的狭义相对论,这是一个崭新的物理理论,是建立于伽利略与牛顿研究出来的惯性与惯性参考系。它统一了力学理论和电磁学理论,带来了时空观的根本变革。爱因斯坦随后证明质能关系,E=mc?,一定的质量对应于一定的能量,反之一定的能量对应一定的质量。 在这里,能量包括了能量的各种形式,突破了上面把某一种形式的能量与惯性联系起来的认识。这样,惯性是能量的属性,能量具有惯性(质量),任何惯性质量都应归因于能量。作为物理学基本概念和物质的量的质量概念退居次要的地位,如今在近代物理中能量、动量等概念要比质量、力等概念要重要得多。 尽管这划时代的理论实际地改变了许多牛顿概念,像质量、能量、距离,那时后,爱因斯坦的惯性概念与牛顿的原本概念丝毫没有任何差异。实际而言,整个理论是建立于牛顿的惯性定义。但这也使得狭义相对论的相对性原理只能应用于惯性参考系。在这种参考系里,不受外力的物体,必定保持其静止或匀速直线运动状态。 为了处理这局限,爱因斯坦于19发表论文《广义相对论的基础》提出广义相对论。这理论能够应用于非惯性参考系。但是,为了达到这目的,爱因斯坦发觉,他必需使用到弯曲时空的新概念,而不是传统的牛顿力的概念,来重新定义几个基础概念(例如引力)。 因为这重新定义,爱因斯坦还以测地误差重新定义了惯性的概念,这又引起一些微妙但重要的结果。根据广义相对论,当处理大尺寸问题时,不能使用与倚赖传统牛顿惯性。幸运地,对于足够小的时空区域,狭义相对论仍旧适用,惯性的内涵与工作仍旧与经典模型相同。 狭义相对论的另一个深奥的结果是,能量与质量不是互不相干的物理属性,而是可互相转换的。这崭新关系也给予惯性概念新的内涵。狭义相对论的逻辑结果是,假若质量遵守惯性原理,则能量必也遵守惯性原理。对于很多状况,这理论大大地拓宽了惯性的定义,能够应用于物质与能量。 能量具有惯性拓宽了对于惯性的认识,也拓宽了对于能量的认识。它带来的重大实用价值就是核能的释放。在裂变反应中,裂变产物的静质量小于裂变前物质的静质量,质量亏损释放出大量裂变能;在聚变反应中,聚变产物的净质量小于聚变前物质的净质量,质量亏损释放出大量的聚变能。它也使得人们很好地认识许多物理现象,包括涉及物质的全部质量与能量转化的正反粒子对的产生和湮没过程。 我们知道,惯性质量是物体惯性的量度,反映物体对加速度的阻抗,而引力质量是物体引力属性的量度,反映物体产生和承受引力的能力。它们显然是物质的两种完全不同的属性,描述物质两种不同性质的量是否严格相等是一个问题,惯性质量和引力质量相等是一条严格的定律。原来牛顿力学中无法说明的惯性质量与引力质量相等不再是游离于物理学之外的一个普遍事实,而是成为意义得大的广义相对论的基石。爱因斯坦找到了这块基石,并由此发展了广义相对论,这实在是爱因斯坦独具慧眼、超群绝伦的伟大贡献。惯性这个问题已经成为困扰现代物理学者的难题,虽然拥有伟人牛顿经典理论。但在科技时代出现许许多多的现象用以前的理论是无法解释的。使用曾经的经典无法解释的。也是现代物理的奠基人爱因斯坦留个我们后人的问题。爱因斯坦无法解释惯性,所以无奈的把相对论分成广义的和狭义的。他的人生一直被这个问题困扰还是没有答案。
辨析与区别与“第一定律”的区别
“惯性”与“惯性定律”不是同一概念,不能混为一谈。它们的区别:惯性是一切物体固有的属性,是不依外界(作用力)条件而改变,它始终伴随物体而存在。牛顿第一定律则是研究物体在不受外力作用时如何运动的问题,是一条运动定律,它指出了“物体保持匀速直线运动状态或静止状态”的原因。而惯性是“物体具有保持原来的匀速直线运动状态或静止状态”的特性;两者完全不同。为何牛顿第一定律又叫惯性定律,是因为定律中所描述的现象是物体的惯性的一个方面的表现,当物体受到外力作用(合外力不为零)时,物体不可能保持匀速直线运动状态或静止状态,但物体力图保持原有运动状态不变的性质(惯性)仍旧表现出来。
与“力”的区别
“惯性”与“力”不是同一概念,“子弹离开枪口后还会继续向前运动”,“水平道路上运动着的汽车关闭发动机后还要向前运动”这些都是惯性。惯性与力的区别: ①物理意义不同;惯性是指物体具有保持静止状态或匀速直线运动状态的性质;而力是指物体对物体的作用。惯性是物体本身的属性,始终具有这种性质,它与外界条件无关;力则只有物体与物体发生相互作用时才有,离开了物体就无所谓力。 ②构成的要素不同:惯性只有大小,没有方向和作用点,而大小也没有具体数值,无单位;力是由大小,方向和作用点三要素构成,它的大小有具体的数值,单位是牛。 ③惯性是保持物体运动状态不变的性质;力作用则是改变物体的运动状态。 ④惯性的大小只与物体的质量有关,而力的大小跟许多因素有关(视力的种类而定)。
与“速度”的区别
惯性大小与物体运动的快慢无关。“汽车行驶越快,其惯性越大”是不正确的。运动快的汽车难刹车是因为运动速度越快,物体的运动状态越难改变。可见惯性大小与运动状态并无关系。惯性大小只与物体质量有关。
惯性维护平衡与作用造成变化的辩证关系
时效波先生在论述“生命的产生”时,提出了惯性维护平衡与作用造成变化的辩证关系:“物质是运动的,运动的物质有保持其原有平衡状态的属性,即惯性。这里提到的惯性是广义的概念,不仅指宏观物体,构成宏观物体、维系着微观结构形态运动着的分子、原子、电子同样具有惯性。物质是运动的,运动的物质之间是相互联系、相互作用的。物质在相互作用的过程中,会发生物质、能量的运动转化,原有的平衡状态(宏观的运动状态、微观的结构形态)就会被改变或打破,形成具有新的运动状态和结构形态的物质。运动的物质有保持原有平衡状态的属性,而运动物质间的相互作用又时刻破坏着平衡,惯性维护平衡与作用造成变化成了物质最基本属性的矛盾,正是这一矛盾推动着物质的运动变化和发展演化。无机物在物质间的相互作用中,只能被动地接受宏观的、微观的冲击和破坏,改变其原有的运动状态和结构形态。如被海水冲刷和风吹日晒的礁石会移动位置和逐渐破碎。原始生命则能为维护自身的平衡状态作出反应,主动地吸收利用物质能量(新陈代谢)来维护有机体的结构形态不受破坏,以维持其原有性能,获得生存。事实上,由碳水化合物构成的蛋白质分子就已经能有选择地从外界吸收营养物并排出分解物,不断与环境中的某些物质进行代谢。” 物体的惯性和外力作用这一对矛盾的对立统一,形成了宏观物体的形形色色的各种复杂的运动。如果没有外力,物体也就没有复杂多样的运动形式;如果没有惯性,物体的运动状态改变不需要力的作用。只有当我们理解了惯性与外力作用的辨证关系,就不难解释惯性现象。例如“锤子松了,把锤把的一端在物体上撞几下,锤头就能紧套在锤柄上”这是因为锤与柄原来都向下运动,柄撞在物体上受到阻力作用,改变了它的运动状态,就停止了运动,锤头没受阻力仍保持原来运动状态,继续向下运动,这样锤头就紧套在锤柄上了。
类别
不受外力的时候,一切物体总保持匀速直线运动状态或静止状态。 这里的静止和匀速直线运动指的是绝对静止和绝对匀速直线运动。就是说惯性定律是相对于绝对静止系说的。不是相对于相对静止说的,也不是相对于绝对匀速直线运动系说的。惯性定律的适用范围是所有的物体,是一切物体。所有物体的运动都是起源于静止,起源于绝对静止,是相对于绝对静止说的。正因为惯性定律的适用范围是所有的物体,所以物体受力后才会产生加速度,由于所有的物体都是受力的,所以所有的物体都是变速的,这是物体不受力时符合惯性定律,受力时符合牛顿第二定律和第三定律的原因。 我们通常说的惯性指的是物体相对于参考系的惯性,即物体不受外力的时候具有保持与参考系相互静止或匀速直线运动的性质。因此不同惯性系所有的惯性是不同的。在惯性系中物体由于惯性保持静止,在另一个匀速直线运动惯性系看来,就是物体由于惯性保持匀速直线运动状态。静止的物体怎么会匀速直线运动呢?原来在不同的惯性系看来惯性指的可能不同。由于所有的都是受力的,变速运动,那么所谓的惯性系就是在这里的选择,是圆的物体都可以是惯性系,任意选择一个物体都可以是惯性系。
诠释质量与惯性
惯性的定性定义为物体抵抗动量改变的性质。将这定义加以定量延伸为物体抵抗动量改变的度量,就可以用来做数学计算。这度量称为惯性质量,简称为质量。所以,质量表示物质的数量,同时,质量也是物体惯性的度量。 动量方程表达物体的动量p与质量m、速度v之间的关系: p=mv 但是,牛顿第二定律方程也可以表达物体的作用力F与质量(惯性质量)m、加速度a之间的关系: F=ma 按照这方程,给定作用力,则质量越大,加速度越小。由动量方程与牛顿方程给出的质量相同。因为,假若质量与时间、速度无关,则牛顿方程可以从动量方程推导出来。 这样,质量是物体惯性的度量,即物体抵抗被加速的度量。物体惯性这词语的含意,已从原本含意──维持动量的倾向,改变为物体抵抗动量改变的度量。
引力质量与惯性质量
引力质量与惯性质量之间的唯一差别是测量方法。 将未知质量的物体与已知质量的物体分别感受到的引力做测量比较,就可以得到未知物体的引力质量。通常,可以使用天平做测量。这方法的优点是,不论在什么地方,在什么星球,都可以用天平做测量,因为对于任意物体,引力场都一样。只要引力场不改变,天平会测量出可信的引力质量。但是,在超质量星体附近,例如,黑洞或中子星,就不能采用这种方法,因为在这区域里,引力场的梯度太过陡峭,在天平的左右两个托盘位置的引力场差异量太大,超过允许误差范围。在失重环境,也不能采用这种方法,因为天平不能做任何比较。 施加已知作用力于未知质量的物体,测量产生的加速度,然后应用牛顿第二定律方程,就可以得到惯性质量,其误差只限制于测量的准确度。当处于自由落体状况时,使用这方法,坐在一种特别座椅,称为物体质量测表,就可以测量出失重航天员的惯性质量。 值得注意的是,实验者尚未找出,引力质量与惯性质量,两者之间有什么差异。实验者已完成许多实验,检验两者的实验数值,但是差异都在实验误差边限之内。爱因斯坦在创建广义相对论时,从引力质量与惯性质量相等的事实,得到很大的启示。他假设引力质量与惯性质量相同,引力所产生的加速度是时空连续统内的斜度所造成的结果,就好像圆球以螺旋线样式滚下一个倒圆锥。
惯性参考系
当描述物体运动时,只有相对于特定的参考系,才能确实显示出其物理行为。假若选择了不适当的参考系,则相关的运动定律可能会比较复杂,在惯性参考系中,力学定律表现出的形式最为简单。从惯性参考系观察,任何呈匀速直线运动的参考系,也都是惯性参考系,否则是“非惯性参考系”。换句话说,牛顿定律满足伽利略不变性,即在所有惯性参考系里,牛顿定律都保持不变。 选择以固定星体来近似惯性参考系,这方法的误差相当微小。例如,地球绕着太阳的公转所产生的离心力,比太阳绕着银河系中心的公转所产生的离心力,要大三千万倍。所以,在研究太阳系中星体的运动时,太阳是一个很好的惯性参考系。地球也可以视为惯性参考系。由于地球自转而产生的加速度在地球表面为0.034m・ s。重力加速度大约为自转加速度的288倍。由于地球绕着太阳公转而产生的加速度为0.006m・ s,更为微小。所以,可以忽略地球的自转和公转加速度。 假设处于地球参考系的观察者A,观察到一辆火车呈匀速直线运动,则附着于此火车的参考系(火车参考系)也是惯性参考系。假设在火车车厢内,有一个圆球从高处掉落下来,处于火车参考系的观察者B,所观察到的圆球轨迹,就如同当这火车固定不动时,这圆球会垂直掉落下来一样。从地球参考系观察,在掉落之前,圆球与火车的移动速度与方向相同,圆球的惯性保证,朝着火车移动方向,圆球与火车的移动速度相等。注意到在这里,是惯性而不是质量给出这保证。 每一个惯性参考系里的观察者,都会观察到所有物理行为都遵守同样的物理定律。从一个惯性参考系,可以简单又直觉明显地变换(伽利略变换)到另外一个惯性参考系。这样,处于地球参考系的观测者A能够推论,火车参考系的观察者B会观察到,在火车车厢内掉落的圆球,会垂直掉落下来。 对于非惯性参考系而言,由于参考系的加速度不等于零,物体会感受到虚设力。假设火车正在加速度中,则火车参考系的观察者B会观察到,圆球不会垂直地掉落,而会偏改方向,这是因为朝着火车移动方向,圆球与火车的移动速度不相等。 再举一个例子,假设将地球自转纳入考量,地球每24小时会自转一周,旋转的地球参考系是非惯性参考系。从北极发设一枚导弹,对准南方位于赤道的某点P,则从地球参考系观察,由于感受到科里奥利力,这枚导弹会偏离点P。但是,从太阳参考系观察,由于地球的自转,点P位置有所改变,所以没有准确抵达点P。
什么是惯性大班教案
一、设计思路:“老师,我把溜溜球甩出去为什么它会回到我的手上?”“汽车突然刹车,我的身体为什么总是向前倾?”生活中惯性无处不在,人们运用惯性的原理发明了许多有用的娱乐玩具:过山车、蹦床、秋千......
怎样让孩子们懂得和了解惯性的秘密及原理,在阳光和空气充足的户外场地上,孩子们“坐汽车”感受惯性、自己动手制作陀螺和旋转的纸盘、操作溜溜球、木块等活动来“找惯性”、通过做做玩玩发现问题,与老师和小伙伴一起“说惯性”。从而培养幼儿关注周围事物的兴趣、激发幼儿自由探究的欲望和好奇心,萌发幼儿团结合作、克服困难的决心。
二、活动目标:
1、激发幼儿探究生活中科学现象的欲望,满足好奇心,萌发在活动中认真思考,克服困难,团结合作的精神,感受成功的快乐。
2、能用较连贯的语言表达自己的发现和感受,动用各种感官寻找答案,提高幼儿发现、思考、解决问题的'能力。
3、引导幼儿关注周围事物,感知惯性现象,懂得不受外力影响,任何物体都保持原状不变。
三、活动准备:
1、场地:一楼户外操坪,能感受惯性现象的体育器械若干;
2、幼儿操作材料:瓶盖、小木棍、扑克牌、小木块、扣子、免洗纸盘、卫生纸卷芯、
3、玩具车、溜溜球若干;
四、活动过程:
1、感受惯性:
、全体幼儿实地坐车感受开车、刹车带来的身体变化;激发幼儿探究生活中科学现象的欲望,满足好奇心,萌发在活动中认真思考,克服困难,团结合作的精神,感受成功的快乐。能用较连贯的语言表达自己的发现和感受,动用各种感官寻找答案,提高幼儿发现、思考、解决问题的能力。引导幼儿关注周围事物,感知惯性现象,懂得不受外力影响,任何物体都保持原状不变。
下车谈感受:开车时我的身体怎么变化?刹车时我的身体有什么变化?为什么?
初步了解什么是惯性。
2、发现惯性
教学目标
知识目标:
知道牛顿第一定律,常识性了解伽利略理想实验的推理过程。
能力目标:
1、通过斜面小车实验,培养学生的观察能力。
2、通过实验分析,初步培养学生科学的思维方法(分析、概括、推理)。
情感目标:
1、通过科学史的简介,对学生进行严谨的科学态度教育。
2、通过伽利略的理想实验,给学生以科学方法论的教育。
教学建议
教材分析
教材首先通过回忆思考的形式提出问题:如果物体不受力,将会怎样?通过小车在不同表面运动的演示实验,使学生直观的看到物体运动距离与阻力大小的关系,为讲解伽利略的推理作准备。然后讲述伽利略的推理方法和通过推理得出的结论,再介绍迪卡儿对伽利略结论的补充,牛顿最后总结得出的牛顿第一定律。通过这些使学生了解定律的得出是建立在许多人研究的基础上的,正如牛顿所说:“如果说我所看的更远一点,那是因为站在巨人肩上的缘故”。最后指出牛顿第一定律不是实验定律,而是用科学推理的方法概括出来的,定律是否正确要通过实践来检验。给学生以科学方法论的教育。
本节课的重点是揭示物体不受力时的运动规律,即牛顿第一运动定律。
教法建议
1、学生学习牛顿第一定律的困难在于从生活经验中得到的一种被现象掩盖了本质的错误观念,认为物体的运动是力作用的结果。如推一个物体,它就动,不再推它时,它便静止。为使学生摆脱这种错误观念,首先要把运动和运动的变化区别开,树立从静到动和从动到静都是“运动状态改变”的概念,这是为了揭示力和运动的关系做的重要铺垫。其次,通过实验确立“力是改变运动状态的原因”的概念。再通过推理建立“不受力运动状态不变”的概念。
2、通过图9—1演示实验的比较、分析、综合、推理是本节课的核心,可对学生进行简单的科学推理方法的教育。在此演示实验中可通过设计不同的问题渗透研究方法。
3、本节课可按着人类对知识的认识顺序组织教学,让学生体会规律的认识过程,对学生进行学史教育。从亚里士多德的观点——伽利略的研究——笛卡尔的补充——牛顿的'总结。
教学设计示例
教学重点:通过对小车实验的分析比较得出牛顿第一定律。
教学难点 :
1.明确“力是维持物体运动的原因”观点是错误的。
2.伽利略理想实验的推理过程
教学用具:斜面,小车,毛巾,棉布,玻璃板,微机,实物投影,大倍投电视。
教学过程
一、实验引入:批驳亚里士多德的观点
[演示1]在桌面上推动木块(或板擦)从静止开始慢慢向前运动,撤掉推力,木块立即停止。
分析:日常生活中也有许多类似的现象,(如推桌子)。这些现象从表面上看,“必须有力作用在物体上,才能使物体继续运动,没有力的作用,物体就要停下来。”即:板擦的运动需要推力去维持。于是,古希腊哲学家亚里士多德就根据这些现象总结出“物体的运动需要力去维持”。这种观点在历史上曾被沿用两千多年,但时沿用两千年是否就一定正确呢?也可能有人曾表示过怀疑或有人认为就是错误的,但没某能说服别人的理由。
[演示2] 在桌面上推动木块(或板擦)从静止使之向前运动,用力推出,木块向前运动一段距离后停止。
分析:推力撤掉,还要向前运动,与亚里士多德的观点不符。
分析:木块:静止——运动——静止。两个过程中是否都有力存在?在这两个过程中力的作用是维持原来的运动状态还是改变运动状态?
二、讲授新课:
1、规律总结过程
方法1教师引导
伽利略的贡献:理想实验
[演示](通过实物投影仪把实验过程反映在大倍投电视上)
介绍器材
实验前提条件:每次实验都需从斜面上的同一高度下滑,为什么?
实验过程:让小球从同一斜面的同一位置滚下后分别在毛巾表面、棉布表面、玻璃表面上运动,每次记下小球停下时的位置。做标记的位置是什么位置?(停下来的位置)
实验纪录:
实验次数 表面材料 阻力大小 滑行距离
1 毛巾 最大 最短
2 棉布 较大 较长
3 玻璃 较小 长
推理想象 光滑表面 阻力为零 无限长
实验分析:
三次实验,小车最终都静止,为什么?
三次实验,小车运动的距离不同,这说明什么问题?
小球运动距离的长短跟它受到的阻力有什么关系?
若使小车运动时受到的阻力进一步减小,小车运动的距离将变长还是变短?
根据上面的实验及推理的思想,还可以推理出什么结论?
推理:小球在光滑的阻力为零的表面,将会怎样运动?
实验结论:通过伽利略的实验和科学推理得出“运动的物体,如果受到的阻力为零,它的速度将不会减慢,将以恒定不变的速度永远运动下去。”即作匀速运动。
[微机模拟实验]:简介伽利略理想实验
迪卡儿的补充
如果运动物体不受任何力的作用,不仅速度大小不变,而且运动方向也不变,将沿原来的方向匀速运动下去。
牛顿的成果:补充与概括
师:物体除了运动的以外,还有静止的。那么,静止的物体在没有受到外力作用时,保持什么状态呢?(牛顿补充:将保持静止状态)
师(引导学生概括):我们现在已经有了伽利略的研究成果,又有了迪卡儿和牛顿的补充,把两者进行一下概括:一切物体在没有受到外力作用时,将如何呢?(对概括出来大致意思的同学给予鼓励)
介绍:牛顿抓住时机,概括总结得出著名的牛顿第一运动定律
方法2:学生探究式学习
针对基础较好的学生,可以由学生在老师的指导下自己完成斜面小车实验,根据现象学生分组讨论,明确亚里士多德的观点的问题根源.由学生互相补充确定实验结论。
2、定律分析
定律成立条件:不受外力作用
运动规律:总保持匀速直线运动状态或静止状态。
师(回应课题引入实验): 回想我们最开始的实验,有推力板擦运动,撤去推力板擦停下来,从表面现象上得到的结论运动需要力维持是错误的,但这种现象是千真万确摆在我们面前的,我们如何用牛一的观点正确的解释这个现象呢?
三、巩固练习
1. 一物体放在桌上静止,假若某瞬间撤掉所有的外力,物体将怎么样?
2. 对于牛顿第一定律的看法,下列观点正确的是( )
A.验证牛顿第一定律的实验可以做出来,所以惯性定律是正确的
B.验证牛顿第一定律的实验做不出来,所以惯性定律不能肯定是正确的
C.验证牛顿第一定律的实验做不出来,但可以经过在事实基础上,进一步科学推理得出惯性定律
D.验证牛顿第一定律的实验虽然现在做不出来,但总有一天可以用实验来验证。
四、小结
人们对物体的运动规律的认识是经历了漫长的时间的。物体在不受力时的运动规律,它是经过亚里士多德对人们近两千年的思想束缚,伽利略的科学推理,才最终由牛顿总结出来的。牛一的重要贡献是:
1)力不是维持物体运动的原因
2)力是改变物体运动状态的原因。
五、作业 :阅读本节教材
探究活动
牛顿力学的建立
【组织形式】个人或自由结组
【活动目的】
牛顿力学的建立不是牛顿一个人的功劳,而是许多科学家努力研究的最终结果,查阅资料了解牛顿力学的建立过程,及牛顿力学的体系。
【活动流程】
制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;写出论文;与其他组交流。
【备注】
1、网上查找的资料要有学习的过程记录。
2、和其他成员交流。
斜面小车实验的再研究
【组织形式】个人或自由结组
【活动目的】
运用不同的物体表面,通过实验探究,加深对伽利略推理思维的理解。
【活动流程】
制订实验方案;准备器材;实验并记录现象,分析材料并得出一些结论;与老师所做实验比较优缺点;与其他组交流。
【备注】
1、要有完整的过程记录。
2、和其他成员交流。
教学内容
苏教版数学(二年级上册)第90、91页
教学目标
1、学生通过实际观察和比较,初步体会从不同的角度观察同一物体,看到的形状可能是不一样的,能正确辨认从某个位置观察到的简单物体的形状,能根据看到的形状正确判断观察者的位置。
2、正确辨认从正面、侧面、背面观察到的简单物体的形状。
3、通过换位置观察等活动,经历探究知识的形成过程。
4、培养学生的合作意识,使学生在观察物体的过程中,丰富对现实空间的认识,发展初步的形象思维和空间观念,提高解决问题的能力,感受数学学习的乐趣。
教学重点:
体验到在不同的位置观察物体,看到的物体形状是不同的。教学难点:辨认从不同侧面观察到的物体的形状。
教具、学具准备:
课件、玩具
教学过程
一、创设情景,激趣导入
1、师:猜一猜这是什么?
2、公布结果。
3、小结:大家通过抓住事物的特征猜出了这个物体,你们真了不起!刚才同学们看得都特别仔细、特别认真。用眼睛仔细、认真的看这就叫“观察”。
今天就来学习从不同的角度《观察物体》板书课题
二、观察照片,激活经验。
1、观察教室照片。
(1)谈话引入,观察照片。小朋友,你们喜欢拍照吗?老师这儿有两张大家最熟悉的照片,你知道是拍的哪儿吗?(在屏幕上依次打出两张分别从教室的前后拍的照片,让学生进行辨认。
(2)拍的是同一个教室为什么拍出来的样子会不一样呢?(启发学生想象拍摄者的位置。)
(3)下面的两张照片哪张是老师站在教室前面拍摄的,另一张是在哪里拍摄的?你是怎么知道的?
(4)得出结论:同一个教室,站在不同的位置,从不同的角度去拍,得到的照片是不一样的。
2、“想想做做”第1题。
下面是两张某区第一中心小学的照片,结合我们学校的大门想一想,哪一张是在学校外面拍摄的,哪一张是在学校里面拍摄的?
你是根据什么做出判断的?
3、通过刚才的学习,同学们已经学会从两个相对的角度观察同一个物体。
三、观察实物,亲身体验。
1、观察实物
师:今天老师还带来了一位小客人,它已经等不及了,请出我们的这位小客人,这是一只卡通小牛,如果从不同的位置观察这只小牛看到的样子又会怎样的呢?
下面我们就分组进行,从每一小组中请出一位小组长来示范观察小牛,并做一回小老师,判断从你这个位置看到的小牛是什么的样子的?
其他同学猜一猜,你的小组长看到的小牛的样子是哪一张图片,将你想到的用手势表示出来。(如果想不出的话,同桌可以互相交流一下判断方法。)
请把小牛放在桌子中间,小牛的脸对着1号座位的同学。(学生分前、后、左、右四个方位坐好)
师:你是从小牛的哪一面观察小牛的?请问看到的小牛是什么样子的?是几号图片,你的组员们选对了吗?
生1:我看到了小牛的正面生2:我看到了小牛的身子生3:我看到了小牛的后面
师:左面和右面看到的一样吗?不同在哪里?2、换位置再观察
咱们换个位置观察一下好吗?请1号座位的同学到2号座位,2号座位的同学到3号座位,依次换位。
你现在看到的小牛又是什么样子的?(学生纷纷发言)。
师:我们继续换位置观察,2号座位的同学到3号座位,3号座位的同学到4号座位,你在这个位置上看到的小牛又是什么样子的?小组内相互说一说。
(小组内交流完毕后,学生再次换位置观察并交流。最后让学生回到原位。)3、根据形状判断位置
师:刚才我们在不同的位置对小牛进行了观察,下面老师就来考考你。哪一组的同学看到的小牛是这个样子的?请把你的手举起来。(任意拿一张)
教师边说边出示:
师:××同学,你为什么举手了?生:因为我在我这个位置上看到了小牛的身子,而图片上画的也是这个样子。继续出示:
师:几号座位的同学看到的小牛是这个样子的?(出示小牛的侧面)有错的话要质疑学生的回答(采取辩论的方式)师:你们观察得真仔细。(让学生辨认,做法同上。)
师:通过从不同位置对小牛的观察,你发现了一个什么问题?
(师生共同肯定:站的位置不同,看到的小牛的样子是不同的。)
四、应用拓展
(一)练习
1、课本90页小猴题。有几个小朋友是摄影爱好者,他们在不同的位置分别
给小猴照了一张照片,根据刚才的经验判断一下,他们拍到了小猴的哪一面,你能把每人拍的照片连一连吗?
2、“想想做做”第2题。我们已经知道在不同的位置看同一个物体,看到的样子不同。生活中也常常需要从不同的位置观察同一个物体,瞧,校园里有一辆汽车三个小朋友在不同的位置观察这辆汽车,你知道右边的图分别是谁看到的吗?连一连。(学生在书上完成,指名反馈,集体校对。)
(二)猜猜猜在生活中我们常常会遇到下面的情形,出示练习十五第
3、4题。
(三)图片欣赏同一事物观察的角度不同,看到的形状就不同,本节课的内容在其他学科中也有体现,比如说:我们语文书中就有一首诗说明了这种现象。
五、全课总结今天我们学习了什么?你懂得了什么?
教师小结:同一个物体,从不同的角度去观察,看到的是不一样的。我们今后在观察物体时要注意从不同位置去观察,在思考问题时也要学会从不同的角度去思考,这样得出的结论才会更加全面、更加准确。希望大家做一个勤于思考的好孩子。
六、拓展延伸
同学们就把你们今天的收获带回去,和爸爸妈妈一起观察家里的一个物体,并和他们说一说从不同方向可以观察到物体的什么形状。
七、板书设计
观察物体
↓
不同位置
从前面
从侧面
从后面
形状不同
1、使学生了解对称对称轴等概念,并能识别对称图形,会画对称轴。
2、培养学生初步的观察能力,自主探究的能力和动手操作的能力。
3、通过对生活事物及相应图形的欣赏,感受数学与生活的密切联系,陶冶情操。
感知对称,识别对称图形。
画出图形的对称轴。
教具、学具准备:
课件、梳子、衣服、小树、数字1、叉子图片、正方形、长方形、五角星、圆、等边三角形图片、尺、水彩笔、剪刀、胶水。
一、创设情景,引入课题。
1、小朋友,现在是什么季节啊?(春天)你了解哪些关于春天的信息?(学生自由回答)
2、(多媒体展示美丽的春天景象)是啊,春天是一个美丽的季节,柳树发芽了,小草发芽了,花儿开放了,你们看,蜻蜓哥哥、蝴蝶姐姐和树叶妹妹也高兴地飞进了我们的教室了。
3、(将蝴蝶、蜻蜓、树叶图片放大定格)这些美丽的图案它们在外形上都有一个共同的数学特点,你能发现吗?(它们的两边是一样的。)你怎么知道它们是一样的?(看出来的。)是啊,观察是学习的一种好方法。(板书:观察)除了观察,你还可以怎样证明呢?(学生通过折一折的方法,体会蝴蝶、蜻蜓、树叶左右形状一样)
4、生操作后汇报:还可以对折。(板书:对折)
5、验证,揭题。像这样对折后完全重合的图形在数学上我们称为对称图形。(板书:对称
图形)。
6、谁来说一说,什么是对称图形?
7、小结:请大家回忆一下,刚才我们是用什么方法来研究对称图形的呢?(观察和对折)
二、生活中的对称图形。
1、日常的生活中,你们有没有看到过美丽的对称图形?
2、学生自由说。
3、同桌对说。
三、认识对称轴,学画对称轴。
1、老师也找到了一些美丽的图形,想请大家帮我判断一下,我找的是不是对称图形。(出示梳子、衣服、小树、数字1、叉子图片)
2、学生判断。
3、刚才我们发现对称图形通过折在图形的中间都留下了一道折痕,这道折痕我们叫做对称轴,一般用虚线表示。
4、你能画出这些图形的对称轴吗?(出示正方形、长方形、五角星、圆、等边三角形)你打算怎么画?(学生自由说)四人小组用尺和水彩笔画出对称轴。
5、交流作业。
6、小结:通过刚才的折和画我们知道有些图形只有一条对称轴,有些图形有很多条对称轴。
四、创造对称图形。
1、这些图形都是老师剪出来的,你想想我是怎么剪的?
2、如果让你剪一个,你会剪什么?
3、请大家利用箩筐中的工具,也来创造一幅美丽的对称图形,然后把你们小组的作品贴在白纸上,比一比哪个小组的作品最漂亮。
4、学生创作作品,教师巡回指导。
5、把好的作品上交,组长整理好材料,学生欣赏作品。
五、欣赏对称图形。
生活中美丽的对称图形还有很多很多,我们一起来欣赏。(课件展示各种对称图形的图片)
【教材分析】
观察物体是《义务教育课程标准实验教科书》二年级上册第五单元的教学内容。它是学生在一年级时认识了位置和前后左右的知识基础上,通过从不角度观察恐龙的各种活动,从而知道在不同位置上观察同一个物体,所看到的形状是不同的。这部分内容的教学,力求让学生在情境中活动,在活动中体验,在体验中探究,在探究中发展。同时帮助学生建立空间观念,培养学生的空间想象能力。
【学情分析】
儿童在很小的时候就开始接触各种各样的物体,他们已经有了较多的感知经验,只是这些经验太感性,太零散,需要进一步抽象化,形成正确的认知表象。所以我从学生已有的生活经验和原有认知出发,引导学生掌握观察物体的方法。使学生从中获得数学学习的积极情感体验,感受数学的力量。
【教学目标】
1、知识与技能方面:
①知道在不同的位置上观察到的物体的形状是不同的;能正确辨认从不同的位置观察到的简单物体的形状。
②培养学生的空间想象能力,发展学生的空间观念。
2、过程与方法方面:
①通过创设多种观察情境,让学生经历从不同位置观察物体形状的过程,并体验局部与整体的关系,渗透全面观察事物的辩证思想。
②通过组织一系列的观察、想像、比较、综合、分析等活动,让学生经历知识的形成过程,主动地建构观察物体的方法,体会到从不同的位置观察物体,所看到的形状是不同的。
3、情感、与态度方面:
①在创设情境、观察分析过程中,激发学生学习数学的积极性,培养学生仔细观察事物,认真思考和自主学习的好习惯。同时让学生感受到数学知识源于生活,感受到运用知识解决问题的成功体验。
②使学生通过一系列的观察交流活动,培养学生初步的倾听习惯、合作意识和评价意识。
【教学重难点】
1、教学重点:
让学生体会到在不同的位置观察同一个物体,所看到的形状是不同的。
2、教学难点:
能辨别从不同位置观察到物体的形状。
【教学准备】
大恐龙一只;课件一套;全班学生分为四大组,在课室内四个方向围坐。
【学科与德育的有效融合点】
1、在教学中,通过猜一猜、看一看、想一想和说一说等活动,培养学生动脑动口动手的良好学习习惯,又提高了学生的观察分析能力和语言表达能力。
2、课堂上引导学生自主观察、小组讨论交流,让学生通过自己的探索逐步体会到成功的喜悦。这样培养了学生勇于探索、积极向上的学习热情,又培养学生的自主学习意识和合作意识。
3、本课的各教学环节都借助学生生活中常见的事物为教学素材,意在让孩子感悟到“数学就在我的身边,生活离不开数学”。从而培养学生热爱学习热爱生活的情感。
4、在“课间小歇”环节中,播放恐龙的生活图片让学生欣赏,可以培养学生爱护动物和保护环境的思想感情。
【教学策略】
1、注重创设情境、激发兴趣,让学生积极参与探索新知识。
兴趣是学生学习最好的老师,学生只有对学习有兴趣,才能取得好的效果。在本节课的导入环节,我运用“拍手”、“猜一猜”的游戏,激发学生的学习兴趣,这符合儿童的年龄特点和心理特点。在新授过程中,我采用了学生喜爱的玩具恐龙为素材,以观察恐龙活动为主线展开教学。通过本位观察、换位观察、全面观察,让学生亲身体验到观察的位置不同,看到的恐龙的样子也不同,由实物到照片,形象直观,遵循儿童由浅入深,逐步推进的认知规律。在练习时,创设了猜一猜和拍照的游戏情境,通过不同位置观察到的物体的不同形状猜测物体,发挥了学生的想象力,也很大程度上调动了学生兴趣。
2、注重联系生活,实践运用。
课堂学习要与生活实际紧密地结合起来,这样不仅可以拓展课程时空,使学习不仅指向课堂,也可以提供生活世界给学生理解和体验,打开学生的视野,提高学生对生活的深刻理解和感悟。本节课我创造大量条件,让学生把课堂中所学的知识和方法运用于生活实际中,如:拍照、看照片猜同学、观察本校的教学楼、碉塑、钢琴照片等,通过这些活动,不但激发学生的学习兴趣,更让学生充分感受到数学和生活的联系,知道数学知识来自于生活,生活中处处有数学。
3、注重体验教学,让学生经历知识形成过程。
体验教学作为新课程改革中重要的一条是要改变学生的学习方式,变被动为主动,充分发挥学生的自主学习精神,并通过勤于动手、乐于探究的多种形式探究活动,培养学生获取知识的能力,体验科学的过程和方法,培养创新精神和实践能力。教学中我尽可能给学生提供观察、思考的机会;参与、表现的机会,注意学生的亲身体验。通过有目的的指导和分层次的活动,帮助学生逐步学会从不同角度去观察物体的方法;指导学生不仅要仔细地去观察,而且要注意观察到了什么,从而提高了观察活动的有效性。学生在体验中学习,在活动中交流,同时对自己的感悟加以验证。
4、注重在数学教学中渗透德育。
作为教育工作者,除了把文化科学知识传授给学生外,还要把学生培养成品行优秀的人。只有品学兼优的学生才能够健康成长,才能为祖国作贡献。因此,在备课过程中,我认真钻研教材,准确把握好教材的知识点,并采用了贴近学生生活的材料,充分挖掘它们的教育性。对学生进行了学习习惯和生活习惯的教育。