圆环的面积教学反思(优秀5篇)(圆环面积教学视频)

作为一位优秀的老师,我们要在教学中快速成长,对学到的教学新方法,我们可以记录在教学反思中,那么写教学反思需要注意哪些问题呢?为同学们带来了圆环的面积教学反思(优秀5篇),希望能够在作文写作上帮助到同学们。

圆环的面积教学反思 篇一

【设计说明】

《圆环面积》是人教版义务教育课程标准实验教科书数学六年级上册第69页例2的教学内容。环形面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成环形的本质问题。圆环的面积教学,是通过一个例题来完成的,教材借助插图中的光盘帮助学生直观地认识圆环,为学生学习圆环的面积作了感性铺垫。

教学中我是这样设计的:首先安排了两道相关圆面积的计算题,让学生回顾圆的面积计算过程,为学习新知奠定基础。接着安排了认识生活中的圆环内容,让学生更多感受生活中的圆环,产生学习圆环的必要性。让学生通过画一画、剪一剪,建立环形的表象,体会环形的特点。然后设计提问:求圆面积必须知道什么?你能找到内圆和外圆的半径吗?

充分让学生的思维活跃,把环形真实地显露在学生眼前,再通过小组合作的讨论,得出环形的面积计算公式。再接着让学生自学例2的问题,引导学生对圆环面积计算方法进行比较、优化。最后在练习环节设计中,结合直观图像来引导学生理解和掌握圆环的面积计算方法。

【教学设计】

教学内容:人教版义务教育课程标准实验教科书数学六年级上册第69页例2。

教学目标:

1、认识生活中的环形,掌握环形面积的计算方法,提高学生自主探究的学习能力。

2、学生联系生活认识圆环,并通过自主探究、合作交流等方式理解和掌握圆环的面积计算方法。

3、培养学生学习数学的浓厚兴趣和与他人交流、分享学习成果的良好习惯。

教学重点:探究圆环面积的计算方法。

教学难点:理解环形的形成过程,掌握环形面积的计算方法。

教具、学具准备:课件、圆纸片、剪刀、直尺、圆规。

【教学过程】

一、复习旧知,引入新知

1、计算圆的面积

(1)半径是5厘米

(2)直径8厘米

2、说一说圆的面积计算公式

二、自主探究,掌握方法

1、认识环形

(1)我们来欣赏一组美丽的图片。

(课件演示:环形花坛、奥运五环标志、光盘等环形图案)

(2)图片的形状和我们学过的什么图形很相似?(圆)

(3)教师拿出环形光盘说明:像这样的图形,我们称它环形或圆环。(环形)

(4)学生找生活中的环形。

2、建立环形表象

(1)利用手边的工具自己做出一个圆环。

(2)学生可利用工具剪出环形或画出环形。

3、发现环形特点

老师拿着学生制作的环形提问:

“这个环形,你是怎样得到的?”(从大圆中剪掉一个小圆)

(1)解释什么叫外圆半径和内圆半径。

(2)求环形面积是求哪部分面积?

(3)你怎样求这个环形的面积?

(要求学生先独立思考,再在小组内交流)

(4)师:谁能总结一下环形的面积是怎样计算的?

(学生讨论、交流、总结,教师点拨、总结,板书:环形的面积=外圆面积—内圆面积:S=πR2-πr2)

师:这道题你们会了,老师的黑板上还有一道例题,你们能帮助老师解决吗?

4、教学例2内容

光盘的银色部分是一个圆环,内圆半径是2厘米,外圆半径是6厘米。它的面积是多少?

(1)学生读题。

观察:哪里是内圆和内圆半径?你能指一指吗?外圆是哪几部分组成的?哪里是环形面积?你打算怎样求出环形的面积?

(2)学生讨论。

(3)学生试做,指生演板。

(4)交流算法,学生将列式板书:

3.14×(6×6)-3.14×(2×2)

=113.04- 12.56

=100.48(平方厘米)

3.14×(6×6 -2×2)

=3.14×32

=100.48(平方厘米)

(5)比较两种算法的不同。

三、应用新知,解决问题

1、计算阴影部分的面积

(半个环形:R=10厘米,r= 6厘米)

2、判断正误

(1)在圆内剪去一个小圆就得到一个圆环。()

(2)环宽=外圆半径-内圆半径。()

3、一个圆形环岛的直径是50米,中间是一个直径为10米的圆形花坛,其它的部分是草坪。草坪的占地面积是多少?

四、反思体验,总结提高

学生畅谈本节课的学习收获,教师适当总结归纳。

【教学反思】

《圆环的面积》教学时,我非常关注学生的`生活经验和已有的知识体验。由于学生已经掌握了圆的面积的计算方法,所以本节课的重点是如何激发学生兴趣,引导学生通过操作、交流、讨论、合作学习等方式,自主参与环形面积的计算这一知识的获取过程。在本节课中,我注重引导学生自主学习,从学生的实际水平出发,重视培养学生观察能力和发现问题的能力。

一、在直观演示中,培养学生的思维能力

1、深入了解学生,找准教学的起点

这节课是在学生掌握了求圆的面积基础上进行教学的。而且我事先让学生认识生活中的圆环,并用硬纸板做了环形进行演示,让学生获得直接的经验。大部分同学都能求环形的面积,但同学们对环形特征的认识还不够深刻。因此,我从认识环形的特征入手来完成本节课的教学重点,让学生把做环形的过程说出来,在表述的过程中,自然而然地说出了圆环的特征。这样,学生就学得积极主动,学习效果好。

2、深入钻研教材,促进学生思维的发展

在教学中,我深入钻研教材,充分挖掘教材中蕴含的数学思想与方法,提高学生学习效果。在学生认识环形之后,我有意让学生通过尝试自己练习求圆环面积,总结圆环面积的字母公式,认识到环形面积大小的最根本因素是大、小圆的半径。这样的教学,较好地促进了学生思维的发展,使学生在解决实际问题时,能抓住问题的本质。

二、在动手操作中,培养学生的观察能力

师:请同学们拿出做好的环形,说说你是怎样去做的?

生1:在硬纸板上,我先用圆规画了一个大圆,然后缩短圆规两脚间的距离,圆心不变,再画一个小圆,最后把小圆剪掉就得到了环形。

生2:在硬纸板上,我先用圆规画了一个圆,然后圆心不变,再画一个更大的圆,最后把小圆剪掉也得到了环形。

师:前两位同学都说到了哪几点?

生:都说到了要画两个圆,而且圆心不变,半径大小不同,然后从大圆里剪去小圆,就得到环形。

师:说说日常生活中有哪些物体的表面是环形的?

生:光盘、环形垫片等。

在数学教学中,应坚持以学生为主,把学习的主][动权还给学生,让学生自主地进行尝试、操作、观察、想象、讨论、质疑等探究活动,从而亲自发现数学问题潜在的神奇奥秘,领略数学美的真谛。让每一位学生动手进行操作——剪圆环,让学生在动手操作中观察、讨论、归纳、总结,学生在亲身经历的活动中轻而易举就明白了“从大圆里剪去小圆,就得到环形”的道道,从而更容易了解环形的本质特征。这样的教学,不但看到了知识的“静态”存在,更用“动态”的观点引导学生考察了知识,即知识不但是认识的“结果”,更包括认识的“过程”。学生不仅“知其然”,还能“知其所以然”。这样,学生不仅掌握了新知识,也掌握了探索研究问题的方法,同时也培养了探索和创新的精神。

三、在探究发现中,碰撞学生的智慧的火花

师:判别下列图形中,哪些是环形?

师:观察得真仔细!环形的宽度相等。

师:环形中的阴影部分的大小就是环形的面积。你能比较出这几个环形面积的大小吗?

(生纷纷作答)

师:环形的面积与什么有关?

生1:环形的面积与环形的宽度有关。

生2:环形的面积与外圆、内圆的面积有关。

生3:因为圆的面积和半径有关,所以环形的面积与外圆、内圆的半径有关。

(这位学生博得了全班学生热烈的掌声)

师:判断题中其余三个组合图形不是环形,你能求出它们的面积吗?

生1:这些阴影部分的面积都是用大圆面积剪去小圆面积。

生2:不管是不是环形,只要是从大圆里剪去小圆,要求剩下部分的面积,都是用大圆面积剪去小圆面积。

上面的教学中,探求新知,其实就是在圆的面积基础上求圆环的面积。对一些学生来讲,解决它不成问题,所以我采用让学生尝试计算、分析校对、归纳公式的方法,让学生学得积极主动,不断闪出智慧的火花。数学教学,如果找准了起点,注重了学生的发展,就能在整个教学过程中,使学生产生“一波未平,一波又起”之感,让学生始终主动地参与学习活动。这样既能培养学生的学习信心,激发学生学习的主动性,又能切实提高课堂教学的有效性

圆环的面积教学反思 篇二

圆环面积是在圆的面积计算基础上进行教学的,圆的面积计算学生接受并不太困难,但圆环却要把握住外圆和内圆这个形成圆环的本质问题。

弗赖登塔尔强调,学生在知识的学习过程中,应有亲身体验,获得“做出来”的数学,而不是给以“现成的”数学。鉴于这种情况,我反思如下:

一、操作引路,感悟新知。

我先让学生观察课件上生活中的环形物品,谁愿说一说你还见过那些环形物品?火炉盖、餐桌转动的部分、轮胎等。同学们我们已经观察了环形,现在大家动手做环形,(温馨提示:规范操作,注意安全)同学们在紧张制作过程中,我不断巡视,发现有个别同学剪出的小圆和大圆圆心不在同一个点上,我看在眼里,急在心里。小组交流剪环的过程,展示自己作品,通过看一看,摸一摸,说一说,环形是怎样形成的'?它有什么特征? 环形的特征:两个圆必须是同心圆,其次,两个圆之间的距离处处相等。环形的宽度等于外圆半径减去内圆半径。在此我有效的利用课件进行对比演示加深学生对环形特征的理解。

二 、合作探究,凝炼新知

反复演示从大圆中取出小圆,通过实践操作得出:环形的面积等于外圆面积减去内圆面积。例题的处理由于学生有了前面的操作感知,所以例题我采用自学的形式进行,让学生尝试计算,交流展示,分析验证,比较计算方法,归纳出计算公式, 即S=∏R—∏r或S=∏(R—r)。讨论:这两个算式运用了哪个运算定律?哪个算式计算更为简便?

三、强化练习,深化新知

为了让学生正确应用大半径、小半径、 “环宽”,练习时除了设计基础的练习与判断题,还设计了4道对比练习题,使学生在练习中学会处理大半径、小半径、“环宽”的关系。虽然,在剪环环节耗费了较长的教学时间,但作业反馈较好。没有出现计算方法的错误。计算中错误,有待强化练习中来补救,看来“做数学”确实能够增进学生对知识的理解和掌握。

圆环的面积教学反思 篇三

同学们例3这道题还有什么不同的方法来解答?

3.14×52-3.14×42

你对这种算法,有什么看法?

我认为这算法是第一种分步计算的综合式

能用综合算式是一大进步,谁还有更简单的方法?

3.14×(52-42)

多简便,只用两步,你们知道这样算的理由是什么?

这里运用了乘法分配律,这种算法是第二种方法的简便计算。

你真会学运用知识,大家同意他的想法吗?(齐:同意)

我还有一种好办法!(学生很兴奋地)3.14×(5+4)!

请你说说你的想法

我是看出来的,52-42=5+4

我们验证一下。

是不是其他的算式也有这样的规律,请你验证下,比如:62-52是否与6+5相等;102-82是否与10+8相等

我们试了,第一题行,第二题是不行的

我们看出,两数相差1时,行的,差2就有行了

你的'意思我明白,但表达上有问题,应该说当两数相差1时,两个算式相等,当两数相差2时,两处算式不相等,我们应该用规范的语言来表达。

那么,请大家算一算,多少?

102-82等于36

36与10、8有什么联系?

36=(10+8)×2

2与10、8有什么联系?

10减8等于2师写公式,你能举例说明吗?我们写了几个算式能证明这处算式成立,52-32=(5+3)×(5-3)122-82=(12+8)×(12-8)

大家是不是都认为这样的算式是成立的?(齐:同意)

那么请你用一句话来概括你们所发现的规律!

[课后反思]

本课的教学任务是引导学生理解圆环面积的计算方法,学会计算圆的面积,而在实际的课堂教学中却不知不觉中让学生经历了平方差公式推导验证的过程,这本来是初中的数学知识,可是无意在小学的数学课堂上生成了,我顺着学生的思路,在师生互动的教学过程中让学生体验了一回发现数学,生成数学的感受。

圆环的面积教学反思 篇四

一节课上下来,我感觉有好多地方都应该改进。

1、教学语言不丰富,导致对学生的评价方式非常单一,提问方式单一,造成课堂气氛比较沉闷,没有充分调动学生的积极性。一节课上下来,学生教师都很累。

2、课前对学生的估计过高,所以拓展题的训练感觉学生再囫囵吞枣,大部分学生根本就很不会做。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。

3、在引导时大半部分都是自己把着讲,留给学生思考的时间、空间太少,在一定的程度束缚了学生的思维发展。

4、由于习惯问题,我语速非常的快,可能学生只要稍微有一点不专心,就听不清我在讲什么。

5、知识点拓展的深度不够。在认识了解圆环各部分名称的时候就提出了一个概念:“环宽”,只是让学生在圆环上指出了“环宽”,但没有让学生将环宽与大半径、小半径进行对比,导致学生对环宽的理解有点模糊,致使拓展训练第2题只有三四个学生会做。

当然,一节课下来,学生掌握知识的深度,学生课堂生成的`巧妙处理,每个学生的能力否得到培养等都值得研讨,因此我恳请在座的各位领导和各位老师给予我更多的批评指正。

圆环的面积教学反思 篇五

本节课的学习目标是认识圆环,掌握圆环面积的计算方法;利用圆环面积的知识解决生活中的实际问题。一上课,我先让学生进行快乐填空,把圆的面积计算公式以及直径与半径的关系作为知识铺垫,预习展示环节设计了三道小题,掌握了圆的面积计算方法,紧接着就设计了两道计算题,一道是 已知半径求面积,一道是已知直径求面积,每组的1号同学板演,2号批改。结果发现知识掌握比较牢固。第三个小题是检测对新知识的预习效果,画出圆环的外圆半径。学生经过预习展示,收获颇多。

课堂顺利进入交流展示环节,我首先组织大家小组合作说说圆环的特点,并讨论圆环面积的计算方法。汇报展示时根据同学们的总结课件出示圆环的特点,两个圆的圆心在同一个点上,也就是同心圆。俩圆之间的距离处处相等。然后先自主学习例2,独立计算圆环的面积,这时,我让每组的2号同学板演。当大多数同学都准确计算出结果时,我看着讲台上的4位同学,心里一愣,怎么会是这个结果呢?刚才如果让4号上台多好啊!时间的关系我立即让他们停了下来,通过评讲发现,4人中仅有一人做对了,其余三人都是计算错误。这也暴露了一个问题,三位数乘法计算掌握的不够好,有的计算了两位就写出了结果,有的虽然计算方法正确,但准确率低。对照学生的板书,我及时让大家观察,怎样计算比较简便?大家一致认为郭江龙的计算简便,他利用了乘法分配率使运算简便。为了让学生好记,我和学生又一起推导出圆环的面积计算公式:S环=3。14×(R2—r2)。然后,看着公式我又追问:要想求圆环的面积,必须知道什么条件?学生异口同声答道:必须知道R和r。如果没告诉怎么办?学生一起研究R、r和环宽之间的关系。得出:R—r=环宽。

课堂进入反馈展示环节,我放手让学生自己独立完成两个习题,结果做的还是不理想,很多同学出错。反思一下自己的教学,原因有三点:

1、第一小题是告诉了大圆的直径和小圆的直径,没有直接告诉R和r,必须先求出来,比例题多了两步,造成有些学生列综合算式出错。

2、圆环这节课虽然比较简单,但毕竟是一节新授课,学生原来对这方面的知识一无所知。每一点,每一步都需要老师的指导、演示。

3、要提高计算能力,还必须牢记一些常用的数字,如2π、3π ……9π以及计算公式。

在教育过程中,一定要遵守教育教学规律,不能操之过急,不能拿自己的水平去要求学生。学生的学习需要一个循序渐进、螺旋上升的过程。只有这样,学生才会进步,才会有收获。

热门教案

学诗词

学名句