一次函数的教学反思(一次函数不等式教学视频)

这次小编给大家整理了一次函数的教学反思(共含13篇),供大家阅读参考。

篇1:一次函数教学反思

教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用 “ 两点确定一条直线 ” ,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识,。在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如 “ 随着 x 值的增大, y 的值分别如何化? ” ,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

篇2:一次函数教学反思

一堂好的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。

适当地提出好问题,不仅可以引导学生的思考和探索活动,使他们经历观察实验、猜测发现、推理论证、交流反思等理性思维的基本过程,而且还给了学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。而“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。

探索一次函数的性质时,给出几个关联问题,

问题1:既然一次函数 y=kx+b(k不为零)的图象是一条直线,那么作图时,至少要取几个点就可以了?取哪一些点比较简单,有代表性?

问题2:在前面的直角坐标系中作一次函数 y=2x-1,y=2x,y=-1/2x的图象,并观察四条直线的位置关系。

问题3:正比例函数 y=kx (k不为零)是一次函数吗?作图时需要几个点?每一个正比例函数一定能通过哪一个点?

设置的问题由浅入深,使得学生能进行理性的思考,并提升他们思维的深度。

学生是学习的主人。新课标强调,让学生在自主探索与合作交流中学会学习,提高数学素养。本节课充分体现了这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。

教师是课堂的主导。教师是学生数学学习的组织者、引导者和合作者。然而,组织、引导本身就强调了教师必须是一个特殊的“合作者”,而不是撒手不管的“非主导者”。教师的主导作用不是体现在“主宰”课堂,而应体现在为学生提供鲜活的学习素材,体现在对学习团体的严密组织,体现在对交流活动的精心策划,体现在处理反馈信息的及时有效。这不仅需要教师透彻领会教材实质,更需要教师准确把握学生个性。试想本节课,如果教师不是真正了解学生,就不能组成协调高效的学习小组,也不能在有限的时间内完成教学任务。

篇3:一次函数教学反思

一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。

先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。

练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!

反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。

2、本节课讲到第三个性质。

3、练习题要精而且少,难易适中。

4、注意课前准备,上课注意语言。函数教学反思反比例函数教学反思

篇4:一次函数教学反思

本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

一、有效的“复习回顾”

学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

二、有效的“新知探究”

根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式 ,并理解确定正比例函数表达式的方法和条件。

三、有效的“拓展延伸”

设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

四、有效的“感悟收获”

通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的`理解,通过“感悟收获”解决本节课的重点和难点。

五、有效的“巩固提高”

通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

六、有效的“作业布置”

根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家

篇5:一次函数教学反思

1. 问题的引入:在问题的引入上,新课标明确指出应从实际情境入手,并且使学生能够对问题产生强烈的求知欲。本节课选用两个例子,一个是零花钱存储问题,一个是节约用水问题,非常有代表性。

2. 问题的设计:“学贵有疑”,问题是数学的心脏,也是数学的'魅力所在,没有问题,研究探索就难以进行,更难以深入和拓展。问题的设计接近学生的认知基础,直接经验,这样既有利于学生将知识迁移,也可使学生在问题意识驱动下,产生积极的研究探索欲望。

3. 问题的探索:把待讨论的问题设置成逐层递进的形式,使学生对一次函数的理解和认识逐步加深,这种问题方式有利于培养学生思维的深刻性。在问题的探索上,采用自主学习与合作学习相结合的方式,以促使学生积极踊跃的参与到学习活动中来,创造一种轻松的学习氛围。

篇6:《一次函数》教学反思

一次函数的应用教学反思:《一次函数的应用》这节课的教学内容是湘教版版八年级数学上册第二章第三节的内容。本节课讨论了一次函数的某些应用,在这些实际应用中,备课时注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法。

教学时,能够达到三维目标的要求,突出重点把握难点。能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。

具体分析本节课,首先简单的用几分钟时间回顾一下一次函数的基本理论,“学习理论是为了服务于实践”的一句话,打开了本节课的课题,过渡自然。本节课用函数的观点处理实际问题,主要围绕着路程、价格这样的实际问题,通过在速度一定的条件下路程与时间的关系,总价在单价一定的情形下,总价与数量的关系这几个例题,认识到一次函数与实际问题的关系,在讲解这几个例子的时候,创设了学生熟悉的情境,如在建立一次函数模型进行预测的问题时,问学生:“你知道今年奥运会的撑杆跳高的记录是多少?你能对它进行预测吗?”,简单的一句话引出问题,这样更能引起学生的兴趣,使学生更积极地参与到教学中来,因为情境熟悉,也能快速地与学生产生共鸣。创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关一次函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用一次函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

这节课如果能利用多媒体课件幻灯片的方式展示出来,例题的展示将会更快点,整节课将会更加丰满。当然,在教学实施中我也考虑到了这一点,所以在讲解例题的时候将每个例题的要点以简短的.板书形式展示出来,在一定程度上也节省了时间。

篇7:《一次函数》教学反思

《一次函数》教学反思

教学中,我提倡学生做一道题收获一道题:不仅要会将给定的题目分析得解,还要学会总结反思解题规律、方法思路、技巧、数学思想方法等,最重要的是要充分发挥成题的作用,学会对一道成题从不同角度进行变式,在变化中分析、思考,从而达到将知识学活、学会学习的目的。这里以“一次函数基本知识”的复习课为例,谈谈如何用一道题目的变式囊括所有知识点的复习.

例题:已知函数y=(3-k)x-2k+18是一次函数,求k的取值范围.

设计意图:考查一次函数的定义:y=kx+b中k≠0.

一变:k为何值时,一次函数y=(3-k)x-2k+18的图象经过原点;

设计意图:考查点与图象和点的坐标与函数解析式之间的对应关系:

图象过原点等价于x=0,y=0满足y=(3-k)x-2k+18.

二变:k为何值时,一次函数y=(3-k)x-2k+18的图象与y轴的交点在x轴的上方.

设计意图:考查一次函数的图象与x轴、y轴的交点问题,并能将文字语言翻译成数学语言:与y轴的交点在x轴的上方表示交点的纵坐标,即-2k+18(一般式中的b)大于0.

三变:k为何值时,一次函数y=(3-k)x-2k+18y随x的增大而减小(或:(a,b)(m,n)均在一次函数y=(3-k)x-2k+18图象上,且an,求k的取值范围).

设计意图:考查一次函数的性质.

四变:k为何值时,一次函数y=(3-k)x-2k+18图象经过一、二、四象限?

设计意图:学习一次函数的最重要方法是数形结合.结合图象,将问题转化为解关于k的不等式组.

五变:k为何值时,一次函数y=(3-k)x-2k+18图象平行于直线y=-x;

设计意图:考查决定两条直线位置关系的因素,这里只涉及简单的情形:两条直线平行等价于3-k=-1(即一般式中的k相等).

六变:直线y1=(3-k)x-2k+18与直线y2=2x+12交于点P(-1,a).

(1)求k的值;

(2)x为何值时,y1〉y2;

(3)求直线y=(3-k)x-2k+18、直线y=2x+12与x轴围成的三角形的面积.

设计意图:(1)交点的`意义:点P(-1,a)同时满足y=(3-k)x-2k+18与直线=2x+12,从而求得a,k;(2)解决第二问时有多种方法:解不等式,数形结合;(3)第三问需要借助图象明确所求的图形,弄清点的坐标与线段长的关系(这是学生的易错点,补充强化练习:如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,求k的值).

“一题多变”教学收获反思:

1、在本节课中,通过对一次函数y=(3-k)x-2k+18的多角度变式,将转化的思想、数形结合的思想含儿不露地加以应用,学生的思维、能力均得以发展。

篇8:《一次函数》教学反思

一、教材分析:

本课内容是人教版八年级上册第十四章2.2节一次函数(第一课时)。本节课是已学习函数和正比例函数的基础上学习的,教材用了多个例子说明了一次函数的实际背景。首先通过“登山”等问题引入一次函数,然后通过比较观察,找出共同点,进而确定一次函数的概念,并应用一次函数去解决一些实际问题。

本节课在函数的教学中具有承上启下的作用,通过对一次函数概念的学习,加深巩固对函数概念的理解,是学习一次函数图象和性质的前提。作为实用的数学模型,函数在生活中有着广泛的应用。

二、学情分析:

基于学生刚接触一次函数,基础知识掌握不够牢固,认知水平参差不齐,自主学习能力比较差,对知识的归纳、总结、表达的能力不强。所以本节课一开始从一个身边的实际问题引入,希望能够激发学生的学习兴趣和求知欲。针对八年级学生的年龄特征,教师要细心了解学生的内心世界,关注每一个变化,努力调动他们的学习积极性,要善于发现他们在学习过程中的闪光点,及时给予鼓励性的`评价和引导。

三、教学目标:

㈠知识技能:

1、理解一次函数的概念,知道一次函数与正比例函数的关系。

2、能根据实际问题情景写出一次函数的表达式,能利用一次函数解决一些简单的实际问题。

㈡数学思考:

1、通过对问题信息写出一次函数的表达式的过程,体会建立一次函数的模型。

2、通过一次函数概念的探索归纳过程,发展学生的抽象思维和概括能力,体验特殊和一般的辩证关系。

㈢解决问题:

1、能够运用一次函数概念,判断两个变量是否构成一次函数关系。

2、会利用一次函数解决简单的实际问题。

㈣情感态度:经历利用一次函数解决实际问题的过程,逐步形成利用函数的观点认识现实生活的意识和能力。

四、教学重、难点:

重点:1、一次函数的概念;2、根据实际问题写出一次函数的表达式。

难点:根据实际问题写出一次函数的表达式。

五、教学策略:

以“问题情境——自主探究——拓展应用”的模式展开教学。首先,创设问题情境,激发学生的好奇心和求知欲;其次进行知识的横纵联系,抽象概括,将感性知识上升到理性认识;最后,在习题演练中巩固概念,理解概念,让学生认识到数学知识在解决实际问题中发挥的作用,从而增强学好数学学科的信心。

六、教学手段:

多媒体课件、学生讨论等反思:

1、备课中体会教材的编写意图,把握课标要求,结合学生生活实际编写问题,激发学生学习数学的兴趣,体会“数学源于生活”的思想。

2、教学中坚持学生的主体地位,积极引导学生独立思考,交流合作,使学生切身体验知识的形成、巩固、应用的过程,实现教学目标。

3、重点突出学生质疑提问环节,但学生提问五花八门,漫无边际。老师对问题没有取舍,导致时间不够。

4、通过学生作业情况,发现仍有部分基础较差的学生未吃透本课知识,学生应用能力还有待于提高。

5、由于在教学中坚持问题引领,学生自学,质疑提问,讨论交流花了时间,所以这节课上下来显得时间不够。

6、按学校同课异构的常态课的要求,没有过多的雕饰,比较实在。教学效率还可以!

篇9:《一次函数》教学反思

《一次函数》内容安排基本合理,通过生活中两个实例,学生在探究性的活动后,引入一次函数的概念,接着通过练习,辨别一次函数,再通过练习写解析式,最后是关于一个结合生活实例的例题和相关的两个练习,总结结束。

由于这节课的知识容量较大,而且内容较难,为了能更好地帮助学生消化理解该知识,突破难点,为此我准备了多媒体课件。在教学过程中,我采用让学生亲自动手、动脑画图的方式,通过教师的引导,学生的分组交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。

值得反思的地方有:

1、最后的一个练习没有时间,总结的时间没有了。

2、要注意语速和声音音量的控制,不是声音越大越好,注意上课的语言。

3、怎样能最大限度的了解学生对知识掌握的情况?尤其是大班!由学生掌控,浪费时间。在时间很紧的情况下,怎样提高课堂讲课的效率,是今后努力的方向!

4、在教学水平的现在阶段,要提高学生的成绩,最好的捷径就是练习!

5、真正的要形成自己的教学风格,熟悉教材,熟悉学生。

6、课的内容容量较大,对于有些知识点,如“随着X值的增大,Y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解并消化该知识点,但由于时间紧,学生的这一活动开展的不充分,课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。

篇10:《一次函数》教学反思

这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生得出了图象的性质,借助直观图象的性质而得到一次函数的性质。真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。

其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的.知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。这才是一个成功的组织者。

篇11:《一次函数》教学反思

本节课我将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。

在复习知识点时,让学生自己联想回顾,变被动为主动学习。例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。这样,使无味的复习课变得活跃一些,增强了学习气氛。

本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力。

本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力。

在处理典型例题、练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。

在教学过程中,我发现理论与实践在学生身上很难统一。学生习惯于做纯理论性的问题,而对于实践中蕴含的数学问题即便昌很简单,也发现、挖掘不出。这与枯求的“人人学有价值的数学”相差甚远,而且需要很长的时间来解决。

篇12:《一次函数》教学反思

本节课的设计,力求体现新课程改革的理念,结合学生自主探究的时间,为学生营造宽松、和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养学生的探索能力和创新能力,激发学生学习的积极性。在学生选择解决问题的诸多方法的过程中,不过多地干涉学生的思维,而是通过引导学生自己去探究来选择解决问题的办法。

本节课也存在一些应该深刻的反思和改进的地方。例如在探究活动中有些问题处理的有些仓促,有些问题的指向性有些太明确,需要今后加强。另外,今后教学中还应该更多地关注学生的发展和提升。多用幽默和鼓励性的语言激励学生。

总之,本节课着力做到课堂是数学活动的场所,是师生共同成长的基地,是学生张扬自我舞台。

篇13:一次函数图像教学反思

一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。

先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。

练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!

反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。

2、本节课讲到第三个性质。

3、练习题要精而且少,难易适中。

4、注意课前准备,上课注意语言。

热门教案

学诗词

学名句