不等关系教学反思(看图找关系教学反思)

篇1:不等关系

一、教学目标: 1、感受生活中存在着大量的不等关系,了解不等式的意义。 2、体会不等式是研究量与量之间关系的重要模型之一. 3、经历由具体事例建立不等式模型的过程,进一步提高学生的符号感. 二、教材分析及教学建议: 1.教材p2不等关系的场景最主要的设置目的是由此问题产生许多的不等式,进而引出不等式的概念,从诸多不等式的建立过程中,体会不等式的作用与意义。通过合情推理获得猜想:这里对于猜想是否正确并不作研究,而意在为研究不等式的性质打下伏笔. 2.p4的做一做的设计意图是想通过学生感兴趣的问题建立不等关系,从中体会不等关系的普遍性,这里建立的不等关系均为一次的,也为研究的重点不等式---一次不等式打基础.p9的议一议意在让学生归纳出不等式的概念. 三、教学重点及难点: 重 点:理解不等式的意义能够正确地表示一些简单的不等式关系。难 点:根据题意正确列出不等式,通过把大量实例转化为不等式模型加深对不等式的理解。四、教学过程: 一、问题引入不等关系在现实生活中无处不在!你能举出一些与不等关系有关的现实生活例子吗?二、自主学习与探索出示问题如图1-1,用用根长度均为l㎝的绳子,分别围成一个正方形和圆。用l表示下图的面积?师先让学生计算出上面两个图形的面积:(答案:所围成的正方形的面积可以表示为 ,圆的面积可以表示为 。)(1)如果要使正方形的面积不大于25㎝2,那么绳长l应满足怎样的关系式?要使正方形的面积不大于25㎝2,就是 ,即 。 (2)如果要使圆的面积大于100㎝2,那么绳长l应满足怎样的关系式?要使圆的面积大于100㎝2,就是 >100,即 >100 (3)当l=8时,正方形和圆的面积哪个大?l=12呢?当l=8时,正方形的面积为 ,圆的面积为 , 4<5.1,此时圆的面积大。当l=12时,正方形的面积为 ,圆的面积为 , 9<11.5,此时还是圆的面积大。(4)改变l的取值再试一试,在这个过程中你能得到什么启发? 不论怎样改变l的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l㎝的两根绳子分别围成一个正方形和圆,无论l取何值,圆的面积总大于正方形的面积,即> 三、做一做 议一议(1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域。已知导火线的燃烧速度为0.2m/s,人离开的速度为4m/s,导火线的长度x(m)应满足怎样的关系式?不等式:一般地,用符号“<”(或“≤”)“>”(或“≥”)连接的式子叫做不等式。四、练习1、用不等式表示: a的相反数是正数; m与2的差小于 ; x的 与4的和不是正数; y的一半与x的2倍的和不小于3。下列各数: ,-4, ,0,5.2,3其中使不等式 >1,成立是 ( ) a.-4, ,5.2 b. ,5.2,3 c. ,0,3 d. ,5.2 有理数a,b在数轴上的位置如图1-2所示,所 的值 ( ) a.>0 b.<0 c.=0 d.≥0 五、小结: 六、课外作业:课本第5页“习题1.1”(注意按照作业要求完成作

篇2:不等关系课件

不等关系课件

不等关系课件

教学分析

本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.

通过本节课的学习, 让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.

在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.

在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的`一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.

三维目标

1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.

2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.

3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.

教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.

教学难点:准确比较两个代数式的大小.

课时安排:1课时

教学过程

导入新课

思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.

思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.

提出问题:

1.回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?

2.在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?

3.数轴上的任意两 点与对应的两实数具有怎样的关系?

4.任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?

活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a

教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.

实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.

实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA

实例3:若一个数是非负数,则这个数大于或等于零.

实例4:两点之间线段最短.

实例5:三角形两边之和大于第三边,两边之差小于第三边.

实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.

实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.

教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.

实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.

对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.

讨论结果:

(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.

(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0a

应用示例

例1(教材本节例1和例2)

活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.

点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握

篇3: 初中数学《不等关系》教学设计

【教学内容分析】

这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。

【学生学习情况分析】

(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的`去讲述;

(2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;

(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。

【设计思想】

从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。

【教学目标】

(一)知识与技能

1、掌握数轴的三要素,能正确画出数轴。

2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

(二)过程与方法

1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。

2、对学生渗透数形结合的思想方法。

(三)情感、态度与价值观

1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。

2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。

【教学重点及难点】

1、重点:正确掌握数轴画法和用数轴上的点表示有理数。

2、难点:有理数和数轴上的点的对应关系。

【教学建议】

1、重点、难点分析

本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小、难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。

2、知识结构

有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:

定义规定了原点、正方向、单位长度的直线叫数轴

三要素原点正方向单位长度

应用数形结合

【学法引导】

1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣―手脑并用―启发诱导―反馈矫正”的教学方法。

2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。

【教具学具准备】

电脑、投影仪、三角板

【师生互动活动设计】

讲授新课

(出示投影1)

问题1:三个温度计,其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度。

师:三个温度计所表示的温度是多少?

生:2℃,―5℃,0℃

问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境、(小组讨论,交流合作,动手操作)

师:我们能否用类似的图形表示有理数呢?

师:这种表示数的图形就是今天我们要学的内容―数轴(板书课题)

师:与温度计类似,我们也可以在一条直线上画出刻度,标上读

数,用直线上的点表示正数、负数和零,具体方法如下

(边说边画):

1、画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);

2、规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);

3、选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3……从原点向左,每隔一个长度单位取一点,依次表示为―1,―2,―3,…

师问:我们能不能用这条直线表示任何有理数?(可列举几个数)

让学生观察画好的直线,思考以下问题:

(出示投影2)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示―1的点在什么位置?

(4)原点向右0.5个单位长度的A点表示什么数?

原点向左1.5个单位长度的B点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义。

师:在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴、

进而提问学生:在数轴上,已知一点P表示数―5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是―5?如果单位长度改变呢?如果直线的正方向改变呢?

通过上述提问,向学生指出:数轴的三要素――原点、正方向和单位长度,缺一不可。

师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习

尝试反馈,巩固练习

(出示投影3)、画出数轴并表示下列有理数:

1、1.5,―2.2,―2.5,0

2、写出数轴上点A,B,C,D,E所表示的数:

请大家回答下列问题:

(出示投影4)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

【小结】

本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究。

篇4:初中数学《不等关系》教学设计

初中数学《不等关系》教学设计

第一章 一元一次不等式和一元一次不等式组

1.不等关系

一、学生知识状况分析

学生的知识技能基础:学生在小学已经学习过一些不等式的相关知识,了解“大于”、“小于”等符号的用法和意义;在本章学习的前面,学生已经能比较两数的大小,并能用数学的语言表达;

学生活动经验基础:在相关的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础,同时在以前的学习中学生已经有了很多合作的过程。具备了一定的合作交流能力,为本章的学习奠定了知识与经验的基础。

二、教学任务分析

(一)教学目标:

1、知识与技能目标

①理解不等式的意义.

②能根据条件列出不等式.

2、过程与方法目标

通过认识实际问题中的不等式关系,训练学生的分析判断能力和逻辑推理能力。

3、情感与态度目标

通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并激发学生学习数学的'信心和兴趣。

(二)教学重点:

通过探寻实际问题中的不等式关系,认识不等式。

三、教学过程分析

本节分为七个教学环节:第一环节引入新课、第二环节问题提出、第三环节活动探究、第四环节猜想归纳、第五环节运用巩固、第六环节课时小结、第七环节课后作业。

第一环节:创设问题情景,引入新课

活动内容:寻找相等的量和不等的量

师:我们学过等式,知道利用等式可以解决许多问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容。

师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子。

生:可以,比如每天我都比他早起5分钟

师:很好,还有其他例子吗?

(同学们各抒己见)

师:我这里也有一些例子。拿出给同学们参考一下。

展示投影片

活动目的:通过这一活动,希望学生体会不等关系如相等关系一样处处存在,培养学生观察生活、乐于探究的品质。

活动效果:学生举出了许多不等的例子,不仅能从数字上,还能从现象、感觉上去体会不等关系。

第二环节:问题提出

活动内容:

你还记得小孩玩的翘翘板吗?你想过它的工作原理吗?其实,翘翘板就是靠不断改变两端的重量对比来工作的.

师:那么,如何用式子来表示不等关系呢?

展示投影片

活动目的:在总结前面学生举例的基础上,提出该问题,引起学生进一步思考,培养学生深入思考问题的习惯。

活动效果:学生在层层深入的思考中,亲身体会到不等关系在生活中的重要性,现在再思考该问题正好激发了学生探究的欲望。

第三环节:活动探究

活动内容:在抗击“非典”时期,某中学准备在学校饭厅新添一个通风口,四周用长为xm(x5m)的装潢条镶嵌(不计接缝),8年级1班数学研究性学习小组设计两种方案。如下图:

问 题:

探 究:

师:本题大家首先要弄明的两个问题,正方形和圆的面积公式,另一个是了解什么是“大于”、“不大于”。

生:正方形的面积等于边长的平方;

圆的面积是R2;

两数比较有大于、等于、小于三种情况,不大于就是等于或小于

师:下面请大家讨论,按题意进行解答

(学生讨论、解答后,教师根据情况进行点评)

投影B

通过测量一棵树围(树干的周长)可以计算出它的树龄。通常规定以树干离地面1.5米的地方作为测量部位,某树栽种时的树围为5㎝,以后树围每年增加约为3㎝,这棵树至少生长多少年其树围才能超过2.4米?(只列关系式)

师:请大家互相讨论后列出关系式

生:设这棵树至少生长X年其树围才能超过2.4米,得3X+5>240

活动目的:在生活中去感受没有数学语言表达的困难之处,激发学生主动的解决问题。

活动效果:学生对大于、小于等关系容易理解,而对不大于等概念理解有一定难度,但讨论的气氛很热烈,学生各抒己见。

第四环节:猜想归纳

活动内容:观察由上述问题得到的关系式,它们有什么共同特点?

生:由 25>100>3x+5>240

得,这些关系式都是用不等号连接的式子,由此可知:

一般地,用符号“<”(或“”),“>”(或“”)连接的式子叫做不等式。

活动目的:学生自己总结出不等式的概念,培养学生总结归纳的能力。

活动效果:在实际总结中,部分学生的语言组织不够精炼。

第五环节:运用巩固

活动内容:按课本做随堂练习题

活动目的:对本节知识进行巩固练习

活动效果:学生基本都能运用适当的不等号表示不等关系,并收到了较好的教学效果。

第六环节:课时小结

活动内容:师生相互交流,总结本节难点:能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解。通过不等关系的式子归纳出不等式的概念。

活动目的:理清本节思路

活动效果:学生畅所欲言自己的感受与收获,并能总结难点。

第七环节:课后作业

习题1、1

四、教学反思

不等式是现实世界中不等关系的一种数学表示形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本节课通过学生举例和老师的选例,让学生体会在现实生活中除了存在许多等量关系外,更多的是不等关系的存在,并通过感受生活中的大量不等关系,初步体会不等式是刻画量与量之间关系的重要数学模型。经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。

在引入不等式的概念时,有学生问到用“”连接的式子是否是不等式,这是课前老师没有预设的,这也充分反映了学生思维的活跃性,广泛性。所以在教学中,我们应该充分相信学生的潜力,让学生真正成为学习的主体,让学生的思维在数学课堂上尽情地驰骋,老师要做好引导者、与学生地位平等的进行交流与学习。

篇5:教学设计:《利用不等关系分析比赛》

教学设计:《利用不等关系分析比赛》

《利用不等关系分析比赛》教学设计 北京八中 黄纬

教学目标: 1.以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等关系解决实际问题的基本过程;

2.在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;

3.感受数学的.应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会.

教学重点:利用不等关系分析事物间的逻辑关系.

教学难点:对实际问题背景的理解,如何将实际问题转化为数学问题.

教学过程:

一.引入

同学们,正向我们走来,那时我们将能观看到各种激烈的体育比赛。看比赛,我们总是对结果充满了期待,那你能利用所学的知识预测比赛结果吗?今天我们就学习如何利用不等关系分析比赛.

二.问题研讨:

问题1: 某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第7次射击不能少于多少环?

(1) 对射击比赛规则的介绍;

(2) 问题的分析解决:

①借助表格,分析解决;

注意:本文章有隐藏内容

查看本文章的全部内容需要 1积分 和 普通会员权限

如果您已经达到要求, 请:点击链接查看全部内容

点击查看

篇6:《利用不等关系分析比赛》教学设计

《利用不等关系分析比赛》教学设计

学习目标:

1、了解部分体育比赛项目判定胜负的规则,复习并巩固不等式的相关知识;

2、以体育比赛问题为载体,探究实际问题中的不等关系,进一步体会利用不等式解决问题的基本过程;

3、在利用不等关系分析比赛结果的过程中,提高分析问题、解决问题的能力,发展逻辑思维能力和有条理表达思维过程的能力;

4、感受数学的.应用价值,培养用数学眼光看世界的意识,引导学生关注生活、关注社会。

学习重点:利用不等关系分析预测比赛结果

学习难点:在开放的问题情境中促使学生的思维从无序走向有序;在分析、解决问题的过程中发展学生用数学眼光看世界的主动性

学习过程

一.自主学习

1、什么叫一元一次不等式(组)?

2、怎样求解一元一次不等式(组)?列一元一次不等式(组)解应用题的步骤是什么?

二、合作探究:

某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的纪录,第7次射击不能少于多少环?

(1)如果第7次射击成绩为8环,最后三次射击中要有几次命中10环才能破纪录?

(2)如果第7次射击成绩为10坏,最后三次射击中是否必须至少有一次命中10环才能破纪录?

三、巩固运用:

有A,B,C,D,E五个队分同一小组进行单循环赛足球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,A队的积分为9分.你认为A队能出线吗?请说明理由。

(学生充分发表意见,在辩论中发现此问题不能一概而论,需要考虑其他队的情况,于是形成问题假设:

(1)如果小组中有一个队的战绩为全胜,A队能否出线?

(2)如果小组中有一个队的积分为10分,A队能否出线?

(3)如果小组中积分最高的队积9分,A队能否出线?)

四、反思总结:

五、达标检测

1、足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分一个队打14场比赛负5场共得19分.那么这个队胜了几场?

2、某次篮球联赛中,火炬队与月亮队要争出线权.火炬队目前的战绩是17胜13负(其中有一场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.为确保出线,火炬队在后面的比赛中至少要胜多少场?

(在分析解决前述问题的过程中,自然会引发一些争论,提出一些问题假设,如:

(1)如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜几场就一定能出线?

(2)如果月亮队在后面的比赛中3胜(包括胜火炬队1场)2负,那么火炬队在后面的比赛中至少要胜几场才能确保出线?

(3)如果火炬队在后面的比赛中2胜4负,未能出线,那么月亮队在后面的比赛中战绩如何几

(4)如果火炬队在后面的比赛中胜3场,那么什么情况下它一定出线?)

篇7:高二数学不等关系及不等式检测题

高二数学不等关系及不等式检测题

一、选择题

1.已知a>b,ac<bc,则有( )

A.c>0 B.c<0

C.c=0 D.以上均有可能

答案:B

2.下列命题正确的.是( )

A.若a2>b2,则a>b B.若1a>1b,则a<b

C.若ac>bc,则a>b D.若a<b, 则a<b

解析:选D.A错,例如(-3)2>22;B错,例如12 >1-3;C错,例如当c=-2,a=-3,b=2时,有ac>bc,但a<b.

3.设a,b∈R,若a-b>0,则下列不等式中正确的是( )

A.b-a>0 B.a3+b3<0

C.b+a<0 D.a2-b2>0

解析:选D.利用赋值法,令a=1,b=0,排除A,B,C.

4.若b<0,a+b>0,则a-b的值( )

A.大于零 B.大于或等于零

C.小于零 D.小于或等于零

解析:选A.∵b<0,∴-b>0,由a+b>0,得a>-b>0.

5.若x>y,m>n,则下列不等式正确的是( )

A.x-m>y-n B.xm>ym

C.xy>ym D.m-y>n-x

解析:选D.将x>y变为-y>-x,将其与m>n左右两边分别相加,即得结论.

6.若x、y、z互不相等且x+y+z=0,则下列说法不正确的为( )

A.必有两数之和为正数

B.必有两数之和为负数

C.必有两数之积为正数

D.必有两数之积为负数

答案:C

二、填空题

7.若a>b>0,则1an________1bn(n∈N,n≥2).(填“>”或“<”)

答案:<

8.设x>1,-1<y<0,试将x,y,-y按从小到大的顺序排列如下:________.

解析:∵-1<y<0,∴0<-y<1,

∴y<-y,又x>1,∴y<-y<x.

答案:y<-y<xw

9.已知-π2≤α<β≤π2,则α+β2的取值范围为__________.

解析:∵-π2≤α<β≤π2,

∴-π4≤α2<π4,-π4<β2≤π4.

两式相加,得-π2<α+β2<π2.

答案:(-π2,π2)

三、解答题

10.已知c>a>b>0,求证:ac-a>bc-a.

证明:∵c>a,∴c-a>0,

又∵a>b,∴ac-a>bc-a.

11.已知2<m<4,3<n<5,求下列各式的取值范围:

(1)m+2n;(2)m-n;(3)mn;(4)mn.

解:(1)∵3<n<5,∴6<2n<10.

又∵2<m<4,∴8<m+2n<14.

(2)∵3<n<5,∴-5<-n<-3,

又∵2<m<4.∴-3<m-n<1.

(3)∵2<m<4,3<n<5,∴6<mn<20.

(4)∵3<n<5,∴15<1n<13,

由2<m<4,可得25<mn<43.

12.已知-3<a<b<1.-2<c<-1.

求证:-16<(a-b)c2<0.

证明:∵-3<a<b<1,∴-4<a-b<0,

∴0<-(a-b)<4.又-2<c<-1,

∴1<c2<4.∴0<-(a-b)c2<16.

∴-16<(a-b)c2<0.

篇8:《三角形三边关系》教学反思

《三角形的三边关系》主要让孩子们在动手操作、测量、讨论的活动中,经历探索三角形三边关系的过程。进一步认识三角形,了解三角形三边之间的关系,知道三角形任意两遍之和大于第三边。本节课是让学生以小组活动动手操作的形式充分感知三角形的三边关系。我认为有以下几点和我的教学设计是相符的,达到了预期的效果。比如:

(1) 学生的独立思考与合作交流结合在一起。

在组织活动之前,我提出问题“如何围成一个三角形”让学生有了自己的认识后,在小组合作解决,最后全班共同交流看法,使学生学会了怎样去解决问题,并在这一过程中学会了怎样表达于怎样倾听。

(2) 在实际应用方面,提供空间让学生发挥自己的方法解决问题,并对他提供展示的机会,由于学生的思考角度不同,解决问题的.方法也是多样化的,让学生通过思考交流,比较各自方法的特点,选择一种适合自己的方法,去解决问题。

(3) 用学生喜欢的游戏作练习,吸引学生的兴趣,在快乐的氛围中学到了知识。体验学习数学的挑战性和数学结果的确定性。

整个教学过程可以说较好的达到了预期的效果,但某些环节确实需要进一步的改进于思考。如:

(1)让学生在自主计算、亲身比较的过程中,感受锐角三角形两遍之和大于第三边在这个环节我下的力度有一点大,使课堂有一点延时。

(2) 有的学生对给出的小棒没能充分运用,说明孩子们在解决问题时有时思考是不灵活的。在平日的教学中我们就要多鼓励学生发表自己的意见,不规定固定的模式。

篇9:三角形边关系教学反思

三角形边关系教学反思

《三角形边的关系》是义务教育课程标准实验教科书(北师大版)四年级下册第30至31页“探索与发现(二)――三角形边的关系”的内容。是在学生已经初步认识三角形的基础上,使学生进一步深化理解三角形的组成特征,即三角形任意两边的和大于第三边,加深对三角形的认识。在探索三角形边的关系过程中,让学生体验通过对实验数据收集、整理、分析,从中发现和归纳结论的方法。

《数学课程标准》指出:学生的数学学习应当是现实的,有意义的,富有挑战性的。学习内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,本节课,我的教学思路是:问题引领、动手操作、合作探究、解决问题,促进每一位学生获得不同的发展。

一、让学生体验真实有效的探究过程。

教材是贯彻课程标准理念、内容的载体,是师生教与学的中介。在教学中,教师得根据学生的`认知规律和现有水平,在领会教材编写意图的同时,能灵活地处理和使用教材,进而使教学内容变得更加现实、有趣和富有挑战性。基于这样的认识,我并没有像教材中那样提供限定的四组小棒让学生进行简单的摆搭,然后照例比较每两边的和与第三边的关系得出结论。我认为本节课的重点在于探究的过程与方法。课始,通过第一轮画三角形比赛,既复习了三角形的概念又极大地调动了学生的学习热情;第二轮通过动手用三根吸管围三角形(有的能围成,有的围不成),使学生产生强烈的认知冲突,进而由学生自主地提出了“怎样的三根吸管能围成三角形”的研究问题。接着,引导学生围绕问题主动地进行观察、实验、猜测、验证等数学探究活动,初步感悟到:“当任意两边的和大于第三边时,能围成三角形”的规律;最后,运用得出的规律,设计了一个开放性的环节:给两根长度分别为2cm 和5cm的小棒配一根适当长度的小棒以围成一个三角形。它的结果不是一个具体的数值而是一个数值范围,由于小棒有一定的粗细,很多学生在实践操作时会产生配3cm的小棒也能围在三角形的“误解”,此时,抓住学生生成的性的问题进一步探究,既完善了规律,又分散了本节课的教学难点。整节课教学过程的推进是随着课堂上师生之间的交流与对话、学生思维发展的轨迹来进行的,知识的可信度与学生的情感体验有机地结合在一起,使探究过程显得真实而自然。

二、动手操作后的反思是提升学生数学思维水平的重要途径。

对于操作活动本身而言,数学课更加重视操作活动后的反思和交流。本节课,教师设计了一连串的问题:“为什么这三根吸管围不成三角形?”、“怎样的三根吸管能围成三角形?”、“第三根小棒的长度应在哪个取值范围内?”……,引导学生发表自己的观点,并对他人的观点发表自己的意见,进行质疑。这样,学生能通过一个个问题的解决深化对知识的理解,完善结论,使学生的思维得到提升,认知产生飞跃。

三、充分发挥多媒体教学的优势,最大限度地提高教学效果。

三角形边的关系比较抽象,而且在动手操作时,很容易产生误差。信息技术的恰当应用,能把知识的具体与抽象,静态与动态有机的呈现出来,为突破本节课的难点起到了至关重要的作用。例如:在验证“当较短的两根小棒长度之和等于第三根”能否围成三角形的猜想时,学生意见不一,因为小棒是圆形的有一定的粗细,所以在围三角形时很容易产生误差,误导学生。如果简单地用“这有误差”来解释,学生恐怕还不会信服。于是利用动态的电脑媒体引导学生展开空间想象,明白当较短的两根小棒的端点搭在一起时,他们就与第三条线段完全重合了,围不成三角形,直观形象地突破了难点。接着学生很自然的想到了只要把较短的小棒换长点的或把最长的一根换短一点的便可以围成三角形,由此可看出学生对三角形边的关系已经非常清楚了。

篇10:《三角形三边关系》教学反思

一、教材解读

1.内容初探

“三角形三边的关系”是人教版义务教育四年级下册第62页的例4。这一内容是在学生初步了解了三角形定义的基础上,进一步研究三角形的组成特征。三角形三边的关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否围成三角形的标准。研究教材可以发现教材非常重视学生观察、操作、实验探索的能力,学生通过动手围三角形发现三角形任意两边之和大于第三边的性质。

2.教材慎思

(1)教材提供了4组线段,这些数据是否足够支撑学生得出三角形三边关系?

(2)通过动手围,学生能否发现两条线段之和等于第三条线段是不能围成三角形的?哪些因素又可能让学生产生误判?

(3)学生归纳总结时,易得“较短两边之和大于第三边”,这与书上原话有出入,如何沟通两者间的关系?

3.目标详析

(1)通过猜想、操作、验证等活动,探索并发现三角形任意两边之和大于第三边的规律。运用所学知识解释生活中的.现象。

(2)通过动手操作,由实物到图形的想象抽象过程中,进一步发展空间观念,锻炼严谨的数学思维能力,发展空间观念,提升数学思维。

(3)激发学习探究的兴趣,感受数学与生活的紧密联系。

4.难点确定

探索并发现两条线段之和等于第三条线段是不能围成三角形的。

二、核心任务的制定

为了达成目标,突破重难点,核心任务应设置为学生动手操作,发现并总结规律。为此需要确定两个问题:

1.怎样的学具更方便学生操作、观察?

2.提供几组怎样的数据,才能总结得到结论?

教材选择了学具“纸条”,并拼摆四组数据,其中第一组能拼成(两条线段之和大于第三条线段),第二组不能拼成(两条线段之和等于第三条线段),第三组不能拼成(两条线段之和小于第三条线段),第四组能拼成(两条线段之和小于第三条线段,拼成等腰三角形)。

为了给学生充足的探究空间,归纳总结更科学、更充分,决定增加操作数据:10cm,7cm,5cm,4cm,3cm。这些数可以组合成三种不同的情况:

第一种:10,7,5;10,7,4;7,5,4;7,5,3;5,4,3。这5组都能摆成三角形。

第二种:10,5,4;10,5,3。两条线段之和小于第三条线段,不能摆成三角形。

第三种:10,7,3;7,4,3。两条线段之和等于第三条线段,不能摆成三角形。这种情况学生是最有争议的,在课堂上需要重点研究。

“由三条线段围成(每相邻两条线段的端点相连)的图形叫三角形”――这是书本上给出的三角形的定义。图1是学生用10cm,7cm,3cm这三条纸条拼成“三角形”,在学生眼里这是“每两个端点相连”的,其实不然

这种拼法属于端点不相连,如果要让三条线段真正端点相连,三条线段需各向两端延长一部分,这时两短边之和不再是7cm和3cm之和,已大于了较长边,三角形才能真正拼成。由于学具的原因,导致操作时缺乏严密性,从而产生了错误的结论。但对于学生来说,他们的水平还只限于直观,无法从理论的角度去理解或解释这一错误的现象。为了减小误差并方便操作,尝试把纸条变细,最后决定改用小棒。

通过以上思考,本节课的核心问题确定为:是不是任意三条线段都能围成三角形?

三、教学设计

本节课,我以问题导引学生“卷入学习”,利用核心任务,建构“生生互动”的“深究型对话”,开展“针对性助学”,帮助学生进行三角形三边关系的深度学习。

我的课堂流程如下:

(一)新课导入

1.通过欣赏“跑男”片段,活跃气氛,利用陈赫劈叉问题,铺垫新知。

2.复习三角形定义,开门见山引出课题,大胆猜想,激发兴趣。

(二)探索新知

核心任务是选取三根小棒围三角形,完成表格。学生同桌合作,交流反馈,通过发表或解释自己的观点、倾听并深入思考他人的观点,突破难点,归纳小结出三角形三边关系。

(三)巩固提升

该环节安排了两道练习题,一道是书本上的判断题,学生学以致用,通过简单计算即可判断,巩固新知;第二道是在第一道的基础上,选取其中不能围成的226三根,通过思考“如果要换掉一个小棒,使得三根小棒能够围成一个三角形”,拓展学生思路,提升新知。

七、回顾反思

理想的课堂是学生发展的课堂,是主动、活动、生动的课堂,是学生在教师引领下自主探究的过程,也是以动态生成方式推进教学活动的过程中。本节课,通过对数学核心任务的设计和有效引导,让学生真正经历了探索和发现的研究过程,不仅学到了数学知识,接触到一些研究数学的方法,更重要的是体会到探索发现的乐趣,获得成功的喜悦。

篇11: 乘除法关系教学反思

本节课的教学与加减法的'意义和各部分的关系一课设计的环节基本相同,都是先通过情景,理解乘除法的意义,然后学生通过小组交流理解和掌握,乘除法各部门之间的关系。在教学中,我充分发挥学生的主体作用,借用各种教学手段,来调动学生的积极性,是学生参与知识形成的全过程,充分让学生思考,并观察,分析,比较由乘法算式转换成乘除法算式所发生的变化,最后再通过学生的交流与讨论,让学生用自己的话总结出乘除法的意义及各部分之间的关系,从而提高学生的语言表达能力,以求逻辑思维的发展,能力的培养,使学生体验成功的喜悦。

反思:本节课教学,在教学中要创造性地使用教材,以教材为本,结合本班学生的实际情况进行教学。如在教学乘除法各部分间的关系时,最后总结除法与乘法的关系是互为逆运算。

不足之处。

1,调动学生学习积极性不强,学生参与程度不高。

2,必要的练习不够。导致部分学生对乘除法算式的转化还不清晰,无法达到运用自如的地步。

3,对乘除法意义的进一步理解、拓宽还需加强。

篇12:《三角形三边关系》的教学反思

《三角形三边关系》的教学反思

《三角形三边关系》这节课重难点非常的清楚,就是让学生明确在三角形中任意两边之和大于第三边,主要是让学生通过操作来探索。但是在这其中又有一个难点就是对于有两条边加起来和第三条一样长的情况该怎样去处理,在实际操作中有误差,这样就会让大部分学生会认为能围成三角形,对于这一点该怎样去处理确实让人头疼,经过研讨我们组老师建议尽量的减少教具的误差,之后加上课件的直观演示,可能会让学生能更好地理解,通过这一次的连片教研我更好地体会到这样做的原因了。其次在教学过程中另一个让我们纠结的地方是到底是先研究能围成的两组,还是先研究不能围成的两组,经过讨论大家一致认为由学生的争议点2.6.8这一组不能围成的入手,但是到最后该怎样引导学生去自己探索三边之间的关系,在这一点上我做的有些生涩。经过这次的.研讨,于华静老师给的建议让我顿时觉得开阔了很多,调整了研究的顺序让学生从简单入手,慢慢的深入研究,把主动性还给学生。这是我第一次以这样的形式参加连片教研,过程虽是难过,但是收获却是满满的!

篇13:《圆和圆的位置关系》教学反思

《圆和圆的位置关系》教学反思

在本节课的授课中,我感觉以下几点比较满意:

1、课件教学中在探索圆和圆的位置关系、探索两圆相切时的对称性、探索两圆相切时圆心距d和两圆半径R和r的数量关系时多次运用flash动画展示,给学生以直观感受,便于学生理解,同时,增加上课的生动性。

2、授课方式采用分组教学,对课程内容提出问题后先要学生在小组内动手交流并整理所获得的信息内容,然后在课堂上展示组内成果,从而调动起学生的学习积极性。

3、对练习题的设计由浅入深、层层递进,突出本节课的重点、突破了难点。

4、授课中贯穿了观察、猜想、验证等过程,使学生经历了知识的探索过程,“过程与方法”的目标落实比较好。

但在本节课中还存在许多不足之处,主要在以下几方面:

1、在学生分组活动中,个别学生不能参与进来,今后教学应该多加关注学困生。

2、教学语言应该注意更加规范。

3、在学生回答问题时,不应该只关注回答结果,也应该关注学生所表现出来的态度,用恰当的语言给予肯定和鼓励,使不同层次的学生获得不同的成功体验,从而增强自信心,激发学生的.学习兴趣。

4、本节课应该再加大练习量,进一步落实“知识与技能”的目标。

本次课初备时,我校全体数学教师在一起研讨,杨玉芬老师对我的授课过程中,学生作品展示提出很好的建议:在没有实物投影的情况下,让学生通过粘贴可以解决这一问题。申卫青教师对我的授课程序进行调节指导。李秀捧老师对学生的探讨问题进行进一步设计……

初备方案发布于网上,又得到教研员王老师、风帆郝老师、列电张老师、我校杨老师、马坊杨老师等多位老师的指导点评,我又在此基础上对方案进一步加工。

授课后,各位教师直述己见,让我认识到自己需要继续努力.

通过这次活动,使我更注意到学生的活动和参与情况,给学生充分的时间,把主动权交给学生,自己只是课程的设计者,在授课时适时引导,使尽可能多的学生真正参与进来,可以采取小组之间竞争评比打分以提高学生的注意力、合作交流、积极发言等各方面的参与情况。当学生回答问题后,无论回答的结果如何,要进行不同程度的关注:对回答结果清晰、正确者给予鼓励;对回答不准确或不正确者,在其他学生纠正的同时也要给予积极参与、回答问题积极方面的鼓励,使不同层次的同学都体会成功的喜悦、参与的必要。

在问题的设计上,一要根据学生的实际情况设计问题,问题难度由浅入深、层层递进,既要有梯度又要给学生留有思考的空间。二要考虑到题量的适度,加大练习量,更好地落实知识与技能目标。

在授课时,更要注重数学语言的规范运用,加强学习,进一步充实自己的教学经验。

篇14:《三角形边的关系》教学反思

引入我寻找知识在生活中的数学原型,创设了发生在学生身边的数学情境:我们从家到书店,一共有几条路可走,走哪条路最近,为什么?这使得学生的探究活动因生活的需要而展开。为什么这样设计引入?我想,学生对于三角形三边关系的认识并不是一片空白,他们对三角形两边的和大于第三边有一定的生活经验和感性认识。因此,我选择了能呈现的生活情境引入的方式,并将这种虚拟的情境转入学生的生活,学生凭着自己的生活经验,知道走哪条路最近,但却苦于表达不出其中蕴含的道理,这使学生处于很好的愤悱状态,也使得对于三角形三边关系的探索内化成为学生的一种需要。这样引入,在纯数学与生活原型之间,在兴趣与生活需要之间,我更倾向于选择后者。

在新授中我为每个小组提供6根小棒:3cm、3cm、4cm、6cm、3cm、2cm,让学生从6根小棒中任意取3根,试着摆三角形。并设计从中你有什么发现这样的问题情境,为学生自主学习搭建一个平台,让学生在更自由、更广阔的空间中去合作、探索和发现。

这样组织建模,学生在小组的合作与探究中发现:6根小棒通过不同的组合,有可以摆不成三角形,有得不能摆成三角形,事实推翻了学生头脑中以前的错误认知,激起了思维的矛盾,使学生不得不重新认识三角形三边之间的关系。这种重新认识是学生对三角形三边关系认识上的第一层次。我抓住这一契机巧妙设疑:为什么这样的三根小棒不能摆成一个三角形,怎样的三根小棒才能够摆成一个三角形呢?学生经历摆的过程直观的发现,两根小棒长度之和小于或等于第三根小棒时,不能摆成三角形,只有大于第三根小棒时,才能摆成三角形,得出了三角形两边之和大于第三边的结论。从而初步认识了三角形三边的关系。这种初步认识是学生对三角形三边关系认识上的第二层次,也是学生思维发展必然经历的一个阶段。原本以为这样的回答会得到我的肯定,然而,我的反应仅仅是是吗?二字,这使学生敏感的意识到这种表达可能有问题,问题出在哪呢?学生不得不深思。我适时引导学生思考,前两种情况中的三根小棒为什么摆不成三角形?你认为,对于三角形三边关系,怎样表达更严密?最后学生终于发现:三角形任意两边之和大于第三边。对任意二字的理解,使学生对三角形三边之间关系的认识得到了深化。这种深化的认识和理解是学生对三角形三边关系认识上的第三层次。

教学是一种遗憾的艺术,需要我们不断的尝试,用心去体会。在反复的实践中历练自己,弥补不足。也正是因为有了这份遗憾,才促使我们的教学逐渐走向成熟。我想,我的教学一定还存在很多不足,在今后的教学实践中,我将继续努力探索。

篇15:《三角形边的关系》教学反思

《三角形边的关系》是北师大版四年级下册数学第二单元《认识图形》中的一节内容,课标要求学生通过摆一摆等操作活动,探究并发现“三角形任意两边的和大于第三边”这一规律,会应用这一规律解决简单问题。

我在教学这一节内容时,忽视了“摆一摆”这一环节,而是让学生自由画三角形,在比较三边关系时,也没有引导学生深入计算,导致学生知识的生成有点模糊。因此,教学难点的突破不是很到位。

我在今后的教学中,一定克服以上缺点,积极学习,争取高效率课堂。

篇16:《三角形边的关系》教学反思

在厦门听了北京的老师上这节课,便想跃跃欲试。不巧,有家长来办事,耽误了我制作学具的时间,怎么办呢?教学进度也不允许往后推一节课呀,何况明天因为七校联盟的决赛数学课已经调到下周一了!

就这么办!

我让每一个学生任意画了三个三角形,画好后让他们量出每个三角形每条边的长度,并做好记录。然后,引导他们发现三条边之间的关系,有的同学已经预习过了,忍不住大叫起来:“三角形任意两条边的和大于另一条边。”在这个学生的带动下,所有的学生都开始进行边的长度的两两相加并和第三条边进行比较,他们像发现新大陆似的欣喜。

是不是所有的三角形都有这样的规律呢?孩子们重新画了一个三角形进行验证。原计划安排的动手操作、发现探究变成了发现、猜想、验证、归纳。孩子们的积极性很高、很投入、很有成功感!

接下来是让学生阅读课本,读一读、看一看并解决课本中的“哪条路最近”的问题,让孩子们感受这个数学知识在生活中的应用,并思考例题3下面的问题,对三组数据进行判断:哪三条线段可以围成三角形?孩子们都能用这样的语句来叙述:因为6+8大于7,8+7大于6,7+6大于8,所以这三条线段能围成三角形。

然后,我出示了四组数据,让学生说明每一组数据中的三条线段是否可以围成三角形。先是独立思考,接着在小组内交流。我走入孩子们中间,其中有一个小组领会错误:3cm-2cm-1cm,他们的结论是有的能有的不能。我未置可否,在全班交流、评讲的时候特意安排他们组先汇报,他们一说完,全班一片哗然,反对的声音坚决果断。我让一个孩子帮助出错的小组,这个孩子言之凿凿,条理清晰、富于逻辑,特别强调了“任意”二字。我望了望出错的小组,他们不好意思地露出了笑容。

是否每一次判断都要将每两条线段相加再和另一条线段比较呢?当我提出这个问题时出现了短暂的沉寂,孩子们都陷入了思考。

我指着“7厘米,3厘米,5厘米”对孩子们说,你是否可以只计算一次就作出判断呢?孩子们都说:“只要看3和5的和大于7就可以判断。”

看着孩子们依然在思索,还是没有谁来“揭秘”。我再次让他们观察判断过的几道题,这时文丽这个女孩举起手来,自信地说:“只要计算最短的两条边的和,看会不会大于第三边就可以了!”我含笑地望着课代表和几个平时发言积极、思维活跃的孩子:“有意见吗?”他们对自己落于人后似乎有些失望,但是孩子很高兴地回答:“我赞成文丽的意见!”好家伙!

书上的题他们很快就做完了,当我巡视的时候,孩子们争先恐后地把我递到我的面前,让我目不暇接。我特别留意了小琛、小琪,她们都能用只计算两条短边的和的简便的方法进行判断,我对她们竖起了大拇指。

孩子们在总结的时候都说,今天自己的收获特别大,学得特别好。看着孩子们高涨的情绪,我顿然滋生享受教学、享受课堂的感觉。

激发学生探究的动机,让学生获得成功感,培养学生思维的逻辑性和回答问题的逻辑性应该贯穿于每一节课。

篇17:《三角形边的关系》教学反思

本节课通过让学生自主在活动中进行探索,在拼摆过程中体验成功与失败,自己推导出三角形三边的关系。但是本课也有几个地方没有处理好,这节课的重点就是让学生自主推出三角形三边的关系,在这个环节,我设计的是发给学生两根分别长3厘米和5厘米的小棒,然后想想再配一根多长的小棒就可以围成一个三角形了。学生列举了一些数据,其中比较有争议的就是8cm、2cm、1cm了,1cm。通过演示,学生很清楚的看到1cm这条线段是围不成三角形的,中间还少了一段。那么对于2cm的线段能拼成三角形吗?有人说能,也有的同学说不能,于是我让学生们通过自己画三角形或者摆小棒来进行判断,但是在这个过程中全班上引起了争论。有人说:老师,我画的三角形可以画成功啊!也有人说,我用的小棒也成功了!于是我告诉学生,小棒或者线段可能会存在误差,但是依然有学生存在疑惑。为了后面的教学内容,我只能让学生到此打住,告诉他们:用2cm、3cm、5cm的线段是不能拼成三角形的,有疑惑的同学可以课后继续试试。然后就继续我下面的内容了。但是因为这里有的学生不是很信服,所以感觉后面的教学效果不是十分好。

课结束后,自己又对这节课进行了思考,对于这个地方到底应该怎么处理呢?周三数学组教研活动,老师们都帮我提了一些意见和建议,如果这个地方,能够让学生先思考,然后动手摆、画,最后再通过展示(展示时让学生先猜测,这两条线段会重合吗?然后慢慢的移动,最后发现两条线段的端点是挨在了一起,但是却没有组成三角形,因为它们和最下面的线段重合了。)这样进行,不仅可以让学生的思维能力得到发展,同时也给了学生一个思考的过程,不会让知识的出现显得太突兀。

篇18:《三角形边的关系》教学反思

本节课是在认识了三角形的“分类”和“内角和”的基础上进行教学的,学生已有一定的探索和合作意识,因此我主要采用探索式与多媒体辅助教学,以下是我从设计思路、实施过程、教后反馈三个环节中的反思:

一、反思设计思路

课堂是学生交流知识、获得能力,体验情感的摇篮。一堂课的亮点:“应是从学生思维的起点,兴趣的契入点开始,让学生一气呵成,从而学会学习。因此本堂课的设计主要是从学生的角度出发,结合教材,结合目标和教学重难点,我确定了本节课的思路为:创设情景――激发学习欲望――创设实验――鼓励学生动手、观察、猜想――小组合作交流――鼓励学生大胆发表自己的想法――推广验证,得出结论――分层练习、巩固新知――应用新知、解决问题。

二、反思实施过程:

本节的教学主线是:是不是任意三根小棒都能围成三角形?我围绕着这一主线引发学生探究的欲望,围绕这个问题让学生自己动手操作,发现有的可以围成三角形,而有的围不成。接着让学生探究在什么情况时不能为成三角形,为什么?初步让学生感知三角形三条边之间的关系。然后重点研究“能围成三角形的三条边之间到底有什么关系?”,让学生从直观观察得出“较短的两条边的和大于最长的那边”,经过讨论验证后得出“三角形任意两边的和大于第三边”这一结论。

本节课的教学过程,既符合学生的认知特点,又使学生始终满怀兴趣,而且还积累了大量的操作经验取得了比较满意的教学效果。整个教学过程的设计中,我注重了如下几点:

1、巧设情境,以疑激思。在教学过程中创设问题的情境,可有意造成学生认知矛盾,激发学生主动探究新知的兴趣,想办法解决问题,并能体会到成功的乐趣。因此,在引入方面,我先创设了生活情境――哪条路上学最近?通过课件演示再提出问题:为什么最近?是不是任意三条线段都能围成三角形呢?设置这样的悬念,引起学生积极思考,让学生对三角形三边关系产生好奇,引发学生的探究欲望,从而积极去探索解决问题的方法,学习起来乐此不疲。这节课由实际问题引入,并始终由问题去引领整个探索实践过程。

2、以动促思,多种感官参与学习活动。动手操作过程是以动促思,是多种感官参与学习活动的重要途径,是知识学习的一种循序渐进的探究过程。我为每个学习小组提供了不同长度的小棒、统计表,让学生猜一猜、摆一摆、填一填、说一说、想一想,多种感官参与学习活动,在活动中逐步发现并归纳“三边关系”。

3、情境演示,动静结合。本节的知识点比较抽象,学生难以理解。而在动手操作时,容易产生误差,难以让学生信服。我们知道,数学知识是抽象的,又是具体的;是静止的,但又是动态的。因此,本节我还利用了信息技术把知识的具体与抽象,静态与动态有机的呈现出来突破难点,突出重点。正如课前所料,因为小棒和误差的缘故,有些学生认为“4、5、9”这组小棒能围成三角形,于是我结合课件演示,让全体学生动态地看出三角形两边长度的和等于第三边的结果是什么――必定不能围成三角形。

4、联系生活。数学知识源于生活而最终服务于生活。在教学中要力求从学生熟悉的生活世界出发,选择学生身边的的事物,提出有关的数学问题,以激发学生的兴趣与动机。使学生初步感受数学与日常生活的密切联系,并能学以致用。例如:从引入“哪条路上学最近”,到练习中“盖三角形房架”等设计,都是从生活经验和客观事实出发,使学生感受生活中处处有数学,让学生在解决实际问题中享受“学数学、用数学”的乐趣。

三、反思课堂练习

课堂练习的目的是为了让学生及时掌握知识,因此我设计了一些不同类型、不同层次的练习,让不同层次的学生都能得到发展。

从反馈中发现学生犯错的原因一是:学生未能认真审题。比如:从下面5根小棒中任意取出3根,摆出两种不同的三角形。(教材第31页“练一练”第二题)有不少同学运用分类讨论做题,却把五根小棒看成了五类小棒,实在可惜。犯错的原因二是:学生动手实验的能力不强。因此整节课时间稍紧了一点。

篇19:《成员间的关系》教学反思

北师大版《成员间的关系》教学反思

《成员间的关系》这节课以小冬家祖孙三代之间的关系作为问题情境引入,通过对这个问题进行数学分析,使学生体会到图能够清晰、简洁地表达事物或数之间的关系。

我预设现在的孩子大多数是独生子女,对家庭成员间的关系、称谓都比较淡薄,例如什么堂兄妹、堂姐弟、表兄妹、表姐弟不是很清楚, 因为时间紧,没有来得及熟悉学生,因此课前想让学生先做好预习,调查家中的成员间的关系以及亲戚朋友已无可能,因此我采用了两个方式进行突破,一是以“课前谈话”中的《家谱歌》作为与课堂内容有关的谈话.二是以我自己家庭成员之间的关系图引导学生理解,既了解了学情,也很自然地揭了题,并为后面学生自己绘制家庭成员之间的关系图作了个铺垫,提供了很好的素材.

我思考最多的是如何呈现符号化的关系图这一环节,我想让学生经历一个数学化繁为简的过程。最初的设计是先以小冬家的关系图为素材,让学生看到:由人物画像的关系图,变为文字记录的关系图,最后在我的启发与点拨下形成的符号化的关系图,亲历一个由形象到抽象,由复杂到简单的过程.但是:“自主探究”体现得不够充分.因此在突破重难点的地方作了很大的调整.变为以学生的家庭成员关系为素材,让学生用自己喜欢的方法绘制出关系图,由于学生个性差异的影响,有的学生绘制出了不同的`关系图,我选择了几种典型的记录方式,引导学生进行观察与比较,从而让学生自我认识到简约的方法.最后再呈现小冬记录的关系图,学生在比较中明白了用“图”可以刻画出事物或者是数之间不同的关系.从而内化自己的知识,感受到数学是一门简单的艺术.当然,在我选择的几张关系图中,都是妈妈这条线的,给学生留下了一个不完整的印象,当时没有发觉,只在考虑图是否清楚,是否具有典型性。

符号化记录关系离不开“点,字母和箭头”三个要素,而带箭头的线是临时规定的一种符号标志,在不同的情景中代表的意义并不相同。为防止学生形成思维定势,我考虑是在适当的地方进行强调,并设计几道对比题目进行练习,这样,学生的思维就拓展开了。

由于时间紧,对新教材的内容完全不熟悉,因此存在的问题较多,我想在以后的工作中我会慢慢改进,以达到更好地教书育人目的.

热门教案

学诗词

学名句