小学五年级数学《找一个数的约数和倍数》教案设计
教学目标:
1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。
2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。
教学过程:
一、准备题
1、什么是整除?
2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?
二、教学例118和24的约数各有哪几个?
1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?
找18的约数,就是看18能被哪些自然数整除:18除以=()
2、找约数的方法;
A、从最小的.自然数1找起,也就是最小的约数找起,一直找到它本身。
1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18
B、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。
18/1=18(1和18都是18的约数)
18/2=9(2和9都是18的约数)
18/3=6(3和6都是18的约数)
18/4不能整除
18/6=3除数已比商大。
18的约数按顺序排列是:1、2、3、6、9、18。
3、用同样的方法找24的约数。
24/1=24(1和24都是24的约数)
24/2=12(1和24都是24的约数)
24/3=8(1和24都是24的约数)
24/4=6(1和24都是24的约数)
24/5不能整除
24/6=4除数已比商大。
4、观察约数的特征:
18、24的约数也可以分别用图表示
思考:根据上面的图回答
1、约数中最小的一个是什么数?(1)
2、约数中最大的一个是什么数?(本身)
3、一个数的约数的个数是有限的。
1、2、3、6、9、18
1、2、3、4、6、8、12、24
18的约数24的约数
5、练一练
找15和36的约数各有哪几个?
三、教学例23和5的倍数各有哪些?
1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以
3的倍数有3、6、9、12、15、18、21、24、27……
5的倍数有5、10、15、20……….
3、6、9、12、15、18……
2、3、5的倍数也可以分别用图表示:
5、10、15、20、25、30……
3的倍数5的倍数
观察上图发现:(1)一个数最小的倍数是什么数?(本身)
(2)一个数有没有最大的倍数?(没有)
(3)一个数的倍数的个数是无限的。
2、练一练
(1)50以内4、9的倍数各有哪几个?
四、巩固练习
1、在下面的圈里填上适当的数
2、在4、8、16、32、40、48、64、80这几个数中,
80的约数有(4、8、16、40、80),
8的倍数有(8、16、32、40、48、64、80)
3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?
32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。
五、总结布置作业
反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:
1、约数中最大的和最小的约数是什么。
2、倍数中最大的和最小的倍数是什么
3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。
4、如何找出所有的约数,而且确认已全部找出的方法应加强。
2、约数中最大的一个是什么数?(本身)
3、一个数的约数的个数是有限的。
1、2、3、6、9、18
1、2、3、4、6、8、12、24
18的约数24的约数
5、练一练
找15和36的约数各有哪几个?
三、教学例23和5的倍数各有哪些?
1、求一个数的倍数,可以把这个数分别乘以1、2、3…..。所以
3的'倍数有3、6、9、12、15、18、21、24、27……
5的倍数有5、10、15、20……….
3、6、9、12、15、18……
2、3、5的倍数也可以分别用图表示:
5、10、15、20、25、30……
3的倍数5的倍数
观察上图发现:(1)一个数最小的倍数是什么数?(本身)
(2)一个数有没有最大的倍数?(没有)
(3)一个数的倍数的个数是无限的。
2、练一练
(1)50以内4、9的倍数各有哪几个?
四、巩固练习
1、在下面的圈里填上适当的数
2、在4、8、16、32、40、48、64、80这几个数中,
80的约数有(4、8、16、40、80),
8的倍数有(8、16、32、40、48、64、80)
3、32能被哪几个数整除?32有哪几个约数?32是哪几个数的倍数?
32能被1、32;2、16、4、8整除。32的约数有1、32、2、16、4、8。32是1、32、4、8、2、16的倍数。
五、总结布置作业
反思:在教学找一个数的约数和倍数的时候,在以下几个方面的教学应加强:
1、约数中最大的和最小的约数是什么。
2、倍数中最大的和最小的倍数是什么
3、强调一个数最大的约数和最小的倍数是一样大的是它本身,。
4、如何找出所有的约数,而且确认已全部找出的方法应加强。
教学目标:
1、使学生学会找出一个数的约数的方法,能正确、便捷地找出一个数的约数。
2、学会找出一个数的倍数的方法,能正确地找出一个数的一些倍数。
教学过程:
一、准备题
1、什么是整除?
2、25和5,谁能被谁整除,谁是谁的倍数,谁是谁的约数?
二、教学例118和24的约数各有哪几个?
1、首先明确找一个数的约数,就是看这个数能被那些自然数整除?
找18的约数,就是看18能被哪些自然数整除:18除以=()
2、找约数的方法;
A、从最小的自然数1找起,也就是最小的约数找起,一直找到它本身。
1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18
B、用一一对应的试除法来做:也从最小的自然数试除,在能整除的时候,除数和商都是这个数的约数,不成整除的时候,除数和商都不是这个数的约数,一直除到除数比商大为止。
18/1=18(1和18都是18的约数)
18/2=9(2和9都是18的约数)
18/3=6(3和6都是18的约数)
18/4不能整除
18/6=3除数已比商大。
18的约数按顺序排列是:1、2、3、6、9、18。
3、用同样的方法找24的约数。
24/1=24(1和24都是24的约数)
24/2=12(1和24都是24的约数)
24/3=8(1和24都是24的约数)
24/4=6(1和24都是24的约数)
24/5不能整除
24/6=4除数已比商大。
4、观察约数的特征:
18、24的约数也可以分别用图表示
思考:根据上面的图回答
教学目标
(一)理解并掌握求一个数的约数和倍数的方法。
(二)渗透集合思想,使学生会用集合图表示一个数的约数和倍数。
教学重点和难点
(一)求一个数的约数和倍数的方法。
(二)一个数的约数的个数是有限的,一个数的倍数的个数是无限的。教学用具
投影片。
教学过程设计
(一)复习准备
口答下面各题。(投影片)
1.填空。
如果整数a能被整数b整除(b≠0),整数a就是整数b的________,整数b就是整数a的________。
2.说出下面各组数中谁是谁的约数,谁是谁的倍数:
125和 25 72和9 57和 19
3.判断下面的说法对不对,并说明理由。
(1)15是倍数,5是约数; ( )
(2)6是3的倍数,是24的约数; ( )
(3)4是12的约数,也是3.6的约数; ( )
(4) 48是12和 6的倍数。 ( )
教师:我们已经学习了约数和倍数,了解了它们相互依存的关系,今天来继续学习如何求一个数的约数和倍数。(板书课题:求一个数的约数和倍数。)
(二)学习新课
1.求一个数的约数的方法。
(1)(板书)例2 12的约数有哪几个?
教师:想一想,符合什么条件的数一定是 12的约数?(能整除 12的数。)学生口答老师板书:
12÷1=1212÷12=1
12÷2=6 12÷6=2
12÷3=4 12÷4=3
12的约数有:1,2,3,4,6,12。教师:如果用集合图表示:
教师:观察板书列式,看一看12的这些约数有什么特点?
学生口答后教师概括:从整除算式中可以看出,一个数的约数是成对的。(整除算式中的除数与商就是一对。)
(2)练习。找出下面各数的约数。学生在本上写,老师巡视,请四位同学板书。
集体订正后,请学生说一说是怎样找出这些约数的?(从较小的自然数开始,一对一对地找。)
教师:观察上面几个数的约数,讨论下面几个问题:
①一个数的约数的个数有没有限?
②一个数的约数的个数有没有规律?
学生讨论后教师概括:
一个数的约数是有限个。一个数的约数个数,一般为偶数个,如果是平方数,约数的个数为奇数个。一个数的最小约数都是1,最大约数是这个数本身。
(口答)说出下面各数的全部约数:
8,14,25,39,45。
老师:找一个数的约数,可以用能整除这个数的数去除,除数和商就是它的一对约数。
2.找一个数倍数的方法。
(1)(板书)例3 2的倍数有哪些?
学生口答,老师板书:
2×1=2 2×2=4 2×3=6
问:能写出多少个2的倍数?有没有2的最大倍数?
学生回答出能写出无数个2的倍数后,板书在算式后面补出省略号,说明表示无限个。
板书:2的倍数有2,4,6,8,…
用集合图表示:
问:集合圈里为什么要写上省略号?
(2)练习:填空。(请四位同学板书,其余同学填本,集体订正。)
教师:第(2)个集合圈里为什么不能写省略号?
教师:观察集合圈里的倍数有什么特点?发现了什么规律?
学生口答后老师概括:一个数的最小倍数是它本身,而没有最大的倍数;一个数的倍数个数无限。
老师:能说一说找一个数倍数的方法吗?(用自然数,1,2,3,…分别去乘一个数,就可以求出这个数的倍数。)
(三)巩固反馈
1.在下面的整数中圈出3的倍数。(投影)
2.在下面的集合圈里填上适合的数。
3.填空。
13的最小倍数是( ),它的最大约数是( )。( )既是28的倍数,又是28的约数。
4.(口答)下面集合圈中,阴影部分应该填多少?为什么?
(四)课堂总结与课后练习
1.求一个数约数的方法。求一个数倍数的方法。
2.一个数的约数个数有限而倍数无限,它的最大约数和最小倍数是它本身。
3.课后作业:课本P52:4,5,6。
思考课本P52:7。
课堂教学设计说明
本节内容是在学生已掌握了整除、约数、倍数等概念的基础上进行的。因为约数、倍数是建立在整除基础上的,所以利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对地找。在学生会找约数的基础上,通过一组练习和观察,给学生创设一个研讨,发现约数特点的情景。学生掌握了约数的特点,更能提高找约数的能力。找倍数的方法学生很易理解和掌握,在练习中设计了集合圈中加省略号和不加省略是两种题,让学生通过对比讨论,加深一个数的倍数是无限的这个特点的认识。
新课教学分两大部分。
第一部分教学求一个数约数的方法。分两层。找一个数约数的方法,会用集合图表示一个数的约数;在练习基础上让学生学会归纳求约数的方法,并发现一个数的约数的特点。
第二部分教学求一个数的倍数的方法。也分两层。让学生掌握找一个数倍数的方法;归纳找倍数的方法以及倍数的特点。
板书设计
小学五年级数学《整除、约数和倍数》教案设计
教学目标:
使学生在理解自然数,整数意义的基础上理解整除。约数和倍数的意义。能正确的判别整除和除尽,约数和倍数可含义,为学生求最带公约数和最小公倍数大好基础。
教学过程:
一、复习
1、学生回答
(1)什么叫做自然数?
(2)哪些是整数?
(3)整数和自然数有什么关系?
二、引入新课
1、观察除法算式
15÷3=31.5÷3=0.5
24÷4=63.6÷09=4
80÷20=416÷3=5……1
2、找出左边三题和右边三题有什么不同?
3、回答提问
左边:被除数、除数、商都是自然数
右边:被除数、除数、商是小数且有些还有余数
4、揭示整除的意义
5、讲解约数也倍数两个概念。
6、例题讲解
15除以5,商是3,没有余数----15能被5整除
如果数a能被数b整除,a就叫b的倍数,b就叫做a的`约数。
7、整除与除尽的概念区别
除尽包括整除,能除尽的不一定能整除,能整除的一定能除尽。
三、巩固练习
四、总结布置作业
反思:数的整除应强调以下几点:
1、数的整除里的数指自然数。
2、只有当被除数和除数、商都是自然数的时候,且没有余数才能说整除,
3、应让学生通过多种渠道知道倍数和约数的概念。因为这在以后的教学中是非常重要的。
4、区别整除与除尽的关系。应通过多种例子让学生真正的了解。
教学要求
①通过直观教学,使学生进一步认识约数和倍数的意义。
②使学生学会求一个数的约数和倍数的方法,知道一个数的约数的个数是有限的,一个数的倍数是无限的。
③培养学生观察、探索、抽象、概括的能力。
教学重点
教学目标
(一)理解并掌握求一个数的约数和倍数的方法。
(二)渗透集合思想,使学生会用集合图表示一个数的约数和倍数。
教学重点和难点
(一)求一个数的约数和倍数的方法。
(二)一个数的约数的个数是有限的,一个数的倍数的个数是无限的。
教学用具
投影片。
教学过程设计
(一)复习准备
口答下面各题。(投影片)
1.填空。
如果整数a能被整数b整除(b≠0),整数a就是整数b的________,整数b就是整数a的________。
2.说出下面各组数中谁是谁的约数,谁是谁的倍数:
125和 25 72和9 57和 19
3.判断下面的说法对不对,并说明理由。
(1)15是倍数,5是约数; ( )
(2)6是3的倍数,是24的约数; ( )
(3)4是12的约数,也是3。6的约数; ( )
(4) 48是12和 6的倍数。 ( )
教师:我们已经学习了约数和倍数,了解了它们相互依存的关系,今天来继续学习如何求一个数的约数和倍数。(板书课题:求一个数的约数和倍数。)
(二)学习新课
教学难点
弄清为什么一个数的约数的个数是有限的,一个数的倍数的个数是无限的。
教学用具
教师和学生都准备一套教学用的奎逊耐彩条。
教学过程
一、创设情境
1.说出约数和倍数的意义。
2.下面的数中,哪些是12的约数,哪些是2的倍数?1、2、3、4、5、6、7、8、9、10、11、12、13、......
12的约数有:。
2的倍数有:。
师:上面我们找出了12的约数和2的倍数,如果不给你这些数你能求出12的约数和2的倍数吗?下面我们来学习一个数的约数和倍数的求法。(板书课题)
二、探索研究
1.小组合作,研究例2。
(1)思考并回答:求“12的约数有哪几个”就是求什么。
(2)从摆彩条的规律中找方法。
①从小往大找,看哪些相同的彩条正好摆出12。
②一对一对找,看这些相同的彩条是否正好摆出12。
③得出12的约数有:1、2、3、4、6、12。
并用图表示:12的约数
1、2、3、4、6、
12
④比较:哪几种方法好?
(3)尝试练习。
做教材51页下面的“做一做”。
让学生独立做,教师巡视,个别辅导,做完后点几名学生说一说是怎样做的。
(4)观察并回答:(观察例子和练习)
一个数的约数中最小的是几?最大的是几?一个数的约数的个数是多少?
2.小组合作,学习例3。
(1)思考:求2的倍数有哪些,该怎样想?
(2)从摆彩条的规律中找方法。
①从最小的倍数摆起,边摆边列算式。
②你发现规律了吗?
③2的.倍数有多少个?为什么?
④得出2的倍数有:2、4、6、8、10......
用图表示为:
2的倍数
2、4、6、
8、10......
(3)尝试练习。
做教材第52页的“做一做”,学生独立圈、写,集体订正。
(4)观察并回答:怎样求一个数的倍数?一个数的倍数有多少个?最小的是多少?
三、课堂实践
1、做练习十一的第5题,让学生独立写,教师辅导有困难的学生。
2、做练习十一的第6题。要使学生明确:40以内7的倍数为什么不打省略号。
四、课堂小结
学生小结今天的学习内容。
求一个数的约数=求能整除这个数的所有整数(或者说是求这个数能被哪些数整除)
求一个数的倍数=求能被这个数整除的所有整数(或者说是求哪些数能被这个数整除)
一个数的约数是有限的,最大的约数是它本身,最小的约数是1。
一个数的倍数是无限的,最小的倍数是它本身,没有最大的。
(1)(板书)例2 12的约数有哪几个?
教师:想一想,符合什么条件的数一定是 12的约数?(能整除 12的数。)学生口答老师板书:
12÷1=12 12÷12=1
12÷2=6 12÷6=2
12÷3=4 12÷4=3
12的约数有:1,2,3,4,6,12。教师:如果用集合图表示:
教师:观察板书列式,看一看12的这些约数有什么特点?
学生口答后教师概括:从整除算式中可以看出,一个数的约数是成对的'。(整除算式中的除数与商就是一对。)
(2)练习。找出下面各数的约数。学生在本上写,老师巡视,请四位同学板书。
集体订正后,请学生说一说是怎样找出这些约数的?(从较小的自然数开始,一对一对地找。)
教师:观察上面几个数的约数,讨论下面几个问题:
①一个数的约数的个数有没有限?
②一个数的约数的个数有没有规律?
学生讨论后教师概括:
一个数的约数是有限个。一个数的约数个数,一般为偶数个,如果是平方数,约数的个数为奇数个。一个数的最小约数都是1,最大约数是这个数本身。
(口答)说出下面各数的全部约数:
8,14,25,39,45。
老师:找一个数的约数,可以用能整除这个数的数去除,除数和商就是它的一对约数。
2.找一个数倍数的方法。
(1)(板书)例3 2的倍数有哪些?
学生口答,老师板书:
2×1=2 2×2=4 2×3=6
问:能写出多少个2的倍数?有没有2的最大倍数?
学生回答出能写出无数个2的倍数后,板书在算式后面补出省略号,说明表示无限个。
板书:2的倍数有2,4,6,8,…
用集合图表示:
问:集合圈里为什么要写上省略号?
(2)练习:填空。(请四位同学板书,其余同学填本,集体订正。)
教师:第(2)个集合圈里为什么不能写省略号?
教师:观察集合圈里的倍数有什么特点?发现了什么规律?
学生口答后老师概括:一个数的最小倍数是它本身,而没有最大的倍数;一个数的倍数个数无限。
老师:能说一说找一个数倍数的方法吗?(用自然数,1,2,3,…分别去乘一个数,就可以求出这个数的倍数。)
(三)巩固反馈
1.在下面的整数中圈出3的倍数。(投影)
2.在下面的集合圈里填上适合的数。
3.填空。
13的最小倍数是( ),它的最大约数是( )。( )既是28的倍数,又是28的约数。
4.(口答)下面集合圈中,阴影部分应该填多少?为什么?
(四)课堂总结与课后练习
1.求一个数约数的方法。求一个数倍数的方法。
2.一个数的约数个数有限而倍数无限,它的最大约数和最小倍数是它本身。
3.课后作业:课本P52:4,5,6。
思考课本P52:7。
课堂教学设计说明
本节内容是在学生已掌握了整除、约数、倍数等概念的基础上进行的。因为约数、倍数是建立在整除基础上的,所以利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对地找。在学生会找约数的基础上,通过一组练习和观察,给学生创设一个研讨,发现约数特点的情景。学生掌握了约数的特点,更能提高找约数的能力。找倍数的方法学生很易理解和掌握,在练习中设计了集合圈中加省略号和不加省略是两种题,让学生通过对比讨论,加深一个数的倍数是无限的这个特点的认识。
新课教学分两大部分。
第一部分教学求一个数约数的方法。分两层。找一个数约数的方法,会用集合图表示一个数的约数;在练习基础上让学生学会归纳求约数的方法,并发现一个数的约数的特点。
第二部分教学求一个数的倍数的方法。也分两层。让学生掌握找一个数倍数的方法;归纳找倍数的方法以及倍数的特点。
板书设计
教学目的:
1、知识与能力:使学生掌握数的约数和倍数的求法。使学生知道一个数的约数是有限个,一个数的倍数是无限个。
2、过程与方法:借助直观,使学生进一步认识约数和倍数的意义。
3、情感与态度:培养学生的的序思维能力
教学重点:掌握找一个数的约数和倍数的方法。
教学过程:
一、复习
1、说出倍数和约数的意义。
2、下面每组数中,哪个数是哪个数的倍数,哪个数是哪个数的约数?
12和415和51.2和4
3、下面的`数,哪些是12的约数,哪些是2的倍数?
123456812
二、新课
1、求一个数的约数
①教学例二,出示例2:12的约数有哪几个?
教师:要求12的约数有哪几个也就是求什么?(哪些数能整除12)
a、12里面有几个12?12÷12=1
b、这个算式说明什么?(12能整除12)
所以12是12的约数。
c、根据这个算式你还能想到什么?(12里有12个1)
12÷1=12,说明1能整除12,所以1是12的约数,用同样的方法找12的约数。
②12有没有比12小的约数?有没有比12大的约数?
12的约数一共有多少个?
12的约数
③做一做
④:一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
2、一个数的倍数
①教学例3:2的倍数有哪些?
师:要求2的倍数有哪些就是求什么?
1个2算式2×1=2
2个2算式2×2=4
2的倍数有多少个?(无限个)
最小的倍数是多少?最大的倍数是多少?
2的倍数
省略号表示什么?
②做一做
③:怎样求一个数的倍数?(用这个数乘以自然数)
一个数的倍数有多少个?(无限个)
最小的倍数是多少?(本身)
三、巩固练习做练习十一5、6题
注意:40以内7的倍数是有限的,所以不必用省略号,12的倍数是无限的,所以要用身略号。
四:
课后小记:
数学教学要从学生已有的知识以及学生熟悉的生活情境和感兴趣的具体事物出发,引导学生在理解的基础上掌握知识,给学生充分探究合作的机会,让他们体会数学来源于生活实际,增强学习兴趣,这是新的课程标准的要求。我在教学中就遵循了新课标的理念,从学生生活实际引入,为学生创设了探索新知识的条件,让全体学生都参与到了获取新知识的过程中去。并放手让学生自主去探究、发现、总结求一个数的约数和倍数的`方法,不仅让学生们很好的掌握了方法,而且很好的培养了他们的多种能力和意识。
在以后的教学中,有两点还需注意:一是数学符号的最简化。如本节课中使用的省略号,在语文中省略号是六个点,而数学中的省略号是三个点。二是注意训练教师在教学中的教育机智。本节课中有几个地方,如教师注意教育机智,抓住学生问题深入下去,可能会让学生对知识理解更加深刻,思维得到更好的训练,从而给整堂课增光添彩。
3月10日,我上了“约数和倍数”一课,又经过丁主任的指导,感触颇深。
一、关于目标定位
在设计这节课时,首先确定了以理解“整除”、“约数”和“倍数”的意义及相互间的关系、整除中“1”和“0”两个特殊的数的情况作为知识目标;判断是否是整除、正确叙述整除、约数和倍数关系及在概括整除的意义环节中培养观察、类推等能力作为技能目标。这仅仅是在设计教案之初设定的目标,是完整教案中的一部分,它的定位准确仅是上好这节课的前提,而非保证。而更重要的是在具体教学过程设计中体现出的目标定位,这是备好一节课的基本条件。最重要的,则是教学实施过程中体现的目标定位,这才真正是评定一节课的目标定位的依据。我在这一节课的设计中,即上述前两个方面,目标定位是比较明确的,但最关键的第三个方面即实施过程中所体现出的目标定位相对来说就没有足够的.重视,因此也就使得原先设定的目标没有得到最好的落实。这使我感觉到,目标的定位并非在教学设计时设定好了就可以“一劳永逸”,而是一定要贯穿到整个教学流程的始终。
二、关于教学设计
我在设计这节课时,在设定目标之后就在目标的指引下按“一般流程”来设计教学过程,并参照了一些好的课例,课的知识点、环节、问题情境的设计是很完整的。但现在想来,如果在设计教案时首先确定一个大的框架,然后再进行填补,肯定能使教学思路更为清晰,重点更为突出。就像搭一个建筑物,先搭一个大框架,再逐步填充,比脑子里想着结构一块砖一块砖垒上去更加容易把握住。我在这节课的设计之初,有一个比较明确的大体框架,但在具体设计时,则一个一个环节细细推敲,甚至于一句话都要推敲得令自己满意为止。但这样随着“推敲”的逐步深入与细化,课的大框架即整体思路反而淡化了,甚至有一些模糊,这显然是得不偿失的。这使我感觉到,要备好一节课,必须始终把握住一个整体的框架,而不能过于重视一些细枝末节的东西,这样才能把握住课的重点,形成一个清晰的教学思路。
三、关于教学实施
为了上好这节课,我首先想到了摆正教师与学生的主导与主体地位,于是精心设计了每一个环节,能让学生自主探究的决不包办替代,这在如今形势下应该算是“应时之举”。课的第一部分是理解“整除”的意义,我也组织了学生探究,即算、分类、找特征、概括意义;最后关于两个特殊的数“0”与“1”,也安排了一组填充来让学生找规律。但在具体实施中,由于怕“讲过头”有越位之嫌,关键处学生即使探究不出什么来也不敢讲,却不想导致了“导”得太多,完全违背了初衷,甚至像兜圈子,也因而坐失良机,降低了效率。该出手时还是得出手,而不是从一个极端走向另一个极端,学生无法探究出的或者是根本不需要由学生探究的,该讲授还是要讲授,该自学的还是自学,我想这样才是对新课改的正确把握。
要提高数学教学的质量,精讲多练无疑是最有效的策略。要做到这一点,我们要做的还有很多,很多。
教学建议
教材分析
约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.
教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.
学生学过约数和倍数的意义后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.
教法建议
约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.
复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.
约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.
教学设计示例
约数和倍数的意义
教学目标
1、掌握整除、约数、倍数的概念.
2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.
教学重点
1、建立整除、约数、倍数的概念.
2、理解约数、倍数相互依存的关系.
3、应用概念正确作出判断.
教学难点
理解约数、倍数相互依存的关系.
教学步骤
一、铺垫孕伏(课件演示:数的整除 下载)
1、口算
6÷5 15÷3 23÷7
1.2÷0.3 24÷2 31÷3
2、观察算式和结果并将算式分类.
除 尽 除 不 尽
6÷5=1.2 15÷3=15
1.2÷0.3=4 24÷2=12 23÷7=3……2
31÷3=10……1
3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.
4、寻找具有整除关系的算式.
板书: 15÷3=5 15能被3整除
5、分类
除 尽 除 不 尽
不能整除 整 除
6÷5=1.2
1.2÷0.3=4 15÷3=15
24÷2=12 23÷7=3……2
31÷3=10……1
二、探究新知
(一)进一步理解“整除”的意义.
1、整除所需的条件.
(1)分析: 24能被2整除,15能被3整除;
23不能被7整除,31不能被3整除;(商有余数)