相似三角形人教版的教学设计(相似三角形人教版几年级学的第几章)

篇1:相似三角形的判定定理教学设计

一、教学目标

【知识与技能】

能运用相似三角形边角边的判定定理解决问题。

【过程与方法】

通过借助三角形全等,特殊三角形,比例的应用探究三角形相似,培养学生的对于前后知识的运用能力和知识迁移能力。

【情感态度与价值观】

体会数学的特点,了解数学的价值。

二、教学重难点

【重点】

能运用相似三角形边角边的判定定理解决问题。

【难点】

知道边角边和边边角在判断上的不同。

三、教学过程

(一)复习旧知,导入新课

PPT呈现若干三角形并标注一些边和角(可以出现全等和相似结合一共三个三角形的情形)

问题1:你能找出其中的全等三角形或者相似三角形吗?能告诉老师你判断的理由?

师生总结:回顾了全等三角形的判断方法,其次就是对于相似三角形有了直观的感知。

问题2:你能记得的全等三角形判断方法有多少?

师生总结:SSS,SAS,ASA,AAS

问题3:你觉得如果要判断两个三角形相似,能用上述的方法吗?引入课题。

(二)结合知识,生成原理

问题1:结合相似三角形的特征,全等三角形的判定方法,提出你们认为能够证明三角形相似的方法吗?说明理由。

师生活动:SSS,SAS……从相似三角形的特点,直观上来说都是边的特点。

问题2:SSS能够证明吗?你们试着在练习本上画画看。

师生活动:三边成比例能够实现。

(三)动手尝试,深化原理

问题1:大家能不能结合我们在课堂开始之前从一个三角形出发,在练习本上画一个全等三角形和一个相似三角形,并以前后四人为一小组,相互讨论一下各自的尝试过程,尝试着说明“两边成比例且夹角相等的两个三角形相似”能够证明相似三角形。

师生总结:两边成比例且夹角相等的两个三角形相似。

师生活动:让学生以小组为单位,比拼谁更快更准

(五)小结作业

小结:今天你有什么收获?

作业:试一试还有没有其他可能判定三角形相似方法呢?

篇2:相似三角形的判定定理教学设计

相似三角形的判定定理教学设计

一、教学目标

1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.

2.掌握“两角对应相等,两个三角形相似”的判定方法.

.能够运用三角形相似的条件解决简单的问题.

二、重点、难点

1.重点:三角形相似的判定方法1

2.难点:三角形相似的判定方法1的运用.

三、课堂引入

1.复习提问:

(1)我们已学习过哪些判定三角形相似的方法?

(2)△ABC中,点D在AB上,如果AC2=ADAB,那么△ACD与△ABC相似吗?说说你的理由.

(3)△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?——引出课题.

(4)教材P48的探究3.

四、例题讲解

例1(教材P48例2).

分析:要证PA*PB=PC*PD,需要证PA/PD=PC/PB,则需要证明这四条线段所在的两个三角形相似.由于所给的条件是圆中的两条相交弦,故需要先作辅助线构造三角形,然后利用圆的性质“同弧上的圆周角相等”得到两组角对应相等,再由三角形相似的判定方法3,可得两三角形相似.

证明:略(见教材).

例2(补充)

已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.

分析:要求的是线段

DF的长,观察图形,我们发现AB、AD、AE和DF这四条线段分别在△ABE和△AFD中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的'判定方法来证明这两个三角形相似.

五、课堂练习

下列说法是否正确,并说明理由.

(1)有一个锐角相等的两直角三角形是相似三角形;

(2)有一个角相等的两等腰三角形是相似三角形.

六、作业

1.已知:如图,△ABC的高AD、BE交于点F.

求证:AF/BF=EF/FD.

2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.

(1)求证:

ACBC=BECD;

(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.

篇3:相似三角形的性质八年级数学教学设计

相似三角形的性质八年级数学教学设计

一、教学目标

1。掌握相似三角形的性质定理2、3。

2。学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题。

3。进一步培养学生类比的教学思想。

4。通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1。教学重点:是性质定理的应用。

2。教学难点:是相似三角形的判定与性质等有关知识的综合运用。

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具。

六、教学步骤

[复习提问]

叙述相似三角形的性质定理1。

[讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2。

性质定理2:相似三角形周长的比等于相似比

同样,让学生类比“全等三角形的面积相等”,得出命题。

“相似三角形面积的.比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象。

性质定理3:相似三角形面积的比,等于相似比的平方。

注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习。

(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题。

例1 已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、、。

此题学生一般不会感到有困难。

例2 有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的相似比和面积比。

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法。

解:设原地块为 ,地块在甲图上为 ,在乙图上为 。

学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而

[小结]

1。本节学习了相似三角形的性质定理2和定理3。

2。重点学习了两个性质定理的应用及注意的问题。

七、布置作业

教材P247中A组4、5、7。

八、板书设计

篇4:相似三角形的判定定理教学设计[1]

班级:数学102班 姓名:张华丽 学号:101242

一、教材分析

1.《相似三角形的判定》是人教课标版九年级数学第二十七章第二节第二课时。

2.本节课所需课时为一课时,45分。

3.相似三角形的判定是在学习了全等三角形、相似图形及相似三角形的定义的基础上,进一步的学习;它是两个三角形比较简单,比较常见的关系.它不仅是学习后面知识的基础,并且是证明线段相等、角相等以及两线段相互垂直、平行的重要依据。

二、学习者特征分析

1.九年级学生已经具备了一定的图形之间的关系的认识。

2.学生的思维在合理推理向演绎推理的过渡阶段。

3.经历过探索全等三角形判定,通过类比不难得到相似三角形的`判定。

三、教学目标

1.知识与技能

(1)掌握相似三角形的判定定理,并能与性质定理、定义综合应用;

(2)理解并掌握判定定理与性质定理的区别与联系。

2.过程与方法

(1)在探究式学习中开扩思路,提高思维能力;

(2)学会从题设或结论出发寻求论证思路的分析方法,提高分析问题,解决问题的能力。

3.情感、态度与价值观

(1)在合作、交流、探讨的学习氛围中,体验学习的快乐,树立学习的信心;

(2)通过学习,体会几何证明的方法美。

教学难点、重点

1.重点:掌握判定定理,会运用判定定理判定两个三角形相似。

2.难点:

(1)找相似三角形的对应边。

(2)会准确的运用两个三角形相似的条件来判定两个三角形是否相似。

四、教学策略

教法:(1)主要运用问题引入和与学生共同探究讨论的教学方法;

(2)教师通过问题引导学生从已有知识入手,充分利用多媒体教学,增强知识的直 观性和趣味性,激发学生的学习兴趣。

学法:(1)学生自主,合作交流与探讨的学习方法;让学生通过操作探究、归纳论证,得 出判定三角形相似的方法。

(2)让学生充分经历自主探究,动手实践,推理论证,培养其自主、合作、交流的 学习意识和探索精神。

五、教学媒体

1、教具:电脑,ppt课件(或相应图片),投影仪。

2、学具:直尺,三角尺(等腰直角或直角)。

3、教学环境:多媒体教室。

六、教学过程

(一)复习提问

问题:(1)相似三角形的定义是什么?

学生回答 对应边成比例,对应角相等的两个三角形相似。

(2) 判断两个三角形相似,你有哪些方法?

学生1回答 方法1:通过定义 (不常用);

学生2回答 方法2:通过平行线(条件特殊,使用起来有局限性);

学生3回答 方法3:判定定理1 即如果两个三角形的三组对应边的比相等, 那么这两个三角形相似。

设计意图:

引导学生复习学过的知识,承前启后,激发学生学习新知的欲望。

(二)引入新课

思考1:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条

直角边对应成比例,那么这两个直角三角形是否相似呢?(学生分组讨论) ABAC已知:如图,在Rt?ABC和Rt?A?B?C?中,?C??C??90??. A?B?A?C?

B'

请说明:Rt△ABC∽Rt△B

C'

(老师引导学生分析、讨论得出结果,学生口述证明过程,老师板书)

分析:在Rt△ABC和△A'B'C'中,因∠C=∠C'=90°.欲说明△ABC∽Rt△A'B'C' BCAC?(由学生分组讨论,老师提问得出)B?C?A?C? ABACABACBCAC但已知?,怎么由???呢?A?B?A?C?A?B?A?C?B?C?A?C?

ABAC已知:如图,在Rt?ABC和Rt?A?B?C?中,?C??C??90??.A?B?A?C?

222在直角三角形ABC中、∠C是直角,根据勾股定理有AC?BC?AB.

解: ABACABA?B??,??,A?B?A?C?ACA?C? AB2A?B?2AB2?AC2A?B?2?A?C?2

??,?,AC2A?C?2AC2A?C?2 22BCB?C?由勾股定理,得?AC2A?C?2 BCB?C?,都是正数。??ACAC ??BCBCBCAC?=,即=ACA?C?B?C?A?C?

∴ΔABC~ΔA'B'C'

思考题1 可以得出:

定理2 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.

设计意图:

用已学过的知识解题,并通过解题结论猜想定理。

(三)证明定理 ABBC??K,????ABBC

?B??B?.求证:?ABC?A?B?C?. B' B B'

B

A C

A C A' C' A' C' 证明:过点B'在B'A'上取线段AB的长,同理过点B'在B'C'上取线段BC的长,连接AC。

ABBC??K????得到如图3所示,∵ABBC则AC//A'C' AC?K

∴?BAC??B?A?C?,

?BCA??B?C?A?,A?C?,

∴ΔABCΔA'B'C'。

设计意图:

应用已学的知识证明定理。

(四)定理应用

例1 在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90?,AC=4,BC=5,A'C'=8,B'C'=10。 (学生分组讨论,每组找一个代表讲述证明过程,老师总结板书)

AC41BC51解:?????A?C?82B?C?102 ACBC?,又?C??C??90?A?C?B?C?

故△ABC∽△A'B'C'.

例2已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=7,求AD的长.

分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出

ABCD,结合∠B=∠ACD,证明△ABC∽△DCA,再利?CDAC

CDAC用相似三角形的定义得出关于AD的比例式,从而求出AD的长. ?ACAD12

解:

ABBC?,CDAC

又?B=?ACD,根据判定定理2可得出:

ACBC?ABC?DCA,??ADAC

又AC=5,BC=4

AC25225?AD=??.BC44

设计意图:

(1)能够运用所学的判定方法解决简单问题;

(2)通过数、形两个例题的设置,让学生体会判定定理。

七、布置作业

1.判断正误:对的画“√”,错的画“×”.

(1)两个全等三角形一定相似; ( )

(2)两个相似三角形一定全等; ( )

(3)两个等腰三角形一定相似; ( )

(4)顶角相等的两个等腰三角形一定相似; ( )

(5)两个直角三角形一定相似; ( )

(6)有一个锐角对应相等的两个直角三角形一定相似;

( )

(7)两个等腰直角三角形一定相似; ( )

(8)两个等边三角形一定相似. ( )

2.填空:

(1)如图1,BE∥CD,则△ ∽△ , ABAEBE ; ==()()

(2)如图2,AB∥DE,则△ ∽△ , ABBCCA ; ==()()()

(3)如图3,∠B=∠ADE,则△ ∽△ , ABBCCA . ==()()()

图1 图2 图3 A DDE

AB

C B

作业: 课后练习1 练习2 练习3

设计意图:

了解学生对本节课内容的掌握情况,及强化基本技能的训练。 AEDC

篇5:人教版三角形教案_小学数学教学设计

第三单元:三角形

第一课时:(认识三角形)

上课时间:3/10 累计课时:12

教学内容:苏教版《义务教育课程标准实验教科书数学》四年级(下册)第22~23页。

教学目标:

1、知识目标:通过观察、操作、交流等活动,进一步认识三角形;让学生经历合作探究的过程,自主发现三角形的三边关系,并能利用关系解决简单实际问题。

2、能力目标:引导学生经历探索、发现、创造、交流等有趣的数学活动过程,培养学生的观察理解能力、动手操作能力、合作交流能力、分析概括能力,进一步发展空间观念,提高学生运用知识解决问题的能力,增强学生的创新意识。

3、情感目标:激发学生对数学的好奇心,增强学生学习数学的兴趣,培养学生用数学的眼光去判断、解决生活中的问题,使其产生对生活的理性思维的数学习惯。

教学重点:认识三角形的特征。

教学难点:探究三角形三条边之间的关系。

教学过程:

一、认识三角形的特征

1、(由课前“考眼力”游戏中,不见了三角形导入)三角形躲到哪儿去了?哦!它到我们的生活中来了,你找到了吗? (斜拉索和桥面形成三角形,桥柱和桥面形成三角形。)

2、你还在什么地方看到过三角形?(举例)

3、请同学们自己想办法利用老师准备的材料做一个三角形。

4、展示作品,说说你是怎样做的。

在汇报摆三角形时,说明每条线段都必须首尾相接,才能围成三角形。

5、老师把它画到黑板上来,教学三角形的边、角、顶点,请一位同学上来指一指三角形的边、角、顶点,下面的同学数一数三角形有几条边、几个角、几个顶点呢?请你们结合刚才做的三角形,同桌相互指一指、说一说。

6、我们知道了这些三角形的特征,那么我们就用这些特征来判断下面哪个图形是三角形?

二、认识三角形三边的关系

1、用三根小棒围三角形。

2、汇报。

3、实践操作,探索发现。

(1)(出示4种小棒)老师准备了这样4根小棒,请你任选3根小棒,看能否围成三角形;

(2)边操作边由小组长负责将实验结果记录在实验表中。

(3)小组讨论,能围成三角形的三条线段成怎样的关系?

第1根长度

(厘米) 第2根长度

(厘米) 第3根长度(最长)

(厘米) 能否围成

三角形

先由小组讨论汇报后得出结论。(出示结论)

4、验证结论。

三、实践应用

1、完成教材P24第2题。

2、判断如果有两根长度分别为2cm和5cm的木棒,

①用长度为3cm的木棒与它们能摆成三角形吗?为什么?

②用长度为4cm的木棒与它们能摆成三角形吗?为什么?

③要摆成三角形,第三边还可以是几厘米?(讨论后回答)

7厘米行吗?7厘米以上呢?

3、把一根14厘米长的吸管剪成三段,用线串成一个三角形可以有几种方法?为什么?

强调三角形两边之和大于第三边。

四、总结延升:

1、今天我们一起进一步认识了三角形,从中你又了解了三角形的哪些知识?

2、展示各种运用三角形图片。生活中有如此多的三角形仅仅是因为它的美吗?它对我们的生活有着怎样的影响呢?只要我们善于观察、善于思考、善于探索,就能发现三角形中更多的奥秘!

板书设计:

认识三角形

三角形两条边长度的和大于第三边

篇6:人教版三角形教案_小学数学教学设计

第二课时:(认识三角形的高)

上课时间:3/11 累计课时:13

教学内容:教科书第24―25页

教学目标:

1、让学生知道三角形的高和底的意义,了解底和高的对应关系,会用三角尺画三角形的高。

2、让学生通过阅读资料,了解三角形的稳定性及其在生活中的应用,进一步体会数学与现实生活的联系。

3、让学生在学习活动中进一步发展空间观念和自主探索、合作交流的意识。

教学重点:认识三角形的高,并正确地画高。

教学准备:三角尺、学具盒等

教学过程:

一、复习引入

1、上一节课,我们学习了一些有关三角形的知识,你对三角形有了哪些了解。?

2、画一个类似于人字梁的三角形(只要外面的三条边)

说说三角形的组成:三条边、三个角、三个顶点。

二、教学新课

(一)认识三角形的底和高

1、我们刚才说到三角形有三条边,这节课我们将要来认识关于这个三角形神秘的第四条线段。

2、同学们,看看这个图形知道它像什么吗?(介绍人字梁)

3、我们要最出这幅人字梁的高,应该从哪儿量到哪儿呢?

学生讨论。

指明:人字梁的高度就是从这个三角形的顶点到它对边的垂直线段。

4、画一个锐角三角形后,提问:数学中三角形的高是什么意思呢?

从三角形的一点到对边的垂直线段。

5、示范画高。

边画边讲:现在要找它的高,就是从顶点画出这条边底边垂直线段。从顶点画下来的这条垂线用虚线画一画。 指出:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底;画的这条线段用虚线表示,既然是垂直线段,画完后还要要注意标上直角标志。

学生在作业本上,模仿板书也画一画。

6、同学们想一想,一个三角形可以几条这样的高呢?

让学生自己试一试。

指出:三角形有三个顶点,可以向对边画三条垂直线段。也就是可以作三条高。

分别请学生来用三角板摆一摆另两条高的位置。学生在作业本上完成三条高。

引导观察该图:一个三角形可以画出它的3条高;这3条高应相交于同一个点。如果你画的三条高没有相交于同一个点,那么你的高肯定是画得不够准确。

(二)巩固新知

出示三角板,问:我手里的这个三角板和刚才画的三角形,有什么不用?(有一个直角)

描画出三角板中的三角形,并标出其中的一个直角。

提问:这个三角形,你也能像刚才那样找到3条高吗?怎么找?

结合学生的回答,使大家明白:三角形中有一个角是直角,那么这两条直角边可以互相看作是一底一高,不用另外画;只有当把斜边当作底的时候,它的高要另外画;3条高相交于原来的直角处。

三、完成书上的练习

1、试一试,分别量出下面每个三角形的底和高各是多少厘米。

2、想想做做第1题:画出每个三角形底边上的高。

注意:图上以规定了底,只要画出指定的一条高就可以了。交流的时候,重点说说第三个三角形:它的高是哪一条?为什么?

3、把一根14厘米长的吸管剪成三段,用先串成一个三角形,除了书上举例的5厘米、3厘米和6厘米外,还可以怎样剪?

说说你的方法?有没有有序思考的方法?

4、想想做做第3题,请你说说为什么这个三角形的高的长度一定比小棒短? (可引导学生回忆:从直线外一点到这条直线的所有线段中,垂线最短。所以这条高要比小棒短。)

四、介绍“你知道吗?”

学生分别用学具盒里的3根小棒,搭成一个三角形,轻轻捏住其中的一个角,敲其他的边或角,发现:这个三角形的形状、大小不变。

再用4根或5根甚至更多的小棒,围起来,得到一个多边形,也捏住它的一个角,轻轻地敲,发现:它非常容易得变成其他模样。

指出:三角形具有稳定性。

利用三角形的稳定性,生活中有广泛的应用。学生看书,说说这些图中哪些地方有三角形?还有什么地方也有三角形的结构?

篇7:人教版三角形教案_小学数学教学设计

第三课时:(三角形的分类)

上课时间:3/14 累计课时:14

教学内容:教科书第26――27页。

教学目标:

1、让学生在给三角形分类的探索活动中发现和认识锐角三角形、直角三角形、钝角三角形。

2、让学生在实际操作中发展空间观念。

3、激发学生的主动参与意识、自我探索意识和创新精神。

教学重、难点:会按角的大小给三角形分类。

教学准备:课件

教学过程:

一、复习引新

谈话:你学过哪几种角?小于平角的角可以分为哪几类?(锐角、直角和钝角)怎样判断一个角是直角、锐角或钝角?那么三角形可以分为几类呢?又有哪几类呢?今天老师和小朋友就一起来研究一下三角形的分类。(板书课题:三角形的分类)

二、师生互动,引导探索

1. 出示书本上6个三角形

提问:请小朋友仔细观察每个三角形的内角,说说他们各有几个锐角、直角或钝角。

指定几个学生回答。、

出示表格,根据学生的回答填写①号三角形。

① ② ③ ④ ⑤ ⑥

锐角个数

直角个数

钝角个数

提问:你会照样子填一填吗?

学生独立完成表格,并交流.

2.三角形的分类

提问:观察上表,这些三角形可以分为几类?怎样分?在四人小组内讨论。

交流讨论结果。

学生可能出现的分类:三个角都是锐角的三角形,一个钝角两个锐角的三角形,一个直角两个锐角的三角形。

再次组织学生讨论:你们分成的三类三角形有没有相同的地方?(都有两个角时锐角)有什么不同的地方?(另一个角有的是锐角,有的是钝角,有的是直角)我们抓住不同处来分类,你认为可以怎样分?

谈话:三角形按角可以分为锐角三角形、钝角三角形、直角三角形三类。

提问:那么什么样的三角形是锐角三角形?什么样的三角形是直角三角形?什么样的三角形是钝角三角形?

出示各类三角形的定义:

三个角都是锐角的三角形是锐角三角形;

有一个角是直角的三角形是直角三角形;

有一个角是钝角的三角形是钝角三角形。

2. 练习巩固,深化概念

(1) 判断一下说法对吗?

3个角都是钝角的三角形是钝角三角形。

直角三角形中只有一个直角。

有一个角是锐角的三角形是锐角三角形。

谈话:三角形的3个角中只可能有一个钝角或一个直角,至少有两个锐角;3个角一个角大了,另两个角就小了。

(2) 教师出示一次三角形,用纸挡住两个角,让学生根据露在外面的一个角,猜一猜这个三角形属于哪种三角形。

只露出一个直角;只露出一个钝角;只露出一个锐角。

组织学生讨论。

在学生回答的基础上小结:第(1)题是直角三角形,第(2)题是钝角三角形,你们回答的非常准确。第(3)题只露出了一个锐角可能是锐角三角形,可能是直角三角形,也可能是钝角三角形,因此无法判定是什么三角形。

3. 用集合图表示分类结果。

(1) 出示一个椭圆,谈话:如果我们用这个圈表示三角形这个整体,你能把它分成几部分,填写出每部分的名称吗?要求学生尝试着在集合图中表示分类的结果。

(2) 出示学生填写的分类集合图,并说说对图意的解释:把所有的三角形看作一个整体,锐角三角形、直角三角形和钝角三角形都是这个整体的一部分。

三、巩固深化,拓展提高

1. 做想想做做第1题

让学生任意画一个三角形,指导学生用三角尺上的直角去比一比,从而判断画出是什么三角形。

提问:你在用三角尺比三角形的角是,是3个角都比的吗?如果不是,你是怎样比的?

谈话:只要量出三角形中最大的一个角是什么角,就能判断这个三角形是什么三角形。

2. 做想想做做第2题

(1) 独立完成,展示部分学生的答案,共同校对。

(2) 提问:你在判断图中的三角形时使用的什么办法?(有的凭观察,用的用三角尺去比量)

(3) 谈话:判断一个三角形是哪一类三角形时,一般情况下凭观察就可以作出判断,如果三角形中有一个角接近直角时,就要用三角尺的直角去比量一下,再准确地作出判断。

3. 做想想做做第3、4、5题

组织学生动手做一做,再展示部分学生的操作结果,共同评议。

4. 做想想做做第6题

学生各自动手画,展示学生的答案。

提问:你画出的线段是三角形的什么?

5. 做想想做做第7题

先让学生独立作图,再在小组内交流。

师生共同小结:可以分别从3个顶点向对边画线段,把它分成两个三角形。其中从直角顶点向对边画线段,可以分成两个直角三角形,也可以分成一个锐角三角形和一个钝角三角形。从其他两个顶点向对边画线段,只能分成一个钝角三角形和一个直角三角形。

四、总结提高,课后延伸

谈话:通过这节课的学习你知道了什么?还想知道哪些有关三角形的知识?自己可以通过阅读书籍、上网查阅来获得更多的知识。

篇8:《相似三角形》教学反思

一、背景介绍:

只要是在教学一线,就会遇到这样的窘境,当学生的课堂活动呈现一片繁荣,教学活动正在老师的指导下紧锣密鼓,热热闹闹朝着预设的轨道前进时,突然半路杀出个“程咬金”。一个有学生冒出一句与你教学设计可能完全不同,但又带着“金子般闪光”的意外发言―――打断了你,若对这“意外的发言”给予重视,评价肯定,抓住其合理成分施教,势必打乱整个教学设计,若断然否定,置之不理,或搪赛过去,不但会轻易错过一个“千里难觅”的适合学生思维发展与创新的教学契机,而且还会严重挫伤学生的积极性和创造性,真是进退两难!此时此刻,何为“重”,何为“熊掌”?你如何“舍鱼而取熊掌”?现结合自己亲身经历的教学案例,对此进行探讨,希望能引起广大同仁重视与讨论。

二、案例描述:

在教义务教育课程标准实验教科书《华东师大版》八年级数学(下)18。4画相似三角形时,我以画相似三角形为例。即:已知△ABC,画△A@B@C@,使△ABC∽△A@B@C@,且△ABC与△A@B@C@的相似比为1:2(将△ABC放大2倍)。通过我的板演示范引导分析,学生们以小组为单位,围绕位似中心,在三角形内部,外部与三角形上进行探索,讨论,然后小组派代表,板前示画,并介绍画法及推理过程,课堂气氛活跃,对此我感到很满意,因为大部分学生是按照我备课时所想到的情况逐一展示说明。

在集中归纳、点评,突然刘跃站起来,冒出一句:“老师,当位似中心在三角形内部时,连结位似中心与名顶点,我反向延长线段OA、OB、OC得到△ABC放大后的侧立图形,你看行不行?”。因为刘跃平时上课好说一些与课上内容无关的结论,所以,当时,我连看都没看,随口说了一句:“你的高招下课后再说”随即又兴趣盎然地继续展示我早以设计好的内容。而刘跃红着脸,低头坐下,无心听课。时而东张西望。当我讲完之后,我巡视一周,发现有好几名数学学的很好的同学,也用一种茫然的目光注视着我,我走下讲台,随手拿起一本练习本,发现他也是用刚才刘跃同学所说的画法画的,他们也在等待老师的指导与所下的结论……这种方法行不行。

这时,下课铃响了,我拿着练习本走回办公室,仔细一看,此种方法完全可以。虽没按常规方法,连结OA并延长A@使OA:AA=1:2,同理确定B@、C@,但反向延长线段,得到倒立放大2倍的相似图形,足可以看出刘跃思维的敏捷性,创新性,我们新一轮课程改革不就是以发展学生创新意识和能力为主,培养“再创造”能力吗?我为自己的断然否定态度而后悔。

三、案例分析:

课堂教学实践经验告诉我们:在教学中学生往往存在着一些教师在备课中没有想到或者没有准备到的创新思路或方法,这些方法甚至比教师的方法还要高明,而这些思路又常常通过学生的“意外”发言表现出来,因此,在教学中,我们要善待学生的“意外”发言,让他们把话说完,发扬教学民主,给学生提供一个平等交流,表达的机会,认真听取学生发言,放下教师的架子,虚心向学生学习,并及时激励学生的创新行为,认真反思和调整自己的教学设计,因势利导进行教学,以达到教学相长的目的。本案例中,我对刘跃同学的“意外”发言采取断然否定的态度,而导致错过一次激励学生思维发展和创造的良机,令人痛心。

四、案例体会:

教学的本质在于思考的充分自由,最精湛的教学艺术就是使学生自己提出问题和见解,实际上,建构主义学习论认为,学生并不是知识信息被动的吸收者,而是积极主动的构建者,每个学生都是以自己头脑中已有的知识和经验为基础,用个人持有的思维方式建构对事物的理解,检验和批判,不同的人看到是事物的不同方面,因此我们在课堂教学中遇到学生“意外”发言,千万不可断然否定或轻描淡写地一语带过,搪塞过关,一味地依照自己已有的教学设计,按部就班地机械教学,而应发扬教学民主,积极鼓励学生发言,善导学生发言,并根据学生发言,灵活机智地调整自己教学设计,因势利导地开拓教学,因势利导地帮助学生,使学生成为学习和探索的主人。

篇9:《相似三角形》教学反思

这节课是在学习完“相似三角形判定定理一”后的一节习题课,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理一”又是相似三角形这章内容的重点与难点所在,“难”的不是定理的本身,而是要跟以前学过的“角的等量关系”证明联系紧密,综合性比较强,因此对定理的运用也带来的障碍。

我选择的内容是“相似三角形判定定理一”应用的一个方面,这是根据对最近几年中考、各区县模拟考的压轴题的研究,发现全等三角形证明当中,我们可以找到“一条直线上有三个相等的角”这样的条件原型,所以在这节课就是基于这样的原型,选择了相关内容,试图从一个侧面突破这章教学的难点。

通过建立数学模型,引导学生使用化归思想。要让学生善于学习,促进他们通法的掌握是重要途径之一。化归思想与转化思想不同,主要是化归思想必须有一归结的目标,也就是老经验。因此,在教学实践中,我采用了下列两个做法:一是建立“一线三等角”的数学模型,让学生在实验操作中探寻出折纸问题中的数学问题本质特征。并把它上升为一种理论,指导其他问题的解决。二是采用探究条件的转化,使问题表象发生变化,引导学生去伪存真,还原出数学问题的本质。

篇10: 相似三角形性质教学反思

本章学习的重点,是相似三角形的概念、性质与判定定理,还有三角形一边的平行线的性质与判定定理,以及向量的线性运算。

上相似三角形的性质,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。

在具体教学过程中,由于自己没有放得开,搞的学生也被带得紧张兮兮的,课堂气氛有点沉闷,与我的初衷相悖。可能如果在平时,气氛会更加自然轻松点。在今后的教育教学中,要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

篇11: 相似三角形性质教学反思

今天我们开始学习九年级下册的相似三角形的第二课时的相似三角形性质>,本节主要内容是推导出相似三角形的性质定理,并且会利用相似三角形性质>进行初步推理和计算,让学生们通过相似三角形性质探索的过程,认识并且提高数学思考、分析、论证和探究活动能力,体会到相似三角形中角与边之间的关系,从中体验到各类不同的数学思想和教学方法。

本节课本我从复习全等三角形的性质入手,对应角相等,对应边相等来联想相似三角形性质:相似三角形对应的特殊线段的比与相似比有什么关系呢????有的同学可能预习了,回答到“相似三角形对应角相等,对应边成比例”。但是大部分同学一脸茫然,看到同学们带着茫然和疑问,我就让六人小组进行测量探索,交流汇报。并引导同学们发现的结论共同证明:一组相似三角形中对应角平分线的比等于相似比,再类比到对应高,对应中线的比也等于相似比。接着让每组选一名同学说明,对四种“比”间的相互关系。通过同学们的动手练习,和小组合作。不难看出他们已经理解并掌握今天所学的知识。揭示了一组相似三角形中对应边的长度、对应特殊线段的长度都发生变化,但其对应角不变,对应特殊线段的比也不变。使学生把握数学的实质――“一组相似三角形对应高,对应角平分,对应中线的比都等于相似比。

通过本节课的教学,我感到比较顺利完成教学任务。教学设计环环紧扣,提高了学生思维兴趣,达到课前预设的的效果。在操作、猜想、证明、运用各阶段,提高了学生的参与性,师生配合默契。同时也看到自己的不足,本节课在定理的证明阶段,板书不够工整,过程不够严谨,由于时间关系,对学生还是放不开。今后应该更大胆一些,更放开一些,让学生有更多的时间和更大的思维空间。达到“授之以渔”的目的。

篇12:《相似三角形》教学方案反思

《相似三角形》教学方案反思

在《相似三角形》的复习课中,我安排了两节复习课。第一节着重复习比例线段的基本知识及基本技能;第二节则采取“探究式教学”来复习相似三角形的性质与判定,培养学生的实践及探索能力。

比例线段在平面几何计算和证明中,应用十分广泛,相对已学的两条线段相等关系而言,四条线段成比例关系对学生分析问题及综合解题的能力要求更高。第一节课的复习中,着重复习了比例线段的意义及性质,同时通过例题进行巩固,学生掌握的效果不错。

在第二节课中,主要通过以下三个方面展示出学生的探究性学习:

一、尊重学生主体地位。

本节课以学生的自主探索为主线,课前布置学生自己对比例线段的运用进行整理,这样不仅复习了所学知识,而且可以使学生亲身体验“实验操作-探索发现-科学论证”获得知识的过程,体验科学发现的一般规律;解决问题时,让学生自己提出探索方案,使学生的主体地位得到尊重;课后让学有余力的学生继续挖掘题目资源,用发展的眼光看问题,从而提高学习效率,培养学生的思维能力。

二、教师主导地位的.发挥。

在教学中,教师是学生学习的组织者、引导者、合作者及共同研究者,要鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新。在课堂中,我着重引导学生自己小结相似三角形的性质及判定方法,同时给予肯定。在后续的例题分析中,也是通过一步步的引导,让学生自己思考、分析并得出整个解题的过程及步骤。关键时点拔,不足时补充。

三、提升学生课堂的关注点。

学生体验了学习过程后,从单纯的重视知识点的记忆,复习变为有意识关注学习方法的掌握,数学思想的领悟,同时让学生关注课堂小结,进行自我体会,自我反思,在反思中成长、进步。

在《相似三角形》这一复习课中,通过学生自主探索,让学生主动学习,培养了学生积极主动的探索创新精神,学生也能掌握到了相关的知识。但是,仍有不足之处。问题的应用中,即利用相似三角形的性质或判定证明的过程中,思路仍是不够清晰,书写的过程仍是不够完整。也就是说,缺少了教师的引导分析,则学生不知向何处思考。这是大部分学生具有的情况。

篇13:《相似三角形性质》教学反思

我在上《相似三角形的性质》这节课时,先复习全等三角形的性质:全等三角形的对应角相等;对应边相等;对应中线、对应角平分线、对应高线相等;周长相等;面积相等。根据全等三角形是特殊的`相似三角形,诱导学生们在类比中,猜想相似三角形的性质,同学们积极性很高,抢着猜,大多数同学猜对了相似三角形的对应角相等;对应边成比例;对应中线、角平分线、高线的比等于相似比;周长的比等于相似比;

可对面积的比有争议,有的说等于相似比,有的说等于相似比的平方。我又及时诱导:猜想并不能代替证明,它只是一个推理,一个假设,你们应该再进一步深入,把你们的猜想结果去证明,看到底是谁的对,让它更有说服力,同学们为了证明自己的猜想是正确的,马上开始证明,这一节课掌握的很好。而且对相似三角形面积的比等于相似比的平方印象非常深刻。因为那是在有争议的情况下,得到的正确结论。这一节课中,引导学生复习全等三角形的性质是“诱”的过程,让学生利用这个思维惯性去“猜想”相似三角形的性质,就是“思”的过程。

这个“猜想”不是凭空瞎猜,而是在原有知识的基础上的一种思维的延伸、拓展,能够培养学生良好的思维习惯。

篇14:相似三角形复习教学反思

根据本节课的教学目标、教材内容以及学生的认知特点,教学上采用以引导发现法为主,并以讨论法、演示法相结合,以问题导入,循序渐近,由浅入深,从单一到综合,以逐步提高学生应用能力。另外本节课采用了多媒体辅助教学,一方面能够直观、生动地反映图形,增加课堂的容量,同时有利于突出重点、分散难点,增强教学条理性,形象性,更好地提高课堂效率。

教学亮点:教学过程中始终穿插一条主线:“基本图形”的巧妙应用,一条副线:培养学生学会看图。教学中,通过一系列的活动调动起学生的积极性,让学生亲身体验知识形成的过程。另外,图形不同的变化形式也体现了数学的转化思想,习题的设计选用了近几年的中考题,拉近了教学与中考的距离。

在这一堂课中,我觉得有几点做的还是比较好的:

一、以多种形式(组合条件、添加条件、作相似三角形、练习等)强化学生对三角形相似判定的理解,并起到了一定的效果。

二、真正关注到中等偏下的学生,课堂中设计的问题有三分之二是针对这一部分学生,并在课堂中也正是让他们表现的。

三、营造了和谐轻松的课堂氛围,使一些平时从不发言的同学也在课堂中表达了自己的见解。

当然在教学过程中也反映出了一些问题:

一、题量过大,课堂时间安排较紧,有些问题落实的还不够深入。

二、出示了几道中考题,虽然学生做了,教师讲了,但没有从题目本身往深处挖掘,对中考命题方向进行研究和探索,仅是为做题而做题。

在以后的教学中,我会更加深入在研究《考纲》和学生,使复习课的效率更加的理想。

热门教案

学诗词

学名句