初一数学课件(初一数学课件ppt免费下载)(初一数学课件ppt)

下面是小编为大家整理的15篇初一数学课件,仅供大家参考借鉴,希望大家喜欢!

篇1:初一数学课件

初一数学课件

初一数学知识开始变得难了,那么同学们如何才能学好呢?

目标

1.理解并掌握解一元一次方程的方法和一般 步骤 ,并在此基础上解决实际问题.

2.能准确分析实际问 题中的数量关系和等量 关系 ,列方程解应用题.

3.培养自己独立分析问题、解决问题的能力,并从中感受学习的快乐.

4.理解并掌握工程问题的求解方法.

重点

难点 重点: 分析问题中的数量关系,找出能够表示问题全部含义的相等关系,列出一元一次方程,并会解方程.

难点: 找出能够表示问题全部含义的相等关系,列出方程.

关键:找出能够表示 问题全部含义的相等关系.

教学流程

一、复习引入:

1.解方程:

思考:

1.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量 是 ,此时剩余的工作量是 。

2.一项工作甲独做a天完成,乙独做b天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量是 ,此时剩余的工作量是 。

二、新授:

例5:整理一批图书,由一个 人做要40小时。现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。假设这些人的工作效率下共同,具体应先安排多少人工作?

分析:这里可以把总工作量看做1。

人均效率(一个人 做1小时完成的工作量)为

由 x人先做4小 时,完成的`工作量为 。再增加2人和前一部分人做 8小时,完 成的工作量为 。

这项工作分两段完成,两段完成的工作量之和为

问题中的相等关系是什么?

解:设先安排x人工作4小时。根据两段工作量之和应是总工作量,由此, 列方程:

去分母,得 4x+8(x+2 )=40

去括号,得 4x+8x+16=40

移项及合并,得12x=24

系数化为1,得x=2

答:应先安排2名工人工作4小时.

注意:工作量 =人均效率×人数×时间 .

本题的关键是要人均效率与人数和时间之 间的数量关系.

三、巩固练习

课本第102页第8、9题.

四、课堂达标练习

名校课堂59页4、5

五、课堂小结:

通过以上问题的讨论,我们进一步体 会到列方程解决实际问题的关键是正确地建立方程中的等量关系.另外在求出x值后,一定要检验它是否合理 ,虽然不必写出检验过程 ,但这一 步绝不是可有可无的.

六、作业:

课本第102页习题3.3第8题.

篇2:初一数学课件

北师大版初一数学课件

教学目标

1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处

2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

教学重点:认识一些基本的几何体,并能描述这些几何体的特征

教学难点:描述几何体的特征,对几何体进行分类。

教学过程:

一、设疑自探

1.创设情景,导入新课

在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?

2.学生设疑

让学生自己先思考再提问

3.教师整理并出示自探题目

①生活常见的几何体有那些?

②这些几何体有什么特征

③圆柱体与棱柱体有什么的相同之处和不同之处

④圆柱体与圆锥体有什么的相同之处和不同之处

⑤棱柱的'分类

⑥几何体的分类

4.学生自探(并有简明的自学方法指导)

举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?

说说它们的区别

二.解疑合探

1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探

2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的分类

2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

三.质疑再探:

说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

四.运用拓展:

1.引导学生自编习题。

请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征

2.教师出示运用拓展题。

(要根据教材内容尽可能要试题类型全面且有代表性)

3.课堂小结

4.作业布置

五、教后反思

篇3:数学课件初一

数学课件初一

数学课件初一

学习目标:

1、从实际生活中感受有序数对的意义,并会确定平面内物体的位置。

2、通过有序数对确定位置,让学生感受二维空间观,发展符号感及抽象思维能力,让学生体会“具体-抽象-具体”的数学学习过程。

3、培养学生的合作交流意识和探索精神,创造性思维意识。体验数学来源于生活及应用于生活的意识,更好的激发学习兴趣。

学习重点:理解有序数对的概念,用有序数对来表示位置。

学习难点:理解有序数对是“有序的”并用它解决实际问题,

学习过程:

一、学前准备

预习疑难:

二、探索与思考

1、观察思考:观察下图,什么时候气温最低?什么时候气温最高?你是如何发现的?

2、想一想:你看过电影吗?在电影院内,确定一个座位一般需要几个数据,为什么?

(1)如何找到6排3号这个座位呢?

(2)在电影票上“6排3号”与“3排6号”有什么不同?

(3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示?

(4)(5,6)表示什么含义?(6,5)呢?

3、结论:①可用排数和列数两个不同的数来确定位置;

②排数和列数的先后顺序对位置有影响。

4、概念:

有序数对:用含有 的词表示一个 位置,其中各个数表示不同的含义,我们把这种 两个数a与b组成的数对,叫做有序数对,记作(a,b)。

三、理解与运用

(一)用有序数对来表示位置的情况是很常见的.如人们常用经纬度来表示地球上的.地点.你有没有见过用其他的方式来表示位置的?

(二)应用

例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?

分析:图中确定点用前一个数表示大街,后一个数表示大道。

解:其他的路径可以是:

(3,5)→(4,5)→(4,4)→(5,4)→(5,3);

(3,5)→( ,5)→(4,4)→( , )→(5,3);

(3,5)→( , )→( , )→( , )→(5,3);

四、学习体会:

1、本节课你有哪些收获?你还有哪些疑惑?

2、预习时的疑难解决了吗?

五、自我检测

1、小游戏:

“怪兽吃豆豆”是一种计算机游戏,图中的标志表示“怪兽”先后经过的几个位置. 如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置. 那么你能用同样的方表示出图中“怪兽”经过的其他几个位置吗?

2、如图,马所处的位置为(2,3).

(1) 你能表示出象的位置吗?

(2) 写出马的下一步可以到达的位置。

3、右图是国际象棋的棋盘,E2在什么位置?又如何描述A、B、C的位置?

4、有趣玩一玩:

中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图六(1),按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不同选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少。

要将图六(2)中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一种走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)

(1) 下面提供另一走法,请填上所缺的一步:(四,6)→(五,8)→(七,7)→___→(六,4)

(2)请你再给出另一种走法(要与前面的两种走法不完全相同即可,步数不限),你的走法是:

六、方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

1、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:

(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?

(3)要确定每艘敌舰的位置,各需要几个数据?

2、如图是某城市市区的一部分示意图,对市政府来说:

(1) 北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?

(2) 火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?

小结:了解知识与技能,结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。过程与方法,借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力

篇4:初一数学课件内容

教材分析:

1、本节内容是七年级下第九章《轴对称》中的重点部分,是等腰三角形的第一节课,由于小学已经有等腰三角形的基本概念,故此节课应该是在加深对等腰三角形从轴对称角度的直观认识的基础上,着重探究等腰三角形的两个定理及其应用,如何从对称角度理解等腰三角形是新教材和旧教材完全不同的出发点,应该重新认识,把好入门的第一课。

2、等腰三角形是在第八章《多边形》中的三角形知识基础上的继续深入,如何利用学习三角形的过程中已经形成的思路和观点,也是对理解“等腰”这个条件造成的特殊结果的重要之处。

3、等腰三角形是基本的几何图形之一,在今后的几何学习中有着重要的地位,是构成复杂图形的基本单位,等腰三角形的定理为今后有关几何问题的解决提供了有力的工具。

4、对称是几何图形观察和思维的重要思想,也是解决生活中实际问题的常用出发点之一,学好本节知识对加深对称思想的理解有重要意义。

5、例题中的几何运算,是数形结合的思想的初步体验,如何在几何中结合代数的等量思想是教学中应重点研究的问题。

6、新教材的合情推理是一个创新,如何把握合情推理的书写及重点问题,本课中的例题也进一步做了示范,可以认真研究。

7、本课对学生的动手能力,观察能力都有一定的要求,对培养学生灵活的思维,提高学生解决实际问题的能力都有重要的意义。

8、本课内容安排上难度和强度不高,适合学生讨论,可以充分开展合作学习,培养学生的合作精神和团队竞争的意识。

学情分析:

1、授课班级学生基础较差,教学中应给予充分思考的时间,谨防填塞式教学。

2、该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,兼顾效率和平衡。

3、本班为自己任课的班级,平时对学生比较了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性。

教学目标:

知识目标: 等腰三角形的相关概念,两个定理的理解及应用。

技能目标: 理解对称思想的使用,学会运用对称思想观察思考,运用等腰三角形的思想整体观察对象,总结一些有益的结论。

情感目标: 体会数学的对称美,体验团队精神,培养合作精神。

重点:教学中的重点、难点:

1、等腰三角形对称的概念。

2、“等边对等角”的理解和使用。

3、“三线合一”的理解和使用。

难点:

1、等腰三角形三线合一的具体应用。

2、等腰三角形图形组合的观察,总结和分析。

主要教学手段及相关准备:

教学手段:

1、使用导学法、讨论法。

2、运用合作学习的方式,分组学习和讨论。

3、运用多媒体辅助教学。

4、调动学生动手操作,帮助理解。

准备工作:

1、多媒体课件片断,辅助难点突破。

2、学生课前分小组预习,上课时按小组落座。

3、学生自带剪刀,圆规,直尺等工具。

4、每人得到一张印有“长度为a的线段”的纸片。

教学设计策略:

依据教学目标和学生的特点,依据教学时间和效率的要求,在此课教学方法和教学模式的设计中我主要体现了以下的设计思想和策略:

1、回归学生主体,一切围绕着学生的学习活动和当堂的反馈程度安排教学过程。

2、原则性和灵活性相结合,既要完成教学计划,在教学过程中又可以根据现实的情况,安排问题的难度,体现一些灵活性。

3、教学的形式上注重个体化,充分给予学生讨论和发表意见的机会,注重学习的参与性,努力避免以教师活动为主体的教学过程。

教学步骤及说明学生活动教师活动教学目标教学说明预习相关概念及定理。  观察并回答。         学生同步回答    学生运用直尺或圆规和剪刀进行绘图和剪切。    学生观察并思考,然后讨论,然后积极回答。        学生以小组形式进行操作和讨论 然后努力向结果慢慢前进。       学生对自己剪得的等腰三角形作操作,体会对称的思想。在讨论的基础上,回答更高层次的问题。     学生观察,并且以小组竞赛的方式进行大范围的搜索和体验。   学生观察,体验,领会新概念。  集体讨论并互相帮助记忆重要的结论。每个小组抽查记忆。  学生思考,看书理解,然后讨论每一步的理由。   小组讨论,并且竞争回答。      学生讨论,并且试图写出过程。         学生讨论,通过讨论,体会数学定理的使用和数学语言的组织。          学生在自己剪得的等腰三角形上画上已知条件,并且观察是否相等,然后进行相应证明的思考,并积极讨论。     学生小组讨论后发言。  开放性问题,自由发言。  课题引入: 让学生观察两把三角尺,从三角形分类思考“两把三角尺的形状除了角度不同外还有什么区别”在对学生思考结果的总结基础上,引入新课题。  新授:1、等腰三角形的相关概念,腰,底边,顶角,底角。  2、指导学生做一做,要求:在事先准备的纸上,画一个腰长为a的等腰三角形,并将它剪下来,与组内其他成员的作品放在一起,并观察和回答问题。3、第一个问题:观察所剪得的三角形形状是否相同,在满足条件的情况下,可以画几个不同类的等腰三角形。      4、第二个问题:将这些三角形放在一起,并且使顶点重合,观察另外的一些顶点,看看有什么特点和发现。       5、问题:等腰三角形是否为轴对称图形,如何通过具体的操作体现他是轴对称,并指出对称轴。    问题:等边三角形是否为轴对称图形,对称轴有几条。    等腰三角形的对称轴有几条。 6、通过刚才的折叠结合屏幕上图形的字母,说明轴对称图形的等量关系和位置关系。   7、在总结刚才观察结论的基础上,引出两条重要的定理。 通过小组竞争的方式要求每个同学清晰记忆和理解定理2中的具体条件。   8、完成例题:已知: 在△ABC中,AB=AC, ∠B=80°.求∠C和∠A的度数. 9、完成例题:如果等腰三角形的一个外角等于140°,那么等腰三角形三个内角等于多少度?    10、完成例题:在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数  11、完成例题:建筑工人在盖房子的时候,要看房梁是否水平,可以用一块等腰三角形放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板的底边中点,那么房梁就是水平的,为什么?  12、完成例题:等腰△ABC中,AB=AC,D、E是BC上的两点,若BD=CE,那么AD和AE相等吗?为什么  13、课堂小结:通过今天的学习,你体会到什么? 14、有益的思考:通过今天的学习,你有哪些方法判断剪得的三角形是等腰三角形。     从直观图形上,回忆小学知识,体会等腰三角形。       理解等腰三角形相关概念。   深入体会,等腰三角形的构成和画三角形的方法。    1、  直观体会钝角等腰三角形,锐角等腰三角形,直角等腰三角形的不同特点。2、  体会已知两边不能确定三角形,为理解全等或三角形的构成作铺垫。  1、  培养学生的观察,猜测,总结的能力。2、  体验等腰三角形在圆中的存在3、  体会合作的乐趣。4、  体会从特殊到一般的过程,为今后的轨迹思想做一些准备。  1、  从轴对称角度理解等腰三角形,为后面的等量关系的得出做铺垫。2、  体验学习过程。3、  加深对一般情况和特殊情况的理解,提高学生对两解问题的敏感度。   1、体会轴对称图形中的等量关系和由此得到的特殊位置关系。为下面定理的引出得出有用的结论。2、感受组间竞争。 1、体验从特殊到一般的过程。2、体验合作和竞争的关系。3、体验原定理和逆定理的关系。(不作任何表述,只做理解)    1、完成对定理1的应用。体会定理在几何计算中的运用。2、体会合作精神。  1、  体会两解可能性的运用,培养思维的严密性。2、  注意分类表达的合理性和清晰性。   1、  对三线合一的使用2、  结合学生的过程书写,体会合情推理。      1、  体会三线合一在生活中的使用。2、  体验数学语言的精练和准确          1、  直观体验轴对称的概念,以及应用对称思想实现辅助线的寻找2、  继续体验合情推理的使用。      回顾知识。   培养学生开放性思维的运用培养学生良好的学习习惯。  在小学知识和第八章三角形知识的基础上,学生比较容易得到结论。      由于学生有相应的小学的知识和预习,基本概念的理解不成问题。 由于三角形的形状不限,方法不限,学生绘制的结论也有所不同。   此题学生较容易总结,至于体会到什么程度特别是目标2不作具体要求,体现新教材的“不同人在数学上得到不同的发展”理念。    此题教难,关键在于引导和启发,给予学生充分的时间,必要时候使用事先准备的多媒体辅助教学,从实际结果看,学生在多媒体的启发作用下,应该会有一个思维上的突破。    体现新教材的操作理念,回归学习的本质,体验学习的过程。 对问题的一般到特殊做一些体会。    学生由于竞争的关系,往往能够得到许多有益的结论。建议采用“开火车”的办法。  在概念1中强调:在一个三角形中。在概念2中强调:三条线的具体描述。定理2可以视情况使用多媒体辅助理解。特别是对相关逆定理的理解,但不作表述。  理由的叙述是数学能力培养的重要一环,认真完成每一步。同时,鼓励学生讨论,共同提高。 注意两解的情况。注意两解分类的表达。     此题书写角度有很多选择,对每种书写只要合理就给予鼓励。       体现:新课标的学会数学应用的理念            在没有全等三角形的情况下,此题选择合理方法的思考就变得比较重要。        注意教师的总结和理论化。  注意教师的合理总结。    课后小结:由于运用了新课程教学方法和理念,知识从不同的方向得到了渗透。基本完成了课前制定的教学目标和教学要求,为进一步的深入理解打下了基础。

[初一数学课件内容]

篇5:初一下学期数学课件

教学目标

1、掌握直线平行的条件,并能解决一些简单的问题;

2、初步了解推理论证的方法,会正确的书写简单的推理过程。

重点:直线平行的条件及运用

难点:会正确的书写简单的推理过程是

教学过程

一、复习导入

我们学习过哪些判断两直线平行的方法?

(1)平行线的定义:在同一平面内不相交的两条直线平行。

(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。

(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.

二、例题

例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?

解:这两条直线平行。

∵b⊥ac⊥a(已知)

∴∠1=∠2=90°(垂直的定义)

∴b‖c(同位角相等,两直线平行)

你还能用其它方法说明b‖c吗?

方法一:如图(1),利用“内错角相等,两直线平行”说明;方法二:如图(2),利用“同旁内角相等,两直线平行”说明. 注意:本例也是一个有用的结论。

例2如图,点B在DC上,BE平分∠ABD,∠DBE=∠A,则BE‖AC,请说明理由。

分析:由BE平分∠ABD我们可以知道什么?联系∠DBE=∠A,我们又可以知道什么?由此能得出BE‖AC吗?为什么?

解:∵BE平分∠ABD

∴∠ABE=∠DBE(角平分线的定义)

又∠DBE=∠A

∴∠ABE=∠A(等量代换)

∴BE‖AC(内错角相等,两直线平行)

注意:用符号语言书写证明过程时,要步步有据。

篇6:初一下学期数学课件

教学目标:

1.理解对顶角和邻补角的概念,能在图形中辨认.

2.掌握对顶角相等的性质和它的推证过程.

3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

重点:在较复杂的图形中准确辨认对顶角和邻补角.

难点:在较复杂的图形中准确辨认对顶角和邻补角.

教学过程

一、创设情境,引入课题

先请同学观察本章的章前图,然后引导学生观察,并回答问题.

学生活动:口答哪些道路是交错的,哪些道路是平行的.

教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.

二、探究新知,讲授新课

1.对顶角和邻补角的概念

学生活动:观察上图,同桌讨论,教师统一学生观点并板书.

【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?

学生口答:∠2和∠4再也是对顶角.

紧扣对顶角定义强调以下两点:

(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

2.对顶角的性质

提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

∴∠l=∠3(同角的补角相等).

注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义. 或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),

∴∠1=∠3(等量代换).

学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。 解:∠3=∠1=40°(对顶角相等).

∠2=180°-40°=140°(邻补角定义).

∠4=∠2=140°(对顶角相等). 三、范例学习

学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题. 变式1:把∠l=40°变为∠2-∠1=40° 变式2:把∠1=40°变为∠2是∠l的3倍 变式3:把∠1=40°变为∠1:∠2=2:9 四、课堂小结

学生活动:表格中的结论均由学生自己口答填出.

五、布置作业:课本P3练习

5.1.2垂线(第一课时)

教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.毛 2.了解垂直概念,能说出垂线的性质―经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线‖,会用三角尺或量角器过一点画一条直线的垂线. 重点两条直线互相垂直的概念、性质和画法. 教学过程 一、创设问题情境

1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象? 在学生回答之后,教师指出:―垂直‖两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.

2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?

教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等. 3.师生共同给出垂直定义.

师生分清―互相垂直‖与―垂线‖的区别与联系:―互相垂直‖指两条直线的位置关系;―垂线‖是指其中一条直线对另一条直线的命名。如果说两条直线―互相垂直‖时,其中一条必定是另一条的―垂线‖,如果一条直线是另一条直线的―垂线‖,则它们必定―互相垂直‖。 4.垂直的表示法.

垂直用符号―⊥‖来表示,结合课本图5.1-5说明―直线AB垂直于直线CD,垂足为O‖,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.

5.简单应用

(1)学生观察课本P6图5.1-6中的一些互相垂直的.线条,并再举出生活中其他实例.

(2)判断以下两条直线是否垂直:

①两条直线相交所成的四个角中有一个是直角;

②两条直线相交所成的四个角相等;

③两条直线相交,有一组邻补角相等;

④两条直线相交,对顶角互补.

二、画图实践,探究垂线的性质

1.学生用三角尺或量角器画已知直线L的垂线.

(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形. 教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.

(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论?

教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.

教师让学生通过画图操作所得两条结论合并成一条,并板书:

垂线性质1:过一点有且只有一条直线与已知直线垂直.

2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:

(1)过点P画射线MN的垂线,Q为垂足;

(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;

(3)过点P画线段AB的垂线,交线AB延长线于Q点.

学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.

三、课堂小结

本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?

四、布置作业:

课本P7练习,P9.3,4,5,9.

篇7:初一下册数学平行线课件

教学目标

1.认识平行线,初步了解平行线的性质,学会用直尺和三角板画平行线.

2.培养学生操作的初步技能.

3.渗透分类的思想,透过现象看本质的观点.

教学重点

理解平行线的概念和性质.

教学难点

1.理解“同一平面”.

2.会用三角板和直尺画平行线.

教学过程

一、导入新课.

1.教师谈话:前面我们学习了两条直线互相垂直的位置关系.这节课我们继续研究同一平面内两条直线的位置关系.(板书:同一平面 两条直线)

2.学生摆小棒.

利用手里的小棒,每根小棒代表一条直线,每两根为一组,请你用这些小棒摆一摆,看看在同一平面内两条直线的位置关系你能摆出几种情况.两个同学一组可以互相合作、互相商量.

二、探究新知.

(一)教学平行线的概念.

1.出示下列图形.

2.讨论:你能根据它们的位置关系给它们分分类吗?说出分类的理由.

3.持不同分类方法的同学进行辩论.

4.教师小结:表面上看起来不相交,如果把两条直线无限延长后相交于一点,看来今后不能先看表面现象,要看到其实质.

5.教师讲解:

这两组直线表面不相交,延长后也不相交,这才是真正的不相交,这就是我们今天学习的平行线.(板书课题:平行线)

6.学生尝试概括:什么是平行线?

7.教师出示长方体:

教师提问:这两条直线延长后相交吗?它们是平行线吗?

8.师生进一步概括平行线的定义(给重点处加标记)

学生讨论:平行线应具备哪几个条件?

9.播放视频“平行线举例”.

10.出示练习:下面各图中哪些是平行线;哪些不是?

(二)教学平行线的性质.

1.出示图形:

教师提问:你们所说的宽度是指哪一条线段?(板书:平行线间的`距离)

2.教师小结:两条平行线间的距离处处相等,这是平行线的一个重要性质,这一特性在生活中有广泛的应用.

3.实践操作.

(1)利用若干小棒摆,变换不同位置、方向,使它们互相平行.

(2)小组合作:利用两根皮筋,使它们互相平行、两个小组合作,使其两两平行.

三、画平行线.

1.学生自学:平行线的画法(见第133页),并尝试画出一组平行线.

2.演示视频“平行线画法”.

3.教师小结平行线画法:靠紧、画线、平移、画线.

4.探索与尝试:你还有其他画平行线的方法吗?

四、质疑小结.

1.让学生看书并提出疑问,组织学生解疑.

2.提问:通过今天的学习,你都学会了什么?

小结:①定义:在同一平面内,不相交的两条直线叫做平行线.

②性质:两条平行线间的距离处处相等.

③平行线画法:靠紧、画线、平移、画线.

五、布置作业.

完成第134页第1题.

检验下面的各组直线,哪组是平行线,哪组不是平行线?

完成第134页第2题.

检验下面每个图形中哪两条线段是平行的.

完成P134页第3题.

用直尺和三角板在练习本上画两条平行线.

4.判断.

①永不相交的两条直线叫做平行线( )

②在同一平面内的两条直线叫做平行线.( )

③在同一平面内的两条直线不相交,就一定互相平行.( )

④在同一平面内,不相交的两条线叫做平行线.( )

六、拓展练习.

数学教案-平行线

篇8:初一上册数学《 有理数》课件

初一上册数学《 有理数》课件

教学目标:

1、明白生活中存在着无数表示相反意义的量,能举例说明;

2、能体会引进负数的必要性和意义,建立正数和负数的数感。

重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。

难点:对负数的意义的理解。

教学过程:

一、知识导向:

本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。

二、新课拆析:

1、回顾小学中有关数的范围及数的.分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。

如:0,1,2,3,…, ,

2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。

如:汽车向东行驶 3千米和向西行驶2千米;

温度是零上10°C和零下5°C;

收入500元和支出237元;

水位升高1.2米和下降0.7米;

3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。

一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。

如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C

概括:我们把这一种新数,叫做负数, 如:-3,-45,…

过去学过的那些数(零除外)叫做正数,如:1,2.2…

零既不是正数,也不是负数

例:下面各数中,哪些数是正数,哪些数是负数,

1,2.3,-5.5,68,-,0,-11,+123,…

三、阶梯训练:

P18 练习:1,2,3,4。

四、知识小结:

从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。

五、作业巩固:

1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;

2、分别举出几个正数与负数(最少6个)。

3、P20习题2.1:1题。

篇9:初一下数学课件资料

初一下数学课件资料

教学目标:

1.理解和掌握多项式除以单项式的运算法则。

2.运用多项式除以单项式的法则,熟练、准确地进行计算.

3.通过总结法则,培养学生的抽象概括能力.训练学生的综合解题能力和计算能力.

4.培养学生耐心细致、严谨的数学思维品质.

重点、难点:

1.多项式除以单项式的.法则及其应用.

2.理解法则导出的根据。

教学过程:

1.复习导入

(l)用式子表示乘法分配律.

(2)单项式除以单项式法则是什么?

(3)计算:

(4)填空:

规律:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2.讲授新课

例1 计算:

(1)

(2)

解:(1)原式

(2)原式

注意:(l)多项式除以单项式,商式与被除式的项数相同,不可丢项,如(l)中容易丢掉最后一项.

(2)要求学生说出式子每步变形的依据.

(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.

例2 化简:

解:原式

说明:注意弄清题中运算顺序,正确运用有关法则、公式。

练习:(1)P150 1,2,。

(2)错例辩析:

有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为

3.小结

1.多项式除以单项式的法则是什么?

2.运用该法则应注意什么?

正确地把多项式除以单项式问题转化为单项式除以单项式问题。计算不可丢项,分清“约掉”与“消掉”的区别:“约掉”对乘除法则言,不减项;“消掉”对加减法而言,减项。

4.作业

P152 A组1,2。

篇10:初一上册数学教学课件

第1学时

内容:正数和负数(1)

学习目标:

1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.

2、会区分两种不同意义的量,会用符号表示正数和负数.

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.

学习重点:两种意义相反的量

学习难点:正确会区分两种不同意义的量

教学方法:引导、探究、归纳与练习相结合

教学过程

一、学前准备

1、小学里学过哪些数请写出来:2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

回答上面提出的问题: .

二、探究新知

1、正数与负数的产生

1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.

请你也举一个具有相反意义量的例子: .

2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

3)阅读P3练习前的内容

3、正数、负数的概念

1)大于0的数叫做0的数叫做。

2)正数是大于0的数,负数是0既不是正数也不是负数。

3)练习P3第一题到第四题(直接做在课本上)

三、练习

1、读出下列各数,指出其中哪些是正数,哪些是负数?

—2, 0.6, +1, 0, —3.1415, 200, —754200, 3

2、举出几对(至少两对)具有相反意义的'量,并分别用正、负数表示

四、应用迁移,巩固提高(A组为必做题)

A组 1.任意写出5个正数:________________;任意写出5个负数:_______________.

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.

3.已知下列各数:?13,?2,3.14,+3065,0,-239. 54

则正数有_____________________;负数有____________________.

4.如果向东为正,那么 -50m表示的意义是???( )

A.向东行进50m C.向北行进50m

B.向南行进50m D.向西行进50m

5.下列结论中正确的是 ????( )

A.0既是正数,又是负数 B.O是最小的正数

C.0是最大的负数 D.0既不是正数,也不是负数

6.给出下列各数:-3,0,+5,?3

B组

1.零下15℃,表示为_________,比O℃低4℃的温度是_________.

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______

地,最低处为_______地.

3.“甲比乙大-3岁”表示的意义是______________________.

C组

1.写出比O小4的数,比4小2的数,比-4小2的数.

2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,

试用正负数分别表示潜水艇和鲨鱼的高度.

11,+3.1,?,2004,+2008. 22其中是负数的有 ??( ) A.2个 B.3个 C.4个 D.5个

第2学时

内容:正数和负数(2)

学习目标:

1、会用正、负数表示具有相反意义的量.

2、通过正、负数学习,培养学生应用数学知识的意识.

3、通过探究,渗透对立统一的辨证思想

学习重点:用正、负数表示具有相反意义的量

学习难点:实际问题中的数量关系

教学方法:讲练相结合

教学过程

一、.学前准备

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解 解决问题

问题2:(教科书第4页例题)

先引导学生分析,再让学生独立完成

例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%, 德国增长1.3%,

法国减少2.4%, 英国减少3.5%,

意大利增长0.2%, 中国增长7.5%.

写出这些国家20商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.

(2)六个国家2009年商品进出口总额的增长率:

美国-6.4%, 德国1.3%,

法国-2.4%, 英国-3.5%,

意大利0.2%, 中国7.5%.

三、巩固练习

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示. 通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四、阅读思考

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五、小结

1、本节课你有那些收获?

2、还有没解决的问题吗?

六、应用与拓展

必做题:

教科书5页习题4、5、:6、7、8题

选做题

1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是 .

2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?

3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?

4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?

5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。标重的记录情况如下:+1,-0.5,-0.5,-1,+0.5,-0.5,+0.5,+0.5,+0.5,-0.5。问这10筐橘子各重多少千克?总重多少千克?

【解】-17°

6.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少? 【解】9.05mm,8.95mm

正数和负数巩固提高练习

第3学时

1. 具有相反意思的量

某市某一天的最高温度是零上5℃,最低温度是零下5℃现实生活中,像这样的相反意义的量还有很多. 例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.

“运入”和“运出”,其意义是相反的.同学们能举例子吗?________________________________________

2.正数和负数

数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).

①高于海平面8848米,记作+8848米;低于海平面155米,记作________米。

②如果80m表示向东走80m,那么-60m表示_________。

③如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_________m。

④月球表面的白天平均温度是零上126℃,记作________℃,夜间平均温度是零下150℃,记作________℃。

问题1读下列各数,并指出其中哪些是正数,哪些是负数。

42?1,2.5,?,0,?3.14,120,?1.732,? 37

正数:__________________________________________________

负数:__________________________________________________

3.有理数

正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。(整数和分数统称为有理数)

有理数的分类:

篇11:初一上册数学教学课件

第一章 有理数

1.1 正数和负数(1)

【学习目标】 1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【导学指导】

一、:

1、小学里学过哪些数请写出来: 、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

(3)阅读P3练习前的内容

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:

1. P3第1题到第2题(课本上做)

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么取出2万元应记作_______,-4万元表示________________。

3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54

则正数有_____________________;负数有____________________。

4.下列结论中正确的是 …………………………………………( )

A.0既是正数,又是负数

C.0是最大的负数 B.O是最小的正数 D.0既不是正数,也不是负数

5.给出下列各数:-3,0,+5,?311,+3.1,?,2004,+2010; 22

C.4个 D.5个 其中是负数的有 ……………………………………………………( ) A.2个

【要点归纳】:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1.零下15?,表示为_________,比O?低4?的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.

3.“甲比乙大-3岁”表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

【总结反思】:

B.3个

课题:1.1正数和负数(2)

【学习目标】:

1、会用正、负数表示具有相反意义的量;

2、通过正、负数学习,培养学生应用数学知识的意识;

【学习重点】:用正、负数表示具有相反意义的量;

【学习难点】:实际问题中的数量关系;

【导学指导】

一、知识链接.

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。

问题:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明。

参考例子:温度表示中的零上,零下和零度。

二.自主探究

问题:(课本第4页例题)

先引导学生分析,再让学生独立完成

例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

2)下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%, 德国增长1.3%,

法国减少2.4%, 英国减少3.5%,

意大利增长0.2%, 中国增长7.5%.

写出这些国家20商品进出口总额的增长率;

解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;

2)六个国家2001年商品进出口总额的增长率:

美国___________ 德国__________

法国___________ 英国__________

意大利__________ 中国__________

【课堂练习】

1.课本第4页练习

2、阅读思考

(课本第8页)用正负数表示加工允许误差;

问题:直径为30.032mm和直径为29.97的零件是否合格?

【要点归纳】

1、本节课你有那些收获?

2、还有没解决的问题吗?

【拓展训练】

1)甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度

是 ;

2)一种零件的内径尺寸在图纸上是9〒0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?

【总结反思】:

课题:1.2.1 有理数

【学习目标】:

1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;

2、了解分类的标准与集合的含义;

3、体验分类是数学上常用的处理问题方法;

【学习重点】:正确理解有理数的概念

【学习难点】:正确理解分类的标准和按照一定标准分类

【导学指导】

一、温故知新

1、通过两节课的学习,,那么你能写出3个不同类的数吗?.(4名学生板书)

__________________________________________

二、自主探究

问题1:观察黑板上的12个数,我们将这4位同学所写的数做一下分类; 该分为几类,又该怎样分呢?先分组讨论交流,再写出来

分为 类,分别是:

引导归纳:

统称为整数, 统称为有理数。 问题2:我们是否可以把上述数分为两类?如果可以,应分为哪两类? 师生共同交流、归纳

2、正数集合与负数集合

所有的正数组成 集合,所有的负数组成 集合

【课堂练习】

篇12:初一数学整式课件教案

三维目标

一、知识与技能

使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数。

二、过程与方法

通过实例列整式,培养学生分析问题、解决问题的.能力。

三、情感态度与价值观

培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义。

教学重、难点与关键

1.重点:多项式以及有关概念。

2.难点:准确确定多项式的次数和项。

3.关键:掌握单项式和多项式次数之间的区别和联系。

教具准备 投影仪。

四、课堂引入

一、复习提问 1.什么叫单项式?举例说明。

2.怎样确定一个单项式的系数和次数?-的系数、次数分别是多少?

3.列式表示下列问题:

(1)一个数比数x的2倍小3,则这个数为________.

(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元。

(3)如图1,三角尺的面积为________.

(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米。

篇13:初一下册数学相交线课件

教学目标:

1.理解对顶角和邻补角的概念,能在图形中辨认.

2.掌握对顶角相等的性质和它的推证过程.

3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

重点:在较复杂的图形中准确辨认对顶角和邻补角.

难点:在较复杂的图形中准确辨认对顶角和邻补角.

教学过程

一、创设情境,引入课题

先请同学观察本章的章前图,然后引导学生观察,并回答问题.

学生活动:口答哪些道路是交错的,哪些道路是平行的.

教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.

二、探究新知,讲授新课

1.对顶角和邻补角的概念

学生活动:观察上图,同桌讨论,教师统一学生观点并板书.

【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?

学生口答:∠2和∠4再也是对顶角.

紧扣对顶角定义强调以下两点:

(1)辨认对顶角的`要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

2.对顶角的性质

提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

∴∠l=∠3(同角的补角相等).

注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),

∴∠1=∠3(等量代换).

学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

解:∠3=∠1=40°(对顶角相等).

∠2=180°-40°=140°(邻补角定义).

∠4=∠2=140°(对顶角相等).

三、范例学习

学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

变式1:把∠l=40°变为∠2-∠1=40°

变式2:把∠1=40°变为∠2是∠l的3倍

变式3:把∠1=40°变为∠1:∠2=2:9

四、课堂小结

学生活动:表格中的结论均由学生自己口答填出.

篇14:初一数学课件整式的加减

初一数学课件整式的加减

新课导入

运用有理数的运算律计算:

100×2+252×2=

100×(-2)+252×(-2)=

有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?

教学目标

知识与技能

1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项;

2.能先合并同类项化简后求值;

3.掌握整式加减的方法.

过程与方法

1.经历类比整式的运算律,探究合并同类项法则,培养观察、探索、分类、归纳等能力;

2.通过计算两个个长方体纸盒的用料情况,初步学会从实际问题入手,尝试从数学的角度提出问题、理解问题,并运用所学的.知识和技能解决问题,进一步发展应用意识.

教学目标

情感态度与价值观

掌握规范解题步骤,养成良好的学习习惯.

教学重难点

重点

1.掌握合并同类项法则,熟练地合并同类项;

2.整式加减运算的一般步骤,能正确地进行整式的加减运算.

难点

1.对同类项概念的理解,合并同类项法则的探究;

2.利用整式的加减运算,解决简单的实际问题.

篇15:北师版初一数学上册课件

第一课时

教学目标

1、知识:认识简单的空间几何棱柱、圆柱、圆锥、球等,掌握其中的相同之处和不同之处

2、能力:通过比较,学会观察物体间的特征,体会几何体间的联系和区别,并能根据几何体的特征,对其进行简单分类。

3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

教学重点:

认识一些基本的几何体,并能描述这些几何体的特征

教学难点:

描述几何体的特征,对几何体进行分类。

教学过程:

一、设疑自探

1.创设情景,导入新课

在小学的时候学习了那些平面图形和几何图形,在生活你还见到那些几何体?

2.学生设疑

让学生自己先思考再提问

3.教师整理并出示自探题目

①生活常见的几何体有那些?

②这些几何体有什么特征

③圆柱体与棱柱体有什么的相同之处和不同之处

④圆柱体与圆锥体有什么的相同之处和不同之处

⑤棱柱的分类

⑥几何体的分类

4.学生自探(并有简明的自学方法指导)

举例说说生活中的物体那些类似圆柱、圆锥、正方体、长方体、棱柱、球体?

说说它们的区别

二.解疑合探

1.针对圆柱、圆锥、正方体、长方体、棱柱、球体特征的认识不彻底进行再探

2、对这些类似圆柱、圆锥、正方体、长方体、棱柱、球体的`分类

2.活动原则:学困生回答,中等生补充、优等生评价,教师引领点拨提升总结。

三.质疑再探:

说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

四.运用拓展:

1.引导学生自编习题。

请结合本节所学的知识举例说明生活简单基本的几何体,并说说其特征

2.教师出示运用拓展题。

(要根据教材内容尽可能要试题类型全面且有代表性)

3.课堂小结

4.作业布置

五、教后反思

第二课时

教学目标

1、知识:认识点、线、面的运动后会产生什么的几何体

2、能力:通过点、线、面的运动的认识几何体的产生什么

3、情感:有意识地引导学生积极参与到数学活动过程中,培养与他人合作交流的能力。

教学重点:

几何体是什么运动形成的

教学难点:

对“面动成体”的理解

教学过程:

一、设疑自探

1.创设情景,导入新课

我们上节课认识了生活中的基本几何体,它们是由什么形成的呢?

2.学生设疑

点动会生成什么几何体?

线动会生成什么几何体?

面动会生成什么几何体?

3.教师整理并出示自探题目

教师根据学生的?疑情况梳理、归纳、细化得出自探题目(自探要求)

4.学生自探(讨论)

二.解疑合探

举例分析那些几何体由什么运动形成的?

那些图形运动可以形成什么几何体?

三.质疑再探:

说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)

四.运用拓展:

1.引导学生自编习题。

2.教师出示运用拓展题。

(要根据教材内容尽可能要试题类型全面且有代表性)

3.课堂小结

4.作业布置

五、教后反思

热门教案

学诗词

学名句