以下是小编为大家准备了14篇认识一元一次方程课件,欢迎参阅。
认识一元一次方程课件
《认识一元一次方程》本节课是北师大版七年级上册第五章第一节的内容,主要的教学目标是归纳出一元一次方程的概念,掌握其特征,并且能从现实情境中提炼等量关系。下面为大家分享了认识一元一次方程的课件,欢迎借鉴!
一.教材依据
北师大版七年级数学上册第五章《一元一次方程》 第1课时:认识一元一次方程 。
二.设计思路
本文旨在给出教学思路,具体操作可以根据个人习惯加以细化。
指导思想:本节课遵循“自主、合作、探究”的课改理念,在效益和效率上追求课堂教学的“高效”,变老师的“满堂灌”为学生的“满堂学”,并注重学生学习能力的生成。教师的任务是为学生提供各种学习资源,引导学生自主学习。
设计理念:以学生为中心,学生成为教学活动的积极参与者和知识的建构者。在实际情境中进行教学,以导学案为载体为学生提供一个讨论,展示的课堂平台。
教材分析:“一元一次方程的认识”一课是北师大版七年级数学上册第五章《一元一次方程》 第1课时内容。学习这节课之前,学生在小学期间已学过等式、等式的基本性质以及方程、方程的解、解方程等知识,经历了分析简单数量的关系,并根据数量关系列出方程、求解方程、检验结果的过程。对方程已有初步认识, 但并没有学习“一元一次方程”准确的理性的概念。在这节课之后就要学习解一元一次方程,所以这节课的内容对整个章节的知识起到了承上启下的作用。
学情分析:学生经过初中一段的生活学习,基本有一定的自学能力,通过生活实例可以自己归纳总结出一元一次方程的概念,但是对但是概念的理解有一定的难度,从很多方程中不易辨别出一元一次方程,容易造成概念混乱。
三.教学目标
1.知识与技能
通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.
2.过程与方法
通过观察,归纳一元一次方程的概念.
3.情感、态度、价值观
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决
教学重点
归纳一元一次方程的概念
教学难点
根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义.
四.现代教学手段的运用
多媒体课件、导学案
五.教学过程
【导入新课】
教师:请一位同学阅读章前图中关于“丟番图”的`故事。(大约1分钟)
丢番图(Diophantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶, 它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一, 又过十二分之一他两颊长出了胡须, 再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子, 可怜迟到的宁馨儿, 享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补, 又过四年,他也走完了人生的旅途.(多媒体展示)
教师提问:你知道丢番图的年领吗?
学生活动:小组讨论得到
解: 设丟番图的年龄为x岁,则:教师由上面的方程导入新课
【探究新知过程】
(一)合作探究,理解新知
学生活动一:
1.学生进行小组讨论学习,对提前独自做的导学案上的有疑惑的问题进行小组讨论探究。(多媒体展示讨论探究内容)
2.小组讨论结束后,每个小组在黑板上标记出本组内没有解决的
问题
教师活动一:根据学生标记的题目情况,为每个小组分配展示任务,每个组分配到自己会的题目,教师要指导学生分小组讲解展示导学案内容。(多媒体展示讲解展示的要求)
第一组:展示一元一次方程概念的形成过程内容
第二组:从下列方程中辨别出一元一次方程。
第三组:讲解一元一次方程解概念,并展示如何判断一个解是不是已知方程的解。
第四组 讲解拓展提高题。
注:以上的题目可根据内容自行编辑,只要符合目标即可。
学生活动二:对自己小组将要展示讲解的题目在小组内预展(先在小组内预习讲解)。
学生活动三:分组上黑板展示讲解分配到的题目。其余学生进行质疑补充。
小组互评:一个小组展示结束,另一个小组对展示过程进行评价。
教师活动二:学生在展示过程中,教师要注意及时引导,总结方法规律。
(二)课堂小结
教师提问:这节课你学到了什么?你还想知道什么? (多媒体展示)
学生回答:本节课我认识了一元一次方程并知道了什么是一元一次方程的解。
我还想知道如火如何解一个一元一次方程。(此回答只是一个,
教师可以根据学生的具体回答加以评价引导)
(三)当堂检测,拓展提高
学生活动:独自完成导学案达标检测的题目(题目紧扣目标即可,可以自行设计)
教师活动:汇总学生检测结果,进行评价解惑。
(四)课后反思
今天我上了一节公开课,上的是:人教版七年级上册第三章第一节《一元一次方程》 。现对本节课的教学进行反思:
一、成功之处
(1)能创设一个有趣的问题情境引入。一开始上课,我就跟同学们说:“让我们来进行一个比赛,看谁最先解决这个问题:我国数学家张广厚小时候曾解过一道有趣的‘吃面包’问题:一个大人一餐吃4个面包,四个小孩一餐合吃1个面包。现有大人和小孩共100人,一餐刚好吃完100个面包。聪明的同学们,你们能求出大人和小孩各有多少人?” 这样有助于保持学生参与学习的积极性。
(2)能进行一题多变,引发学生的认知失衡。我前面所提出的问题学生们很容易用小学所学的算术解法进行解答,但是我将问题中的100个面包改为40个面包,让同学们再比赛,很快有一个同学举手套用前面的解题思路来解这道题,但是在回答问题的过程中就有同学发现:假设1个大人4个小孩分成1组,每组可以吃5个面包,那么吃40个面包需要8组,这8组共有8个大人,32个小孩,他们的和是40而不是100,不符合题目要求。这时同学们都陷入沉思,他们努力寻找新方法。
(3)对学生进行了数学文化的渗透。方程的概念在小学已经出现过,初一再次学习方程应该让学生们更高一个层次认识方程,因此通过介绍字母表示未知数的文化背景,在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力。
(4)分层次设置练习题,逐步突破难点。我在“练一练”的环节里设置了a与b两组练习,a组练习的题目已经帮学生设定了未知数,重点训练学生找相等关系、列方程;b组练习的题目要求学生独立设未知数列方程,要求学生能突破用算术解法解应用题的思维定势,学会通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法。
(5)恰当使用了多媒体教学设备。在课件制作上考虑到初一学生的年龄特点,使用了许多卡通动画效果,有效地吸引学生的注意力。
(6)营造了宽松、和谐的课堂氛围。本节课的教学从始至终,教师都是面带笑容地与学生进行互动,让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。
二、不足之处
(1)问题2设置的难度过高。尽管我用非常形象的动画(多媒体课件)展示了题目的含义,但是大部分学生仍然面对题目的一大堆文字表述不知所措,这表明初一学生的数学阅读与数学理解能力还不强。
(2)教学容量偏大,以致没有充分的时间引导学生对如何找相等关系进行总结归纳。
一元一次方程简单课件
一元一次方程简单课件
教学内容:
人教版七年级上册3.1.1一元一次方程
教学目标:
知识与技能:
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用
新知识解决实际问题的能力。
情感态度和价值观:
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,
认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
教学重点:
建立一元一次方程的概念,寻找相等关系,列出方程。
教学难点:
根据具体问题中的相等关系,列出方程。
教学准备:
多媒体教室,配套课件。
教学过程:
设计理念:
数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。
一、游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,25
师:同学们想学会这个魔术吗?生:想!
师:通过这节课的学习,同学们一定能学会!
【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】
二、突出主题,突出主体
1、师:看大屏幕,独立思考下列问题,根据条件列出式子。
(1)x的2倍与3的差是5,
(2)长方形的的长为a,宽比长少5,周长为36,则=36
(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180
师:这些式子小学学习过,它们是?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的'方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程
学生讨论出上述答案后
师:大屏幕显示上述问题的答案
【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)
(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=84
师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!】
五、我的课堂,我做主,我来说
生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;
生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;
生3:我会检查一个数值是不是方程的解;
生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!
生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!
师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!
【课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!】
六、课后反思:
数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。
一、教学目标:
1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。
2、能力目标:培养学生的运算能力与解题思路。
3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。
二、教学的重点与难点:
1、重点:了解一元一次方程的.概念,解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。
三、教学方法:
1、教 法:讲课结合法
2、学 法:看中学,讲中学,做中学
3、教学活动:讲授
四、课 型:新授课
五、课 时:第一课时
六、教学用具:彩色粉笔,小黑板,多媒体
七、教学过程
1、创设情景:
今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她
心里想一个数
将这个数+2
将所得结果
最后+7
将所得的结果告诉老师
(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)
老师:同学们知道老师是怎样猜到的吗?
同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。
2、探究新知:
一元一次方程的概念:
前面我们遇到的一些方程,例如 3
老师:大家观察这些方程,它们有什么共同特征?
(提示:观察未知数的个数和未知数的次数)
(抽同学起来回答,然后再由老师概括)
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程
老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?
再次强调特征:
(1)只含一个未知数;
(2)未知数的次数为1;
(3)是一个整式。
(注意:这几个特征必须同时满足,缺一不可)
3、例题讲解:
例1判断如下的式子是一元一次方程吗?
(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由)
① ② ③
④ ⑤⑥
准确答案:①③
下面我们再一起来解几个一元一次方程。
例2、解方程
(1)
解法一:解法二:
提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号
(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)
(2)
解:
提示
1)在我们前面学过的知识中,什么知识是关于有括号的、
2)复习乘法分配律: ,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。
3)问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。
4)问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。
5)一起回顾合并同类项的法则:未知数的系数相加。
6)系数化为1,运用了等式的性质。
(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式、)
方程(1)该怎样解?由学生独立探索解法,并互相交流。
去括号,移项,合并同类项,系数化为1。
4、巩固练习
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)
5、小结:和同学们一起回顾我们这节课学习了什么?
教学目标:进一步认识方程,理解一元一次方程的概念,会根据题意列简单的一元一次方程。
认识方程的解的概念。
掌握验根的方法。
体验用尝试法解一元一次方程的思想方法。
重点:一元一次方程的概念
难点:尝试检验法
教学过程:
1.,温故
方程是含有 ______的______.
归纳:判断方程的两要素:
①有未知数 ②是等式
(通过填空让学生简单回顾方程概念,并总结方程两要素)
2.知新
根据题意列方程:
(1)一件衣服按8折销售的售价为72元,这件衣服的原价是多少元?
设这件衣服的原价为x元,8折后售价为______
可列出方程 .
(2)有一棵树,刚移栽时,树高为2m,假设以后平均每年长0.3m,几年后树高为5m?
设x年后树高为5m,
可列出方程_______
(3)物体在水下,水深每增加10.33米承受的压力就会增加1个大气压. 当“蛟龙”号下潜至3500米时,它承受的压力约为340个大气压. 问当它承受压力增加到500个大气压时,它又继续下潜了多少米?
设它又继续下潜了x米,
x米增加大气压 个。
可列出方程 .
(教师引导学生列出方程)
80%x=72
观察比较方程:
(学生根据方程特点填空)
等式的两边的代数式都是_________;每个方程都只含有___个未知数;且未知数的指数是_____
(教师总结)这样的方程叫做一元一次方程.
(教师提问:需满足几个特点,学生回答后总结一元一次方程概念)
1.两边都是整式
2.只含有一个未知数
3.未知数的指数是一次.
(教师引出课题——5.1一元一次方程)
3.(接下来一起将前面所学新知与旧知融会贯通)
1.下列各式中,哪些是方程?哪些是一元一次方程?
(1)5x=0 (2)1+3x
(3)y2=4+y (4)x+y=5
(5) (6)3m+2=1–m
(这里需要让学生较快的先找出方程(1)、(3)、(4)、(5)、(6),并说说为什么剩下的.不是方程。接着找出其中的一元一次方程,着重说说为什么(3)、(4)、(5)不是呢?引发学生套用一元一次方程三个特点说明,教师要补充的是(3)是二次方程,(4)是二元方程,(5)这种情况左边不是整式,进而进一步再强调一次什么是“元”什么是“次”。(3)错在未知数不能出现2次,(4)错在不能出现两个未知数)
4.概念提升(为了能够游刃有的掌握一元一次方程的概念,我们再对它做一次提升,大家请看下面两个问题。
1、方程3xm-2 + 5=3是一元一次方程,则代数式 m=_____。
2、方程(a+6)x2 +3x-8=7是关于x的
(通过概念的强调对这题的理解有很大帮助,题1检验学生对一元一次方程中“一次”的理解,题2检验学生对“一元”的理解)
5.一元一次方程的根
思考:
当y为多少时一元一次方程6=y+4成立呢?(本题学生容易猜想得到,教师引出一元一次方程的解的概念)
使一元一次方程左右两边的值相等的未知数的值叫做一元一次方程的解,也叫做方程的根。
(引导学生掌握验根的方法,并指导学生完成验根过程书写步骤)
判断下列t的值能不能使方程2t+1=7-t 左右两边的值相等.
(1 )t=-2 (2) t=2
(先让学生口头检验,再叫学生说说得出结论的过程,进而引导学生一步步书写(1)步骤,学生齐答教师需要先板书步骤,完成后投影出示步骤,接下来让学生上黑板书写(2)的验根过程)
解: (1)把x=-2代入方程:
左边= 2×(-2)+1=-4+1=-3
右边=7-(-2)=7+2 =9
∵左边≠右边
∴x=-2 不是原方程的解.
6.尝试-检验法(光会验根还不够,我们还应学习怎样找到一元一次方程的根,大家请看这个问题)
一射箭运动员两次射击的成绩都是整数,平均成绩是6.5环,其中第二次射箭的成绩为 9环,问第一次射箭的成绩是多少环?
设第一次的射箭成绩为x环,可列出方程 。
(请一学生回答得出的方程 )
思考:同学们,请猜想一下,结合实际,x能取哪些数呢?
(学生可能会说出0.到10所有整数都可能若说不出再引导)(每次射箭最多是10环,
而且只能取整数环)(要检验11次有点多,能不能再把范围缩小一点呢?引导学生对比已知的一次成绩与平均成绩的高低,从而得出未知成绩应该比平均成绩小,学生得出可以代入检验7次):由已知得,x为自然数且只能取0,1,2,3,4,5,6.把这些值分别代入方程左边得。(让学生检验得到根,接下来课件梳理验根的结果)
【说教材】
《认识一元一次方程》是北师大版七年级(上册)第五章第一节的内容,它是在学生学习了有理数的运算、代数式的基础上,首次接触有关方程的知识,是中学阶段应用数学知识解决实际问题的开端,也是今后学习用一次方程组、一元二次方程解决实际问题的基础,是学生体会数学价值观、增强学数学、用数学意识的重要题材。
《认识一元一次方程》提取于学生的切身体会,其中渗透了数学结构模式思想和归纳、化归等数学思想方法,是学生必备的数学修养和素质。本课时是一元一次方程第一课时的内容,设计了切合学生兴趣的问题情境,从而激发了学生的好奇心和主动学习的欲望。主动探究情境中包含的数量关系,体会方程是刻画实际问题的一个有效的数学模型。
【说教学目标】
(1)知识与技能目标
①归纳出一元一次方程的概念;
②感受方程作为刻画现实世界有效模型的意义。
(2)过程与方法
①经历和体验运用方程解决实际问题的过程,初步认识运用方程解决实际问题的.关键是建立相等关系,提高思维水平和应用数学知识分析问题、解决实际问题的能力。
②让学生理解从特殊到一般的思维方法,培养学生综合分析问题的能力及数学问题的严密性。
③尝试在方程建模过程中,多角度地思考问题。
(3)情感、态度与价值观
①体会数学与社会的密切联系,了解数学的价值。
②敢于面对挑战、大胆尝试,从中获得成功的体验,激发学习数学的热情。
【教学重点】
通过丰富的实例,建立一元一次方程,展现方程是刻画现实生活的有效数学模型。
【教学难点】
根据具体问题中的数量关系列一元一次方程
【说教学方法】
给学生提供探索和交流的空间。使整个数学活动生动活泼、成为一个主动和富有个性的学习过程。借助多媒体辅助教学,通过有色彩、有动感的画面,提高学生学习数学的兴趣,提高学习的效果。
【说教学过程】
环节一:阅读章前图
内容1:请一位同学阅读章前图中关于“丟番图”的故事。(大约1分钟)
丢番图(Diphantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途。
目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。
内容2:回答以下3个问题:(大约4分钟)
1、你能找到题中的等量关系,列出方程吗?
2、你对方程有什么认识?
3、列方程解决实际问题的关键是什么?
目的:第一个问题考查学生根据等量关系列方程的能力,对于解方程这里不做要求。第二个问题意在鼓励学生用自己的语言对方程进行描述,锻炼学生的数学语言表达能力。第三个问题强调列方程解应用题的关键是:寻找等量关系。
环节二:情境引入
内容:与学生共同分析完成课本呈现的五个情境:
(1)小游戏:猜年龄
第一个问题学生可通过算术方法和方程两种方法解决;
第二个问题只能通过方程解决,体现方程的进步性。
(2)小颖种了一株树苗,开始时树苗高为40c,栽种后每周树苗长高约5c,大约几周后树苗长高到1?
如果设x周后树苗长高到1,那么可以得到方程:40+5x=100
实际问题与一元一次方程课件
一元一次方程是七年级上学期第三章的内容,学好这一章,是整个初中阶段学习实际问题与二元一次方程组、实际问题与一元二方程、实际问题与分式方程的基础,甚至是学习函数的基础,因为上面提到的这些内容都是要弄清题中的数量关系。下面是实际问题与一元一次方程课件,希望对大家有帮助。
一、内容和内容解析
1.内容
建立方程模型解决销售中的盈亏问题.
2.内容解析
随着市场经济的发展,经营活动越来越被人们重视.数学教学适当结合这方面问题,可以增加学生的经济知识和经营意识.乍看这个问题时,因为两件衣服的售出价格相同,其中一件盈利25%,另一件亏损25%,所以容易感觉“总的结果是不盈不亏”.但是经过用一元一次方程进一步探究,可知总的结果是亏损.这说明:直觉有时并不可靠,正确运用数学知识分析问题可以减少判断错误.通过这个问题让学生经历一个从定性考虑(估算)到定量考虑(计算)的过程,有助于增强他们对数学的应用价值的认识.通过这个问题的解决过程让学生进一步体验“建模解题”的过程,渗透建模思想.
选择了具有一定综合性的问题(“销售中的盈亏”),设置了探究点,引导学生利用方程为工具进行具有一定深度的思考,具有承上启下的作用,把全章所强调的以方程为工具把实际问题模型化的思想提到新的高度.安排这节课的目的在于:一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高,为以后几节列方程解生活中的实际问题的应用题埋下伏笔.
基于对教材的分析,本节课的教学重点是:建立实际问题的方程模型,让学生知道商品销售中的盈亏的算法.通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.
二、目标和目标解析
1.目标
(1)让学生学会分析盈亏问题中的数量关系,并能正确列出方程.
(2)在解决问题的过程当中提高学生分析问题、解决问题的能力.
(3)通过对盈亏问题的探索,让学生体验数学与生活的密切关系,增强学数学、用数学的意识.
2.目标解析
达成目标(1)的标志是:进一步理解进价、售价、利润、利润率之间的数量关系.结合估算,列出一元一次方程解决销售中的盈亏问题,并能解释结果的实际意义及其合理性,掌握解决“盈亏问题”的一般思路.
达成目标(2)的标志是:通过对盈亏问题的探索,进一步体会“数学来源于生活,且服务于生活”的辩证思想.培养学生的建模能力,分析问题、解决问题的能力.
达成目标(3)的标志是:培养学生勤于思考、乐于探究、敢于发表自己观点的.学习习惯,从实际问题中体验数学的价值.
三、教学问题诊断分析
从学生学习的心理基础和认知特点来说,学生已经在前一阶段的学习中具备了根据实际问题建立一元一次方程和解一元一次方程的一般步骤的基础,能进行数学建模和简单的解释应用.虽然七年级学生对消费问题比较热心,但由于年纪太小,缺少生活经验,由于本问题的背景和表达都比较贴近实际,其中有些数量关系比较隐蔽,可能会产生一定的障碍.因此,对本节课的设计是采用自主探究与合作交流相结合的模式,在本节的教学中,引导学生从身边的问题进行讨论,并更多地进行互相交流,在主动学习、探究学习的过程中获得知识.
基于对学情的分析,本节课的教学难点是:找盈亏问题中的相等关系,在探究中正确地建立方程.
四、教学过程设计
1.创设情境,回顾旧知
同学们平时有没有到商场买过东西?我们来看几张图片,什么叫做五折优惠?对你有吸引力吗?打折是不是一定就亏本了呢?打折不一定亏本,这只是商家的一种促销方式,那么商家在销售中究竟是盈利还是亏本?今天我们就一起来讨论这个问题(教师板书课题――销售中的盈亏问题).
师生活动:教师提出问题,引发学生思考,结合具体问题理解它们之间的数量关系.
问题1:同一件衣服,进价200元,当售价为260元时,利润是多少?当售价是160元时,利润又是多少?
学生回答,并说出计算过程.
教师:当售价>进价时,就是盈利,这时利润是正值;
当售价<进价时,就是亏损,这时利润是负值.
所以判断销售中是盈利还是亏损,关键是判断利润是正值还是负值.
问题2:甲乙两件衣服,甲进价为50元,乙进价为100元,利润都是20元,请问在成本一定的情况下,商家会选择购进哪件衣服的数量更多呢?
学生分析、讨论.
教师:这里涉及进价和利润的一个比值问题,出现的一个新名词:利润率.
利润率=■×100% 利润率是个百分数.
利润=进价×利润率=售价-进价(黄色笔板书)
问题3:一件衣服进价80元,利润率是20%,它的售价是多少?
师生活动:分析已知量和未知量,引导学生学会利用利润=售价-进价=利润率进行求解.
设计意图:教师通过从学生比较熟悉的身边问题开始,激发学生的探究欲望,给学生一种轻松的心理氛围,易于学生学习新知识,为本节课的继续探索做好准备,也让学生注重观察生活,知道数学来源于生活,应用于生活.
2.探究新知,解决问题
出示探究1:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或者不盈不亏?
问题1:你估计盈亏情况是怎样的?
师生活动:教师让学生读题,引导学生猜想:你认为是盈还是亏?还是不亏不盈?学生纷纷发表个人见解时,教师先不表态,待学生说完后引导学生进一步思考下面的问题.
设计意图:通过这个问题让学生经历一个从定性考虑(估算)到定量考虑(计算)的过程,有利于增强他们对数学的应用价值的认识. 问题2:怎么判断是盈利还是亏损?
师生活动:教师提出问题,放开让学生谈个人的想法,允许学生交流、争论.引导学生总结:盈利还是亏损要看这家商店买进这两件衣服花的钱数与卖出这两件衣服的钱数的大小.如果进价大于售价则亏损,反之就盈利,相等则不盈不亏.
设计意图:引导学生总结判断盈亏的方法,提高学生分析总结的能力.
问题3:两件衣服的进价各是多少元?
师生活动:教师先引出问题,引导学生填空,学生先独立思考如何利用一元一次方程解决问题,教师巡视,然后小组合作交流解决问题,小组代表展示成果,师生共建方程模型,结合学生展示师生共同进行点评.
设计意图:引导学生用方程来解决问题,用填空的形式启发诱导,设计必要的铺垫,使学生初步感受“数学建模”的方法,能更好地发展学生有条理地进行思考和表达,从而突破本节课的难点.
3.及时反馈,巩固应用
问题1.某商店有两种书包,每个小书包比大书包的进价少10元,而它们的售后利润额相同.其中,每个小书包的盈利率为30%,每个大书包的盈利率为20%,试求两种书包的进价.
问题2.某商场把进价为800元的商品按标价的八折出售,仍获利20%,则该商品的标价为多少元?
师生活动:教师大屏幕出示题目,学生思考并独立完成,教师巡视,学生展示成果,其他学生进行适当补充、评价,教师给予适当点评。
设计意图:及时反馈,检测学生掌握情况,培养学生用数学的意识,巩固所学方法,渗透数学建模思想.
4.应用迁移,拓展提高
问题:一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆车仍获利50元,这种自行车每辆的进价是多少元?
生活动:教师大屏幕出示问题,学生先独立思考,教师巡视,然后小组合作交流解决问题,小组代表展示成果,其他学生可以评价补充,教师进行适当点评。
设计意图:提高学生应用所学知识分析问题、解决实际问题的能力,并养成用数学的思维和方法去解决生活中遇到的实际问题的能力。
5.畅谈收获,反思提高
问题:通过本节课的学习你有哪些收获?你有什么疑惑?
师生活动:教师引导学生从知识方法和学习体会与感受两层稍加思考后充分发表自己的见解.教师进行适当的点评,并着重指出本节课的重点是利用公式列出等量关系.
设计意图:由学生总结、归纳、反思,加深对知识的理解,获得解决问题的经验,培养学生良好的认知习惯、归纳总结能力和反思的能力.让学生真正意识到数学来源于生活,服务于生活,我们要努力学好数学,增强学生的求知欲.
6.布置作业
必做题:完成《能力培养》72-74页.
选做题:在本课探究的第一个问题中,假如你是商店老板,你能否设计一种方案,适当调整售价,使得销售这两件衣服时不亏本呢?
师生活动:教师布置作业,学生课下完成.
设计意图:必做题巩固所学知识,强化基本技能,检验学生掌握知识的情况,发现和弥补教与学中的遗漏与不足.选做题是对学生的一个挑战,培养了学生善于思考、勇于探索的精神,是为了使不同的人在数学上得到不同的发展.
五、目标检测设计
某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,这次买卖中,这家商店总的是盈利还是亏损,或者不盈不亏?
设计意图:考查学生解决销售中的盈亏问题的掌握情况.
解一元一次方程数学课件
教学目的:
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
重点、难点
1、重点:弄清应用题题意列出方程。
2、难点:弄清应用题题意列出方程。
教学过程:
一、复习
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
例1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?
先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。
分析:设应从A盘内拿出盐x,可列表帮助分析。
等量关系;A盘现有盐=B盘现有盐
完成后,可让学生反思,检验所求出的解是否合理。
(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)
培养学生自觉反思求解过程和自觉检验方程的'解是否正确的良好习惯。
例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
引导学生弄清题意,疏理已知量和未知量:
1.题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了400块。
2.求什么?
初一同学有多少人参加搬砖?
3.等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=400
如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程
6x+8(65-x)=400
也可以按照教科书上的列表法分析
三、巩固练习
教科书第12页练习1、2、3
第l题:可引导学生画线图分析
等量关系是:AC十CB=400
若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再
由等量关系就可列出方程:
6(65-x)+8x=400
四、小结
本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
五、作业
解一元一次方程2课件
解一元一次方程2课件
一、课题名称:
去括号与去分母
二、教学目的和要求:
1、知识目标
(1)通过对比运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更简洁明了,省时省力;
(2)掌握去括号解一元一次方程的方法,能熟练求解一元一次方程(数字系数),并判别解的合理性。
2、能力目标
(1)通过学生观察、独立思考等过程,培养学生归纳、慨括的能力;
(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。
3、情感目标
(1)激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;
(2)培养学生严谨的思维品质;
(3)通过学生间的相互交流、沟通,培养他们的协作意识。
三、教学重难点:
重点:
去分母解方程。
难点:
去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
四、教学方法与手段:
运用引导发现法,引进竞争机制,调动课堂气氛
五、教学过程:
1、创设情境,提出问题
问题1:
我手中有6,x,30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编的又快有对。
学生思考,根据自己对一元一次方程的理解程度自由编题。
问题2:
解方程5(x-2)=8
解:
5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。
问题3:
某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
2、探索新知
(1)情境解决
问题1:
设上半年每月平均用电x度,则下半年每月平均用电____度;上半年共用电____度,下半年共有电_____度。
问题2:
教室引导学生寻找相等关系,列方程。
根据全年用电15万度,列方程,得6x+6(x-2000)=150000.
问题3:
怎样使这个方程向x=a的形式转化呢?
6x+6(x-2000)=150000
↓去括号
6x+6x-12000=150000
↓移项
6x+6x=150000+12000
↓合并同类项
12x=162000
↓系数化为1
x=13500
问题4:
本题还有其他列方程的方法吗?
用其他方法列出的方程应怎样解?
设下半年每月平均用电x度,则6x+6(x+2000)=150000.
(学生自己进行解决)
归纳结论:
方程中有带括号的式子时,根据乘法分配率和去括号法则化简。 (见“+”不变,见“—”全变)
去括号时要注意:
(1)不要漏乘括号内的任何一项;(2)若括号前面是“—”号,记住去括号后括号内各项都变号。
(2)解一元一次方程——去括号
例题、解方程:
3x—7(x—1)=3—2(x+3)。
解:
去括号,得3x—7x+7=3—2x—6
移项,得3x—7x+2x=3—6—7
合并同类项,得—2x=—10
系数化为1,得x=5
3、变式训练,熟练技能
(1)解下列方程:
(1)10x-4(3-x)-5(2+7x)=15x-9(x-2);
(2)3(2-3x)-3[3(2x-3)+3]=5;
(3)2 (x+1)+3(x+2)-3=-4(x+3).
(2)学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
(3)学校田径队的.小刚在400米跑测试时,先以6米/秒的速度跑完了大部分的路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?
4、总结反思,情意发展
(1)本节课你学习了什么?
(2)本节课你有哪些收获?
(3)通过今天的学习,你想进一步探究的问题是什么?
可以归纳为如下几点:
①本节主要学习用去括号的方法解一元一次方程。
②主要用到的思想方法是转化思想。
③注意的问题:
括号前是“—”号的,去括号时,括号内的各项要改变符号,乘数与括号内多项式相乘,乘数应乘遍括号内的各项;在实际问题中,要会找等量关系。
5、布置作业
(1)必做题:
课本第98页习题3.3第1、2题。
(2)选做题:
①解方程:
3x-2[3(x-1)-2(x+2)]=3(18-x)。
②杭州新西湖建成后,某班40名同学划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?
六、课后小结:
本节课突出数学的应用意识。教师首先用学生感兴趣的游戏和实际问题引入课题,然后逐步给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开
思考、讨论,进行学习。
强调学生主体意识的体现,在设计中,教师始终把学生放在主体的地位,让学生通过尝试得到解决,归纳出去括号解方程的特点,让学生通过合作与交流,得出问题的不同解答方法。
从设计上体现学生思维的层次性。教师首先引导学生尝试列出含未知数的式子,寻找相等关系列出方程。
一元一次方程课的课件
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则:
把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的'因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).
六、用方程思想解决实际问题的一般步骤
1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2. 设:设未知数(可分直接设法,间接设法)
3. 列:根据题意列方程.
4. 解:解出所列方程.
5. 检:检验所求的解是否符合题意.
6. 答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1. 和、差、倍、分问题:
增长量=原有量×增长率 现在量=原有量+增长量
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.
2. 等积变形问题:
(1)“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
(2 )常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.
①圆柱体的体积公式 v=底面积×高=s·h=πr2h
②长方体的体积 v=长×宽×高=abc
3. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4. 数字问题
(1)要搞清楚数的表示方法:一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a, 百位数可表示为100c+10b+a. 然后抓住数字间或新数、原数之间的关系找等量关系列方程(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5. 工程问题:
工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1
6.行程问题:
路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题: 快行距+慢行距=原距
(2)追及问题: 快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.
7. 商品销售问题
(1)商品利润率=商品利润/商品成本×100%
(2)商品销售额=商品销售价×商品销售量
(3)商品的销售利润=(销售价-成本价)×销售量
(4)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.有关关系式:商品售价=商品标价×折扣率
(5)商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
8. 储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
(3)利润=每个期数内的利息/本金×100%
导学目标
1.使学生经历探索打折销售中的已知量和末知量之间的相等关系,列出一元一次方程解简单的应用题;
2.使学生进一步了解列出一元一次方程解应用题这种代数方法及其步骤;培养学生的分析问题和解决问题的能力。
导学重点:用列方程的方法解决打折销售问题;
导学难点:是准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系。
温故
一件衣服标价是200元,现打7折销售。问:买这件衣服需要多少钱?若已知这件衣服的成本(进价)是115元,那么商家卖出这件衣赚了多少钱?
链接:
1、把下面的“折扣数”化成百分数“六折”“七五折”“八八折”
2、你是怎样理解某种商品打“六折”出售的'??
公式:
利润=卖出价-成本价
(或者:利润=销售价-成本价)
利润率=利润成本×100%
(3).算一算:
1。原价100元的商品打8折后价格为元;
2。原价100元的商品提价40%后的价格为元;
3。进价100元的商品以150元卖出,利润是元,利润率是;
4.原价X元的商品打8折后价格为元;
5。原价X元的商品提价40%后的价格为元;
6。原价100元的商品提价P%后的价格为元;
7。进价A元的商品以B元卖出,利润是元,利润率是。
新知
例.一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?
想一想:15元利润是怎样产生的?
拓展:一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这种夹克每件的成本价是多少元?
某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25%,第二件亏损25%,则该商店卖这两件衣服总体上是赚了,还是亏了?这二件衣服的成本价会一样吗?算一算?
新知:
例1:某文艺团体为“希望工程”募捐组织了一次义演,售出1000张票,筹得票款6950元。学生票5元/张,成人票8元/张。问:售出成人和学生票各多少张?
问题一:上面的问题中包含哪些等量关系?
成人票数+学生票数=1000张(1)
成人票款+学生票款=6950元(2)
问题二:设售出的学生票为x张,填写下表
学生成人
票数/张
票款/元
设所得学生票款为y元,填写下表:
学生成人
票款/元
票数/张
根据相等关系成人票数+学生票数=1000张,列方程得:
如果票价不变,那么售出1000张票所得票款可能是6930元吗?为什么?
拓展:
1、小明用172元钱买了两种书,共10本,单价分别为18元、10元。每种书小明各买了多少本?
2.一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元巧克力每块3元,问班主任分别买了多少果冻和巧克力?
3.我区某学校原计划向内蒙古察右后旗地区的学生捐赠3500册图书,实际共捐赠了4125册,其中初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%.问:初中学生和高中学生原计划捐赠图书多少册?
解一元一次方程去分母课件
一、教学目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备
课件
五、教学过程(师生活动)
(一)情境引入
教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
(二)学习新知
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);
(2)根据问题中的相等关系,列出方程.
(三)举一反三讨论交流
1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的`优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、
建议按以下的顺序进行:!
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54; (2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评.
解:(1)x+18=54;(2) (27-x)=4x.
列出方程后教师说明:“4x\"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1) 列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的差的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1) 12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.
(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、本节课我们学了什么知识?
2、你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、必做题:第84--85页习题3.1第1,5题。
2、选做题:根据下列条件,用式表示问题的结果:
(1) 一打铅笔有12支,m打铅笔有多少支?
(2) 某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3) 根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。