组合图形的面积教学设计及反思(组合图形的面积教学反思优缺点及改进措施)

篇1:《组合图形面积》教学反思

教材分析

组合图形的面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。

学情分析

在三年级时,学生已经学习了长方形与正方形的面积计算,在本册的第二单元,学生又学习了平行四边形、三角形与梯形的面积计算,所以学习的基础是没有问题的,关键是引导学生学会分析如何将组合图形转化为已学过的基本图形,一般来说,将组合图形的难度控制在通过一次割或补就能转化为两个基本形的面积计算。

教学目标

认知目标:能运用信息的手段,新的学习方法来完成数学知识的学习。

能力目标:能根据同伴所提供的数据来完成一份面积统计表,会使用测量工具及计算工具进行图形面积的计算

发展目标:引导学生利用网络,学会互相协作学习

教学重点和难点

通过运用电脑来完成测量和计算的过程,以及分工合作时信息的传递,发展学生的自主学习能力和协作学习能力。

篇2:《组合图形面积》教学反思

组合图形面积是学生学习了长方形、正方形、平行四边形、三角形、梯形的面积的基础上进行教学的,是日常生活经常需要解决的问题。在本节课的设计和实施中,我根据新课程的理念,进行了大胆地尝试,达到了良好的教学效果。主要有以下几点:

一、复习铺垫,沟通新旧知识的联系

组合图形的面积计算,需要在长方形、正方形、平行四边形、三角形和梯形面积计算的基础上进行。在学习新知之前,我组织学生通过复习,回忆旧知,从学生已有的经验和已有的知识背景出发,找准新知的最佳切入点,为知识的迁移做好铺垫。

二、自主探索,感受解题策略的多样性

学生是学习的主体,只有让学生亲身经历知识的形成过程,这样学得的知识才最深刻。教学中,我放手让学生自主探究,合作交流,亲身经历计算组合图形面积的过程,重视把学生的思维过程充分暴露出来。在自主探索、解决问题中感受解题策略的多样性。

三、有效利用多媒体,提高课堂效率

运用多媒体等现代化的教学手段,能把教学过程组织得更生动、形象,有利于学生进行总结归纳、抽象概括,主动参与知识的形成过程。教学开始,我用动态演示几个基本图形的组合,巧妙地让学生理解了组合图形的定义;理解求组合图形面积的多种方法时,我用生动地分解组合图形,让学生一目了然,加深了学生对知识的理解和掌握。

四、让数学回归生活,提高实践能力

心理学研究表明,当学习内容与学生熟悉的生活实际越贴近,学生自觉接纳知识的程度就越高。教学中,我向学生展示了生活中的组合图形,设计了让学生解决“做一面中队旗至少要用多少布”的生活问题,课后巩固环节让学生运用所学的知识帮助老师解决生活中铺地板的实际问题,学生从周围熟悉的事物中体验、感悟了数学,感受到数学就在我们身边。同时,激发了学生从生活中寻找数学问题的兴趣,提高了学生解决实际问题的能力。

篇3:《组合图形面积》教学反思

《组合图形的面积计算》是学生在学习了平行四边形、三角形、梯形的面积基础上,通过拼补的方法把组合图形转化成我们会计算面积的2个图形的面积进行计算,方法有很多种,学生选择适合自己的就可以。

本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。

通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个部分及其相互关系的功能,才能取得最佳课堂教学效果。在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。本堂课创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,先不给出数据,给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“根据最少的数据,寻求最佳求面积的方法”这个思维策略思想,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。教材在这儿已经完全成为学生驾驭学习的工具和成长的阶梯了,真正是为学生的学习服务,这也许就是教材重组的意义所在吧!

课堂也存在不足,比如说对例题学习可设计一些思考提示,让学生在思考的基础上尝试解决,学生有需要的话点击提示,这样能使学生的思维处于积极状态,获得成功的情感体验。在后面的练习设计中,也可围绕一定的问题情境设计一些联系实际的问题,发挥学生的主观能动性,以学生自主探索,寻找解决问题的途径,真正将发现问题,解决问题的成就感还给学生。

篇4:《组合图形面积》教学反思

1、例1第二种算法教学失败。

教材例1共呈现两种不同的算法,第一种算法直接利用插图中的数据,而且还列出了算式,学生只需完成计算即可。第二种算法教材只提示了可以把它分成两个完全一样的梯形,列式则完全放手让学生独立尝试。由于这种解法梯形的下底、高都无法直接由图中得出,因此步骤较多。在教学中,我是引导学生们先分析得出第一种解法并正确列出算式后再开书完成填空,并根据方法提示,尝试写出第二种算法。殊不知真正需要我引导分析的却是第二种。课下与学生困生交谈中了解到其实在昨天预习时,第一种方法我都已经会了,但今天听您讲了第二种算法,我还是不明白。

我也困惑,当学生已经掌握既简单又易懂的方法后,他们为什么还要去探索这么复杂的算法呢?没有动力的探索又能激起学生多大的学习热情呢?

【再教设计】

再教时我会先引导学生先分析第二种解法,并列出正确算式,然后再放手让学生探索还有没有更简洁更易懂的方法。

2、作业的格式教学失败。

教材列的是综合算式,我在指导练习时也是按教材格式书写的板书。但在作业中,我却要求大家都用分步解答。由于我的示范作用不到位,所以作业虽然正确率较高,但格式却是各具特色,很不统一。在这一失误中,让我常常体会到其身正,不令而行;其身不正,虽令不从。

其实我要求学生用分步解答,主要基于以下几点考虑:1、分步列式时是先写字母公式再代入求值,这样不仅可以巩固所学面积计算公式,而且可以有效防止学生列式出错。2、在考试中如果列综合算式,无论是写错一个数据还是少了2均视为全错。可如果列分步则不同,可以按步骤适当给分。(呵呵,有点应试教育的思想在作祟)。

【再教设计】

要求学生列分步解答,那么教学时我一定要按照自己所规定的格式为学生作好示范,并向学生解释这样做的理由。只有当我的理由足以使他们信服,我的行为足以成为他们的表率时,我想推进起来可能会顺畅一些吧

困惑:当把图形变形后的列式该如何评价?

有学生将例2第二种算法中的两个完全一样的梯形通过旋转平移变成一个平行四边形。他们的列式与第一种算法的步骤一样多,也只需要4步。即(5+2+5)(52)这种列式可行吗?

组合图形是由几个简单的图形组合而成的,一般是要将若干个简单图形的面积相加(或相差)求的,那么这种经过转化只需用简单图形面积公式求的结果的方法可行吗?

篇5:《组合图形面积》教学反思

组合图形面积是学生学习了长方形、正方形、平行四边形、三角形与梯形的面积计算的基础上进行教学的,组合图形面积的教学,是这些知识的发展和延伸,也是日常生活中经常需要解决的问题。

在教学过程中,主要让学生在操作、探究、合作的过程中,认识组合图形的形成及其特点,让学生自主解决组合图形面积计算的问题,并在解决问题的过程中总结出组合图形面积计算的一般方法,并能运用所学知识解决日常生活中一些组合图形面积的计算问题。

教学活动开始时,让学生以小组合作的形式,用认识过的各种平面图形拼成自己喜欢的图形,既调动了学生的学习积极性,又为学生认识组合图形和后面分割组合图形做好了充分准备,我认为自己对此环节的设计比较好,在后面让学生判断是否是组合图形和分割组合图形的效果中得到了体现。

在教学组合图形面积的计算方法时,首先是让学生自己对所求的组合图形的面积进行计算,在学生交流的方法的过程中,使学生自觉意识到计算组合图形的面积可以用分割或填补的方法,而且在分割或添补时要根据已知条件进行,分割或添补时要尽量使计算简单。教学这一环节时,我认为自己处理得是环环相扣,步步逼近,学生理解得也很清楚。

但由于课上到还剩十分钟时,突然停电,对于“组合图形不能随意分割”和“添补”的方法没有充分展示,时间也比较匆忙,没有照顾到学困生,这是这节课的一个小小遗憾,在今后的教学设计时还应该考虑意外情况的出现。除此之外,整个课堂时间的把握也稍稍有点欠缺,课堂小结的时间占用了课间一点时间,主要是在前面讨论用多种方法计算组合图形面时花得时间过长。

总的来说,本节课还是充分体现了自己的设计意图,比较好的体现了本教学内容的教学目标,有较好的教学效果,自己感觉比较满意。对于教学中的不足,自己以后一定会认真思考,找出比较合理的办法来克服课中的不足。

篇6:《组合图形面积》教学反思

《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元第一课时的内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上安排学习的。

本节课,重在引导学生结合实际情境和具体的图形来探索组合图形面积的计算方法,不仅能够巩固已学的基本图形面积的计算方法,培养学生的分析问题和解决问题的能力,而且也有利于发展学生的空间观念,提高学生的综合能力,为以后立体图形的学习做好铺垫。在本节课的教学过程中,我注重了以下几个方面

1、创设情景,激发学习兴趣。

好的开始等于成功的一半。本课一开始我就从介绍学生所熟悉的笑笑和她家的新房入手,进而出示房屋平面图,让学生观察得出这个图形是由几个已学过的图形组合而成的,接着再出示一组生活中的组合图形,使学生充分感受到数学与生活的密切联系,激发学生的学习兴趣,为下一步探究组合图形做好铺垫。

2、让学生在自主探索的基础上进行合作交流。

本节课,我组织学生以小组为单位,采用小组合作的学习方式,让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

学生在探索的过程中,放手让他们拼画图,分割图,并自行解决提出的问题。让学生在画一画,分一分的活动中,初步形成组合的概念,从而对组合图形的意义有了更深一层的理解。

3、注重方法的指导与总结。

组合图形,从不同的角度认识,每个图形均可分为相应的几个部分。学生在解答中也将产生不同的思考方法。因此,在本课的教学过程中,我十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设小组合作和自主探索的情境,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法,让学生通过一题多解的训练,培养学生的发散思维,体验成功的愉悦

总的来说,本节课的'教学始终贯穿着学生的自主参与,我只是辅助学生参与到整个过程中,学生由探究到发现到总结,思维活跃,兴致勃勃。课堂成为师生、生生的互动过程,培养了学生自主探究、合作学习的能力,在数学知识技能的形成、情感态度的发展、思维能力的培养等方面均取得了较好的效果。

当然,每节课都不可能做到十全十美,本节课,我认为也还有很多细节的地方需要改进,比如教师语言的启发性,小组合作及学生动手操作时方法的指导,以及学生汇报的形式等等,这都有待于在今后的教学中进一步加以完善。

篇7:组合图形的面积教学设计

教学目标:

知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

教学重点:

理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

教学难点:

根据组合图形的.条件,有效地选择汁算组合图形面积的方法。

教学方法:

动手实践、自主探索、合作交流。

教学准备:

多媒体、

师:准备各种平面图形。

生:七巧板、简单图形学具、少先队中队旗实物。

教学过程:

一、情境导入

1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)

2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。

通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)

二、互动新授

l.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。

这些组合图形里有哪些是学过的图形?同学们试着找一找。

小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。

汇报时学生可能对相同的图形有不同的组合方法,特别是对队旗的组成,在此要鼓励学生发表不同的看法。

学生可能会想到:队旗是由两个梯形组成,或是由一个长方形和两个三角形组成,还可以看成由一个梯形和一个三角形组成。小房子的表面是由一个三角形和一个正方形组成的。

风筝的面是由四个小三角形组成的。

2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。

学生可能会想到:厨房里的三角架、房子的分布图、桌子等。

3.引导思考:关于组合图形,你还想研究它的什么知识?

学生可能想到研究它的周长,也可能想到研究它的面积。

适时点拨:它们的周长就是围成图形的所有线段的长度。这节课我们重点研究组合图形的面积。

4.出示教材第99页例4:一间房子侧面墙的形状图。

引导学生观察图并思考:怎样计算出这个组合图形的面积?

组织学生小组合作学习,说一说是怎样分的,然后再算一算。

集体汇报,学生可能会想到两种方法:

(1)把组合图形分成一个三角形和一个正方形,先分别算出

三角形和正方形的面积,再相加。

教师可将学生的分法用多媒体展示:

并根据学生回答板书:

5×5+5X2÷2

=25+5

=30(m2)

(2)把这个组合图形分成两个完全一样的梯形。先算出一个梯形的面积,再乘2就可以了。

教师可将学生的分法用多媒体展示:

并根据学生回答板书:

(5+5+2)×(5÷2)÷2×2

=12×2.5÷2×2

=30(m2)

教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。

三、巩固拓展

1.完成教材第101页“练习二十二”第1题。

先让学生对组合图形分一分,说一说是如何分割的,再计算。

学生可能会把组合图形分成一个平行四边形和一个三角形,也有的可能分成两个三角形和一个梯形。这时要让学生对这两种方法进行比较,从而选择较简便的方法解决问题。

2.完成教材第101页“练习二十二”第2题。

本题图形是队旗,在例题里已经对其进行了简单的分析,这里可以让学生思考“能用几种方法计算”,拓展学生的思维。

学生可能会想到:把队旗分成两个梯形,求两个梯形面积的和;或者把队旗分成一个长方形和两个三角形,求它们的面积之和;或者用一个长方形的面积减去一个三角形的面积求队旗的面积。

3.完成教材第101页“练习二十二”第3题。

先独立思考如何计算,再自主算一算。通过这两道题的练习,让学生知道计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

四、课堂小结

师:这节课你学会了什么?有哪些收获?

引导总结:

1.由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

2.求组合图形的面积时,可以把它分割成我们学过的简单图形,计算出简单图形的面积后再相加。

3.计算组合图形的面积时,不只是能用加法计算,有时也可以用一个图形面积减去另一个图形的面积。

板书设计:

篇8:组合图形的面积教学设计

由两个或两个以上的简单图形组成的大的不规则图形

叫组合图形。

5×5+5×2÷2(5+5+2)×(5÷2)÷2×2

=25+5=12×2.5÷2×2

=30(m2)=30(m2)

篇9:组合图形的面积教学设计

教学目标:

1、在自主探索的活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

教学重点:探索组合图形面积的计算方法。

教学难点:理解并能有效地选择计算方法并进行正确的解答。

学生分析:本节课是在学生已经掌握长方形、正方形、平行四边等基本图形面积计算方法的基础上进行的。在进行本节课的学习之前,学生运用转化思想进行过平行四边形、三角形、梯形面积计算方法的探索。在教材第二单元“比较图形面积”一节中学生已初步感受到割补方法在图形面积计算中的应用。

教学过程:

一、复习

课件出示一些图形:三角形、正方形、平行四边形、梯形。

教师:这些图形都是我们学过的图形,能说一说怎样计算它们的面积吗?然后,请学生根据图中的数据进行计算。

过渡:这些图形都是我们学过的能直接利用公式进行面积计算的基本图形,这样的图形面积你会算吗?

二、探索解决组合图形面积计算的问题。

1、课件出示计算客厅面积的问题,并让学生说说这个图形的特点。

2、让学生先估算客厅这个组合图形的大概面积。

3、小组探索,合作寻求计算方法。

请大家独立思考并交流算法,然后小组合作、分工完成。(教师巡视,及时了解学生典型的算法。)

4、汇报、交流算法。

选择几种较有代表性的算法,让学生上台把图片贴在黑板上,并写出计算过程。并为学生的各种想法标出序号。

结合学生的发言,引出并板书:分割法添补法

以上几种方法,哪种比较简单?

5、客厅地面面积与我们以前所学过的图形的面积计算有什么区别呢?揭示课题:组合图形的面积。

三、练习

1、下面各个图形由哪些基本图形组成的?(课后练一练第1题)

2、一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?(课后试一试)

3、实际应用。(课后练一练第2题)

四、课堂小结:

1、你在生活中见到过哪些组合图形的应用呢?

2、今天学习了组合图形的面积,你认真在计算其面积时,要如何做或注意些什么?

篇10:组合图形的面积教学设计

教学内容:义务教育课程标准实验教科书小学数学五年级上册第92至93页的内容。

教学目标:

1、认识组合图形,会把组合图形分解成已学过的平面图形。

2、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

3、培养学生的观察能力和动手操作的技能,发展空间观念,提高思维的灵活性。

4、通过拼组图形,使学生感受数学与现实生活的密切联系,体会数学带给大家的生活美。

教学重点:探索并掌握组合图形的面积计算方法。

教学难点:理解并掌握组合图形的组合及分解方法。

教具准备:多媒体课件

学具准备:各种有色卡纸、胶水、剪刀等。

教学过程:

一、复习铺垫:

同学们,老师想知道你们已经学会了计算哪些平面图形的面积?

二、创设情境,激趣导入。

根据已知条件进行分解

师:大家学会的知识可真多。为了奖励你们,老师请你们去欣赏一些美丽的建筑物,好吗?请同学们欣赏时认真想想:你发现了什么?(课件展示)

师:同学们观察得真仔细!除了这些外,老师也发现了一些这样的图形:

(课件展示)

我们学过这些图形吗?

请同学们认真观察,这些图形有什么共同的特征?

左边由几个图形组成?右边呢?大家想想看一个图形还可能是由几个图形组成的呢?

像这些由几个简单的图形组合而成的图形,我们给它取个什么名字好呢?你是怎么知道的?(板书:组合图形)这节课你们想探究组合图形的哪些知识?

三、自主学习,探究新知。

1、组合图形的分解:

师:组合图形在日常生活中有着广泛的应用,我们一起来认识生活中的组合图形。

(1)电脑出示书第92页的四幅主题图。

师:认真观察这四幅图,它们分别是由哪些简单图形组成的?请同学们打开书本92页,先找一找,然后在四人小组内互相讨论。比比看哪一个小组的分法最简单?

(2)小组讨论。

(3)让学生举例说说生活中的组合图形。

同学们,开动脑筋想想:生活中哪些地方还有组合图形?

2、自主解决例题。

师:同学们真棒呀!知道生活中存在着很多美丽的组合图形,那如果老师想知道这些组合图形有多大,实际上是求什么?(板书:的面积)你们会求吗?下面老师考考大家是不是真的会?

⑴出示例题4

⑵生独立解答。还有其他解法吗?如果有困难,小组内互相帮助。(两学生板演)

⑶生汇报。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?(板书:分解)

⑷生看书质疑。

师:下面老师再考考你们是不是真的明白。

3、出示做一做。问:这块地是由哪些简单图形组成的?

⑴生独立计算。

⑵生展示思路。

四、应用新知,解决问题:

师:同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。(题目略)

师:通过刚才的练习,你认为该怎样求组合图形的面积?

生自由发言。

师小结:可见求组合图形的面积可以用相加的方法,也可以用相减的方法。(板书:相加或相减)

2.求中队旗的面积。

师:看来今天大家都掌握得很好。可是老师被一个难题难住了。咱们班同学准备去秋游,学校要求我们制作一面中队旗。(出示中队旗)可老师不知道要用多少布。同学们能否用今天所学的知识来帮帮老师呢?动手算一算。请小组内分工合作。

(1)出示讨论提纲:

你们组能想出几种算法?有没有更简便的方法?

看哪一小组分工合作的最好?速度最快?

(2)小组分工合作。

(3)展示学生的各种算法。

师生小结:从练习中我们知道在求组合图形的面积时,要根据已知条件对图形进行分解,不是任意分解都能计算的。分解图形时要考虑尽量用简便的方法计算。

(板书:根据已知条件进行分解)

五、新知的拓展:组拼组合图形

谢谢你们,老师终于知道了需要买多少布了。请各小组用几个简单的图形组合成一个美丽的图案。看哪一小组拼得图案最美丽。同学们赶快动手吧。

1、学生合作组拼。

2、展示评价学生的作品。

3、选择其中一幅学生作品,让学生说说该怎样做才能求出它的面积。

六、总结:

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

篇11:组合图形的面积教学设计

教学目标:

1、在自主探索的活动中,归纳计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法进行解答,并能解决生活中相关的实际问题。

3、培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。

教学重点:掌握组合图形面积的计算方法。

教学难点:理解计算组合图形面积的多种方法。

教学关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

教学准备:电脑课件、正方形、长方形等图形。

教学过程:

一、复习导入。

1.复习。

(1)回答。

谁能说说我们已经认识了哪些平面图形?怎样计算它们的面积?

指名回答后,教师用字母公式表示长方形、正方形、三角形、平行四边形、梯形的面积公式。

(2)如图所示,计算下面图形的面积。

课件出示图形。

学生独立计算后,教师组织学生进行全班核对;全班核对时,教师让学生说说计算上面这些图形的面积时要注意什么。

2.引入。

师:请同学们拿出课前准备的纸片,请用这些图形拼一个复杂的图形并说一说像什么。

学生拿出课前准备的图形,进行拼图的操作活动。学生拼出后,教师抽选部分学生展示自己拼出的图形。

学生回答。

师:同学们说的真好,那么请你们看看黑板上所拼的各种图形,它们有没有共同的特点呢?

指名回答,通过交流,引导学生认识:虽然拼出的图形的形状不同但都是由几个简单图形拼出来的。

教师指出:像这样由几个简单图形拼出来的图形,我们把它们叫做组合图形。

师:你能算出自己拼出的组合图形的面积吗?(生回答:先把每个图形的面积算出来,再相加就行了。)

师:这节课,我们就来学习组合图形面积的计算。

板书课题:组合图形的面积。

二、探索新知。(电脑课件出示)(单位:米)

1.出示例题。

小华家新买了住房,计划在客厅铺地板(客厅平面图如下)。请你估计他家至少要买多大面积的地板,再实际算一算,并与同学进行交流。

2.自主探索算法。

先让学生估计小华家至少要买多大面积的地板(指名回答),接着教师提出“怎样算出准确的得数”这个问题。

接着让学生在独立思考的基础上再小组内交流算法。老师巡视,及时了解学生典型的算法。

师:请同学们小组合作,帮小华计算出这个图形的面积,看那些组的方法又多又巧。(学生合作讨论计算,教师巡视。)

3.全班交流算法。

师:哪个组能给大家介绍你们的方法,并说说为什么这样做?

(学生展示分割方法和计算过程,陈述思考的过程,教师用电脑课件演示并板书。)

师:大家采用的方法有什么共同的特点呀?

师:为什么要进行分割?

师:大家采用的就是人们计算组合图形面积常用的`一类方法,叫作分割法。(板书:分割法)

师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢?

学生回答。

师:这样能计算组合图形的面积吗?

学生回答。

师:我们班的同学真是太棒了!这就是计算组合图形面积的另一类方法,叫作添补法。(板书:添补法)。

师:我们可以利用分割法和添补法计算组合图形的面积。简称割补法。()(板书:割补法)。

三、巩固练习

1.如图,一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

(1)先指导学生理解题意,让学生明确“这张纸板还剩下多大的面积?”指的是哪些部分的面积。

(2)再让学生独立计算,在此基础上教师组织学生交流算法。

2.如图,有一面墙粉刷这面墙每平方米需要0.15千克涂料,一共要用多少千克涂料?

(1)先指导学生理解题意,让学生明确解题的关键是:应先算这面墙的面积(即:应先算出题中组合图形的面积),再根据乘法的意义算出一共要用多少千克涂料。

(2)让学生独立解决问题,并与同桌交流算法,再此基础上教师组织学生进行全班交流。

3.学校要油漆60扇教室的门的外面(门的形状如图,单位:米)

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要花费5元,那么学校共要花费多少元?

师:你们肯定比我行,让学生独立计算。(师故意示弱造势)

师:谁可以把自己的想法告诉大家?学生说出解题思路。

四、课堂总结。

师:这节课你有什么收获?(生回答)

师:大家真了不起,经过积极思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。

篇12:《组合图形的面积》教学设计

一、教材分析:

这是小学数学人教版第九册第五单元的内容。学生已经学习了平行四边形、三角形、梯形的面积,在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。本节课重点探索组合图形面积的方法。教材安排的内容除了巩固学生所学的知识外,更注重将解决问题的'思考策略渗透其中。通过学生亲手的“拼”、“剪”,将组合图形进行分解,计算出组合图形面积,从而掌握这类题的思考及解题方法。

二、学情分析:

根据学生已有的生活经验,对组合图形的认识并不很难。学生已经系统的学过平行四边形、三角形、梯形的面积计算方法,对转化思想也有所渗透。对于方法的借鉴、交流、思考、创新都需要教师的引导和点拨。

三、教学目标

1、掌握组合图形面积计算的方法并正确计算。

2、能根据各种组合图形的条件有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,初步解决生活中组合图形的实际问题。

四、教学重点和难点

1、掌握组合图形面积的计算方法。

2、理解计算组合图形面积的多种方法,让学生学会这类题目的思考方法。

3、学会运用“分割”与“添补“的方法计算组合图形的面积。

五、教学过程

(一)谜语激趣,以旧引新

(课前)将一些教学用具的纸片发给学生

1、谈话导入,课件出示谜语。(①草地上来了一群羊。打一水果名称。②又来了一群狼。打一水果名称)

(1)思考:谜语的谜底是什么?(①草莓。②杨(羊)莓(没))

设计意图:抓住教学内容的特点,运用知识的正迁移。给学生以启示,调动学生的学习兴趣。

(2)提问:你们觉得哪个谜语好猜?为什么?(第二个,因为第二个问题有了第一个问题做基础,所以容易些)

(3)学生回答后教师出示答案,从而导出新课,并板书课题。

设计意图:用猜谜语的形式让学生来明事理,从而导出新课。

2、课件出示各种学过的基本图形。(如长方形、正方形、平行四边形、梯形、三角形)

(1)同桌交流、讨论。

(2)代表回答。

(3)复习近平面图形面积公式。

设计意图:巩固所学几种平面图形的面积公式及计算方法。

(二)自主探究新知

1、小组合作,交流探讨。

(1)教师要求:拿出课前准备的图片从中任意选择两个图形,拼成一个新的图形。边做边思考,你拼的图形像什么,是由哪个基本图形拼成的,小组讨论这个图形的面积是怎样计算的。

(2)2人小组讨论并计算出图形的面积。(小动)

设计意图:以学生为主,让学生进行分工、讨论,通过集体的力量来计算这个图形的面积。

2、自主合作,探索方法。

课件出示例题:小华家买了新房,计划在客厅铺地板,请你估计他家至少需要买多少瓷砖铺地板,再实际算一算,并与同学交流。

(1)让学生拿出课前准备的图片中组合图形的学具,与小组合作,先估一估,再通过自己喜欢的方法,计算出这个图形的面积。(学生合作讨论,教师巡视并作简单的提示和指导。(大动)

(2)学生动手剪一剪,拼一拼(沿虚线剪下,将组合图形分割成一个大长方形和小长方形或两个梯形或补一个小正方形等多种割补法)计算图形的面积。

(3)根据学生的解法,教师进行分析、点评。

设计意图:让学生亲手参与学习,通过拼剪与讨论,明白能将组合图形进行多种分割或割补后再计算其面积。

(三)联系实际,巩固拓展

1、课件出示课本中多种组合图形,学生辨别图形是由哪些平面图形组成的。

2、学生独立完成,代表发表自己的解题方法。

3、根据学生回答,教师点评:通过分解图形的面积相加或补成所学的平面图形再通过面积相减,都可以计算出组合图形的面积。

设计意图:让学生根据图形关系,推算出图中的隐藏条件,让学生明确解组合图形的面积方法不是唯一的。

(四)回顾全课,小结

1、学生小结。

2、教师总结。

3、布置作业。

设计意图:让学生自己小结,教师再总结,即培养了学生的概括能力,又能将本堂课的内容进行了总结。最后布置作业来巩固本节课所学的内容。

六、板书设计

篇13:组合图形的面积教学设计

一、教学目标

1、复习巩固各种图形面积的计算方法,明确组合图形是由几个简单图形组合而成,求组合图形的面积就是求几个简单图形的面积的和或差的计算,提高学生的识图能力,分析综合能力和空间想象能力。

2、通过实践操作、练习,提高观察、分析能力和解题的灵活性;能正确地分析图形。

3、培养学生的合作、探究意识及创新精神,及积极参与数学学习活动的习惯。

二、教材分析

组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生一题多解。

三、学校及学生状况分析

我校是北京市海淀区的一所学校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版新世纪五年级教材的实验学区。

组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

四、教学设计

(一)观察动画,复习旧知,引出新知

1、观察动画,分析引入

(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)

师:观察这幅图画,你发现了什么?

生:很多的基本图形,组成了很多的图形) [板书:基本图形]

师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]

2、复习基本图形面积公式

师:还记得我们都学过哪些基本图形吗?

(随着学生回答,按学习的顺序贴各个基本图形)

问:那谁还记得这些基本图形的面积公式?

(随着学生回答,在各个基本图形后面写公式)

师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积” )]

(二)动手拼图,初探方法

1、自拼图形,分析要素

师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

边做边思考:

师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

师:现在,就请你挑出你喜欢的基本图形,来拼一个组合图形,并和小组内的同学讨论一下,怎么求你这个组合图形的面积呢?

(学生活动,教师巡视,指导画高。)

2、展示图形,分析条件

(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)

师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

(强调公共边:既做长方形的长,又作三角形的底。)

3、打开思路,探索面积

师:怎样求一个组合图形的面积?

生:分另计算三角形与长方形的面积,然后相加。

师:谁能说一说具体的计算过程?

(学生叙述,教师板书计算过程如下。)

师:下面,请每个小朋友试着求出自己所拼的组合图形的面积。

(学生分别计算自己所拼的图形组合的面积,并进行交流。)

师:刚才很多同学介绍了自己所拼组合图形的面积,那么,想一想这些图形的计算方法有什么共同的特点?

生:分别计算几个基本图形的面积,然后相加。

(三)拓展方法,发展思维

师:刚才同学们的回答特别精彩,想法也非常巧妙。现在,有个叫小华的同学他家里面要装修,计划在客厅铺地板(媒体出示课本第75页的客厅平面图)。

师:请你估计他家至少要买多大面积的地板。

(学生小组讨论、交流)

师:请哪个小组来介绍,小华家的客厅面积是怎样计算的?

(学生分别介绍不同的计算方法,见下图)

3、归纳提高

师:请同学们想一想,上述四种计算方法中,哪些是相同的,哪些是不同的?

生:前三个图形都是将组合图形进行分割,然后再进行计算。而第四个图形是补上去一块。

师:为什么要补上一块呢?

生:补一块就成基本图形了。

师:这种方法叫添补的方法,将原图形补充为基本图形,然后求出整个儿图形的面积,然后再减去补充的部分的面积。

(四)巩固训练,一题多解

师:这是学校教学楼占地的面积,你能用几种方法解决这个问题?(出示下图)

师:请先在练习纸上画出解题的思路,然后进行计算。

(学生画图分析,并计算。具体计算过程略)

(五)小结:这节课你有什么收获?

五、教学反思

在探索组合图形面积的过程中,我注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,在发展了学生空间观念的同时,找出隐含的条件,是学生能够利用已有的知识解决问题。

1、注重方法的指导与总结。授人以鱼,不如授人以渔。在本课的教学过程中,十分注重分析、解题方法的指导,在层层深入,环环相扣的学习过程中,始终坚持为学生创设自主探索的情境,让学生体验成功的愉悦,学生在知识内在魅力的吸引和恰当指导下,主动投入到知识的发展过程中,自己悟出学习方法,学的主动积极、生动灵活。通过一题多解的训练,培养发散思维,启发学生多角度、多方向、多层次挖掘新奇思路、各自提出有价值的分割方法。

2、运用现代化的教学手段,向学生提供直观、多彩,、生动的形象,使学生多种感官同时受到刺激,激发了学生学习的积极性,同时把教学过程组织得更生动,形象,能启发学生进行总结归纳,抽象概括,主动参与知识的形成过程。

3、问题来源于学生,回归于学生。学生在拼图的过程中,放手让他们拼图,测量各个要素,解决提出的问题。让学生在活动中,亲自体验自己的成功,在初步形成对组合图形概念的基础上,对“组合”的意义有了更深一层的理解,获得更多的成功的愉悦。

4、出现未预想到的“移补”的方法解题。在预先备课时,只考虑到“割”和“补”,没想到学生在解决第(四)部分的图形时,应用了“移补”的方法,如图所示

想法很奇特,是预料之外的。虽然是因为数据的偶然性,但这种方法用起来比较简便,予以鼓励。

新课程理念强调:人人在数学学习中有成功的体验,人人都能得到发展。数学知识、数学思想和方法必须由学生在现实的数学实践活动中理解和发展。学生在自身的自主探索中或者在与同伴的合作交流中,放飞着思维,张扬着个性,在互补反思中得到共同的提高,充分体验到了成功的乐趣,从而真正意义上的成为了学习的主人。

篇14:组合图形的面积教学设计

本节课的教学目标是在自主学习活动中,理解计算组合图形面积的多种方法;能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答;能运用所学的知识,解决生活中组合图形的实际问题;进一步渗透转化的数学思想。重点是利用基本的平面图形面积来求组合图形的面积。难点是能合理分割、添补和割补组合图形,并能根据图形的特点合理寻找隐蔽的条件。正确地选择方法并解答。

基于以上分析和对本节课的理解,我是这样设计这节课的:

1、复习铺垫 激趣导入

组合图形的面积需要学生在已有的知识基础上进行计算,所以开始设计了复习已学过的一些平面图形面积的计算方法,为新授内容做好知识铺垫。接着展示了四个漂亮的组合图形,让学生说说分别是由哪几个简单图形组成的,这样学生就自然而然的认识了组合图形,然后给出明确定义,便于学生对组合图形有个正确的认识,便于学生寻找生活中物体表面的组合图形,体现数学生活化。

2、自主学习,合作交流

教学例题时,首先让学生估一估,培养了学生的估算意识。由于有了新课开始的复习铺垫和现在学生估算的过程,每个学生对如何求智慧老人客厅的面积已经有了一定的思考。其次让学生动手算一算,给学生足够的时间和空间去自主学习。然后小组交流,把自己的方法在小组内说一说,让每个学生都参与到数学活动中,进一步理解和掌握求组合图形面积的计算方法,培养学生小组合作能力、空间想象能力,从而提高学生解决问题的能力。当学生汇报出许多方法时,体现了解题方法的个性化。然后引导学生进行比较,进行方法的优化,从而选择最好的方法解决问题。

3、应用练习,提升认识

设计分层练习,一是为了让学生明白在计算组合图形面积时,要选择自己喜欢的、简单的方法进行计算。二是为了让学生学生进一步理解和掌握组合图形面积的计算方法,进一步发展学生的空间观念,使学生体会到数学就在我们身边。三是要灵活运用所学知识计算组合图形的面积,要学会根据条件合理选择计算方法。

本节课的成功之处:

1、遵循了学生自主学习的原则,通过学生独立思考、小组合作探究,寻找解决问题的办法,突出了转化思想,能够结合实际,让学生体验生活中的数学,加强了数学的乐趣。

2、学生经历了自主探究与汇报交流,总结出了求组合图形面积的方法,突出了本节课的重点和难点,知识落到了实处。真正作到了感悟与知识的生成相辅相成。

本节课不足之处:

1、内容安排比较多,时间不充足。

2、对组合图形面积的割补原则讲述不到位。

3、对于学生给出的一些求组合图形面积的计算方法,是否

正确列出算式,在课堂上指导不够。

4、对学困生关注不够。

改进措施:

1、充分研读教材、吃透教材,要根据学生的整体水平切实把

知识点、技能落到实位。

2、教学过程中,在指导学生学习方面,要全面关注全体学生,特别是学困生的学习与活动。

3、学生学习之间的互动还需进一步加强。

4、继续努力培养学生课堂发言的积极性与主动性。

篇15:组合图形面积的教学设计

教学内容:

人教版小学数学五年级上册第五单元《组合图形面积》。

教学目标:

1、让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

2、感受计算组合图形面积的必要性,产生积极的数学学习情感。渗透转化的数学思想和方法。

教学重难点及关键:

1、重点:掌握组合图形面积的计算方法。

2、难点:理解计算组合图形面积的多种方法。

3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

教学过程:

一、复习回顾,揭示课题

1、同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?

2、出示两幅由七巧板拼成的图形,你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

3、组合图形在我们生活中的应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书:组合图形的面积计算)

二、自主探索组合图形面积

1、出示计算客厅面积问题:

小华家新买了住房,计划在客厅铺地板,请你算一算他家客厅的面积是多少平方米?

2、请学生们观察这个图形,然后自己先想一想该怎么计算?

3、小组合作交流,讨论解决组合图形面积计算问题。

学生可能出现“分割法”和“添补法”

“分割法”即将上述图形分割成几个基本图形。

4、讨论“分割法”

1)对于“分割法”需要与学生讨论其合理性,要让学生明确:分割的图形越简洁,其解题的方法也将越简单。

2)要考虑分割的图形与所给条件的关系。有些图形分割后找不到相关的条件就是失败的。

5、讨论“添补法”

1)为什么要补上一块?

2)补上一块后计算的方法是怎样的.?

(让学生都理解这一算法)

6、先归纳出两大类的方法“合并求和”、“去空求差”。

小结:谁来总结一下,组合图形的面积应该怎么计算?

计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算它们的面积。

看来同学们学得都很不错,现在老师还有几道题想考考大家。

三、实际应用

1、先来一题热身题,出示书本试一试。

2、一展身手,挑战开始。

右图表示的是一间房子侧面墙的形状,它的面积是多少平方米?

可以采取学生独立解决与合作交流的形式

如果你不会做,可以和你的同桌讨论交流一下。

3、挑战本领

一张硬纸板剪下4个边长是4厘米的小正方形后,可以做成一个没有盖子的盒子。这张硬纸板还剩下多大的面积?

可以采取学生独立解决与合作交流的形式

4、求图形阴影部分的面积。

5、有两个边长是8cm的正方形放在桌面上,求被盖住的桌面的面积。(机动)

可以先四人小组讨论,然后在进行计算。

四、课堂总结

在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的图形,先分别计算它们的面积,再求出这个多边形的面积。

篇16:组合图形面积的教学设计

教学内容:

苏教版教材小学数学第十册P106例10“试一试”,练一练和练习十九的第6—10题。

教学目标:

⑴使学生认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。

⑵通过操作、探索、发现、交流等活动,初步培养学生合作意识和创新意识,进一步发展学生的空间观念和交流能力。

⑶通过学习,提高学生对数学的好奇心和求知欲,学会从数学角度认识世界、解释生活,感受数学的魅力。

教学流程:

一、说圆环。

⑴剪圆环活动。

出示一个同心圆环;

让学生用一张白纸剪出同样的一个圆环。

⑵说剪圆环的过程。

让学生介绍剪出圆环的过程,体验大圆中剪掉一个小圆的过程,感受圆环的大小就是大圆面积减小圆面积。

二、算圆环。

1、教学例10

出示例10及图。

师问:从题中你获得哪些信息?要计算它的面积,你有什么好的方法?在小组中说说你的想法。

学生汇报及交流方法。

学生自主尝试练习。

交流解答过程。

学生交流(学生作品放在视频投影仪上向全班介绍):圆环面积的计算方法,大圆面积—小圆面积;圆环面积的计算步骤,可先算大圆面积,再算小圆面积,最后用减法算圆环面积;全班介绍,教师板书解答的全过程。

2、教学“试一试”

出示题目和图形,理解题意。

学生独立计算。

交流解题方法,注意提醒学生半圆的面积必须把整圆的面积除以2。

3、教学“练一练”

思考:

(1)求涂色部分的面积,需要计算哪些基本图形的面积?

(2)计算这些基本图形的面积分别需要哪些条件?

(3)第一个图形,两个基本图形有什么练习?第二个图形呢?

(4)学生独立完成,并全班交流。 反馈时,注意加法求组合图形面积和减法求组合图形的不同。

三、巩固练习。

1、完成练习十九第6题。

先说说每个组合需要测量途中哪些线段的长度?再让学生独立完成。

完成后展示学生作业 ,并交流方法。

2、完成练习十九第7题。

学生根据图形作出直观的.判断,并说说直观判断的方法。

师追问:你是怎样想到的?

学生通过计算检验所作出的判读。

3、完成练习十九第8题。

(1)观察图,理解题意。

(2)指导分析。

4、完成练习十九第9题。

师问:你能估计出每种花卉分别所占图形面积的几分之几吗?指导用画出辅导线的方法,来估计每种花卉所占圆形面积的几分之几。

学生独立计算每种花卉的种植面积。

完成后交方法。

四、阅读“你知道吗?,并算一算。

五、课堂总结

师:通过今天的学习,你有什么收获?说说缓刑的面积可以怎样求?在计算组合图形的面积时需要注意什么?

六、作业

练习十九第6题、第8题。

篇17:组合图形面积的教学设计

设计说明

本节课的内容是在学生已经学习了长方形、正方形、平行四边形、三角形和梯形的面积计算方法的基础上进行教学的。在教学中以引导学生经历知识的探究过程,突出思维训练为主要目标。

1、以学生为课堂学习的主体,关注学生已有的学习基础和学习经验。在教学过程中,选择适合学生的学习素材,设计适合学生的教学活动,让学生自主地投入到学习中,教师只作为学生课堂学习的引导者、合作者。

2、重视对学生估算意识和能力的培养。在教学过程中,引导学生主动进行观察、猜测、验证、推理与交流等数学活动,让学生经历数学知识的探究过程,感受成功的快乐。

3、完成课堂活动卡,把学生的算法进行归纳总结,分类整理,让学生在感受算法多样性的.同时,形成归纳概括的能力。

课前准备

教师准备:PPT课件

学生准备:学具卡片

教学过程

⊙创设情境,复习引入

1、引导学生回忆常见平面图形的面积计算方法。

(课件出示长方形、正方形等图形,指名回答各自的面积计算公式)

2、引导学生观察组合图形的特点。

(课件出示由长方形、正方形、三角形等组合而成的图形)

师:同学们观察这些图形,它们分别是由哪些图形组成的呢?(学生观察后回答)

师讲解:这样的图形,我们称为组合图形。今天我们就一起来探究组合图形面积的计算方法。

设计意图:通过复习旧知,使学生兴致勃勃地投入到新知的学习中去,变好奇心为浓厚的学习兴趣。

⊙合作交流,探究新知

1、估计组合图形的面积。

(课件出示教材88页例题图)

师:请同学们观察一下,这是什么图形?(组合图形)

师:这是智慧老人家客厅的平面图。智慧老人准备给客厅铺上地板,你们知道应该买多少平方米的地板吗?

(1)学生估计至少要买多少平方米的地板。

(2)组内交流估计的方法。

预设

生1:把客厅看成长方形,6×7=42,客厅的面积不到42m。

生2:把客厅看成边长是6m的正方形,估计其面积是36m。

2、实现转化,明确求组合图形面积的解题思路和解题方法。

(1)质疑:怎样求这个组合图形的面积呢?

(引导学生根据刚才的估计策略把组合图形转化成已经学过的规则图形,再计算其面积)

(2)动手实践,探究转化的方法。

(引导学生利用自己手中的学具,把组合图形转化成已经学过的图形)

①小组合作探究,将探究的结果填在课堂活动卡上。

②各组组长汇报本组的转化方法和转化结果,教师进行汇总。

师:你们是怎样转化的?分别转化成了什么图形呢?

分割法:

添补法:

割补法:

(3)观察比较,优化解题方法。

师:在这些转化方法中,哪些方法比较简单、容易计算呢?

预设

生:在这些方法中,图一、图二、图三、图四比较简单,容易计算。

师:在进行图形转化时,我们的要求是简单、易算。

篇18:组合图形面积的教学设计

教学内容:

苏教版小学数学第十册第106页例10及练一练,练习十九第6—9题。

教学设计构想:

在《圆》这个单元的教学中,圆是从生活中引入,进而探讨圆的特征及各部分名称,和生活中为什么很多物体都是圆形的等等,使学生感知圆在生活中无处不在,圆是美丽的。再探讨了求圆的周长计算方法和求圆的面积计算的方法后,并将之运用到生活中解决了很多生活中的实际问题,使学生体会到数学来源于生活,高于生活,再回归到生活中能帮助我们去解决实际问题,提高学习能动性。

《组合图形的面积》的设计理念依然是——由生活中的组合图形引入新课,进而回归到生活中去解决圆环形铁片的面积和窗户的面积以及光盘的面积。同时本节课的教学设计突出数学思想方法的渗透,让学生积极主动参与知识的形成过程,重视将解决问题的策略、技巧潜移默化的交给学生,让学生获得了数学思想方法,并培养了学生探索问题的能力。

教材分析:

本节课主要让学生利用已经掌握的圆的面积及其它图形面积公式计算组合图形面积。例题选择的素材是计算圆环铁片的面积。教材着重通过呈现解决问题的步骤引导学生掌握求圆环面积的基本思路。教材先让学生按步骤解答问题,然后启发学生联系学过的运算律探索简便计算方法。“试一试”和“练一练”中的组合图形都是由两个基本图形组合而成,计算这些组合图形的面积,有时需要计算两个基本图形的面积之差,有时需要计算两个基本图形的面积之和。

学情分析:

《组合图形的面积》是在学生认识了圆的特征、圆各部分名称、掌握了圆的周长计算和圆的面积计算方法的基础上,进行组合图形面积计算的教学的。

教学目标:

1、让学生结合具体情境认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。能正确计算简单的有关圆的组合图形的面积。

2、通过操作、探索、发现、交流等活动,培养学生独立思考、合作创新意识和灵活运用知识解决问题的能力,进一步发展学生的空间观念和交流能力。

3、在解决实际问题的过程中,提高学生对数学的好奇心和求知欲,感受数学的魅力,体会数学的应用价值。

教学重点:

探索并掌握组合图形的面积计算方法。

教学难点:

灵活地把组合图形转化为所学过的'基本图形,正确计算。

教学准备:

PPT课件,圆规、硬纸、剪刀(学生也准备)

教学过程:

一、复习导入

1、师:前面学习了圆的面积计算,说说圆面积的计算公式?(板书)回顾一下我们还学习了哪些平面图形面积的计算公式?(板书)

2、引入新课:生活中我们不但能看到圆形的物体,还常常会看到由圆和其他图形组成的图形(出示课件),像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)组合图形在日常生活中有着广泛的应用,认识了生活中的组合图形,这节课我们将利用已有的知识一起来研究有关组合图形面积的计算(出示课题)。

[设计意图:在复习所学的基本图形面积计算的基础上,通过生活中的组合图形引入新课,使学在头脑中对组合图形产生感性的认识。为下面学习求组合图形的面积打下基础。]

二、探索新知

1、认识圆环

(1)出示圆环形铁片(课件)

问:知道这个铁片是什么图形吗?仔细观察:圆环有些什么特征呢,谁来向大家介绍一下(生介绍圆环)

师对学生的回答给与评价。明确:圆环是两个圆心相同、半径不相等的圆形所组成的宽度相等的图形。

(2)联系生活

同学们想一想:生活中哪些地方还有圆环?

2、做圆环

(1)谈话:我们认识了圆环,现在你能用准备好的材料动手做一个圆环吗?

指名学生展示自己做的圆环,并向大家介绍做圆环的方法。

(2)师拿出自己做的圆环并小结做圆环的方法。

请生指出圆环的面积是哪部分。

[设计意图:学生在认识了圆环的基础上,引导学生找生活中的圆环,并动手做出圆环,由具体的实物抽象出几何图形,不但让学生经历知识的形成过程,使学生能直观地发现、理解并掌握圆环面积计算方法,而且对数学知识与生活的紧密联系有了一定的认识。]

3、学习例10

(1)在圆环形铁片图的右边出示例10(课件)

请生读题,你获得了哪些信息?

问:求这个铁片的面积,就是求什么形状的面积?

师:会求这个铁片的面积吗?(生尝试做)指名板演,师巡视,发现有用简便做法的请上台板演(如果没有用简便方法做的,在第一种方法反馈之后,可启发学生有简便做法吗?)。

同桌交流求面积的方法。

(2)反馈第一种基本方法,请板演学生当小老师,说说自己的解题思路。

板书:外圆面积—内圆面积=圆环面积。

反馈第二种方法,请板演学生说说你是怎样想的?

两种方法有什么联系?(运用乘法分配律)

(3)师生共同小结:计算圆环面积的基本方法是从外圆面积中减去内圆面积,还可以进行简便计算。如果用R表示外圆半径,用r表示内圆半径,那么,求圆环面积的计算公式就是:S=πR2 —πr2或S=π(R2—r2)(板书)

[设计意图:让学生经历圆环面积的简便算法的形成过程,鼓励学生用不同的方法进行计算,并引导学生发现简便方法,体现两种方法之间的内在联系。]

4、对比,归纳方法

出示大小两圆拼成的新图形,与圆环图进行对比(课件),请学生说说这两题的联系与区别。归纳此类组合图形面积的计算方法(求面积之差)。

5、尝试“试一试”(出示课件)

(1)出示“试一试”,学生小组讨论:

窗户的形状是由哪些基本图形组合而成的?

要求窗户的面积就是求什么?

半圆和正方形有什么相关联的地方?

半圆面积该怎样求?

(2)再全班交流。

(3)学生尝试列式计算,指名板演。

(4)反馈,明确:正方形的边长就是半圆的直径。交流解题方法,重点强调半圆面积必须是用整圆的面积除以2(别忘了除以2)。

5、观察比较,小结方法

(1)讨论:例题中的圆环和“试一试”中的窗户,两题中的图形

都属于组合图形,两个图形的组合方式有什么不同的地方?窗户和圆环在求面积上有什么不同?你发现他们在解决问题的思路有什么相同的地方?有什么不同的地方?

(2)组织全班交流。(圆环是大圆里挖去小圆,窗户是半圆形和正方形两个图形拼加。求圆环面积是大圆面积减去小圆面积,求窗户面积是半圆形面积加上正方形面积。解题思路相同之处都是要先算出组合图形中的基本图形的面积,不同之处是一个是基本图形的面积相减,一个是基本图形的面积相加。)

(3)小结归纳组合图形面积计算基本方法。

师:圆、半圆或其它基本的平面图形组合在一起,产生组合图形,在计算组合图形面积的时候,先看清这个组合图形是由哪些基本图形组成的,再根据组合方式决定把基本图形的面积相加还是基本图形的面积相减。

[设计意图:引导学生充分讨论交流,根据讨论的结果,总结求组合图形的方法,注重将解决问题的策略、技巧潜移默化的交给学生,让每个学生都参与到数学活动中来。]

三、运用巩固

1、基本练习:练一练(课件出示)

思考:(1)下面的组合图形的需要计算哪些基本图形的面积?

(2)涂色部分面积怎样求?

(3)左图,两个基本图形有什么联系?右图呢?

学生先同位交流,再全班交流,(明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。)然后每人各选一题列式计算。

2、综合拓展练习:练习十九第6题(课件出示)

(1) 计算下面组合图形涂色部分的面积各需要需要哪些条件?

(2) 涂色部分面积怎样求?

学生先同位交流,再全班交流:说说计算需要测量哪些数据,再交流算法。

3、眼力大比拼:三个正方形涂色部分的面积相等吗?为什么?(练习十九第7题课件出示)

指名学生根据图形作出直观的判断,并说说判断的方法。

四、总结交流

今天我们一起学习了什么知识?你有哪些收获?在求组合图形的面积时一般需要注意什么?有什么宝贵的解题经验想和大家分享?

五、实践延伸

出示光盘,同学们你能想办法算出(自己家里的)光盘的面积吗?课后完成。

[设计意图:练习设计体现了针对性、层次性、综合性和实践性。最后的课外延伸环节,让学生计算自己熟悉的光盘的面积,可以提高学生运用数学知识解决实际问题的能力,感受到数学在生活中的应用价值和数学的魅力所在。]

附:板书设计

组合图形面积

基本图形的面积相加或相减

例:外圆面积—内圆面积=圆环面积。

S=πR2 —πr2

S=π(R2—r2)

篇19:组合图形面积的教学设计

教学目标:

1、巩固已学平面图形特征的认识,学会用割(加)、补(减)等方法求组合图形的面积

2、通过动手、动脑、剪剪、拼拼和想象,培养学生动手操作的技能,发展观察能力、空间观念和思维的灵活性。

3、利用七巧板组合图形,并求出面积。教学重、难点:用割补法求组合图形的面积

教学准备:小剪刀一把

长方形纸若干张

教学过程:

一、剪纸中得出组合图形的概念

师:大家跟我一起拿出一张长方形纸片:你能用一刀剪出两个其他图形吗?动手试试。(生剪师巡视,主要分清把长方形剪成两个基本图形或一个基本图形和一个不规则图形的同学。)

生汇报:我把长方形分成了一个三角形和梯形?(说面积公式)

我把长方形分成了一个三角形和??(说不清楚是什么图形)师展示这个图形:

(一个长方形的角落剪去一个三角形)师:这个图形叫什么图形呢?

方案1:生自己回答:这是一个长方形和梯形组成的。

师:哦!你是怎么分的?还可以怎么分?(让学生动手折一折)

方案2:生不能回答,师提示:我们刚才把一个长方形分成了

一个三角形和一个梯形,还把它分成了两个长方形,还有??那这个图形,我们可以把它分成我们已经学过的图形吗?(生回答,并折给大家看)

最后把图形粘贴在黑板上得出:像这样由几个基本图形组成的,我们把它叫作组合图形,这节课我们重点就来研究组合图形的面积(板书组合图形的面积)

二、求组合图形的面积

1、重点突破

师:如果老师临时给这个组合图形的边标上数据,(边说边根据图形的长短标上数据)你能求出这个组合图形的面积吗?自己动手算一算,有困难的可以请教同桌和老师。

展示学生的做法,并请他说说思考过程。

师:如果要你求这个组合图形的面积,你可以怎样求?

生汇报:先把它分割成长方形和梯形,然后把它们的面积加起来??师:用剪刀剪的方法有的时候不太方便操作,我们可以用加辅助线的方法来把组合图形进行分割。(辅助线用虚线来画)

师:还有其他方法吗?

(生如果没有得出用补的方法)师拿出剪下的三角形问:这个组合图形,刚才是怎么得到的?能给你是吗启发吗?(得出用长方形面积减去三角形的面积)板书:贴+写

师小结:同学们真能干,有的把组合图形分割成我们学过的几个基本图形,再把它们的面积加起来,有的补上一个我们学过的基本图形,然后面积相减,用了很多种方法,但有一点是相同的,你能看出来是什么吗?(求出来的面积是一样的。)

2、基本练习

老师遇到了一个生活中的实际问题,想请同学们两人一组帮忙解答,看看哪个小组的方法最多?(汇报)

在以后求组合图形面积的时候,你可以选择你认为最简单的方法来求。

3、实践活动

师:其实,在我们的身边很多物体的面都是组合图形,你能找出来吗?

出示队旗:其实,我们的中队旗就是一个组合图形。

(1)估一估:请你估一估,我们中队旗的面积大约是多少?想一想,找同学来回答

(2)议一议:如果要你求它的面积,你会用什么办法计算?用你的方法计算需要测量哪些边的长度呢?

(3)算一算:为了节省时间,有些数据我已经帮你们量过了(出示带有数据的中队旗)

用你认为简单的方法进行计算。先做好的小组上来板书。

反馈:你们是怎么思考的?

师:跟你们估计的'结果比较一下,看谁估计的最正确,掌声送给他!

三、四人小组

利用手中的七巧板来拼出各种图案来,并求出你拼出的图案的面积。四通过这节课的学习,你有什么收获?

希望同学们把我们所学的知识充分的利用到我们的生活当中,去解决生活中出现的有关问题。

教学后记:

教学中我充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。在探索组合图形面积的过程中,注重让学生通过动手操作、观察、推理等手段,分析探索组合图形,利用已有的知识解决问题,达到了良好的教学效果。

篇20:组合图形面积的教学设计

教学内容:

义务教育课程标准实验教科书

数学五年级上册。

教学目标

1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。

2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

3.培养学生的认真观察、独立思考的能力。

教学重点:

组合图形的面积的计算。

教学难点:

组合图形的分解。

教具准备:

图片、有关本课设计的课件。

教学过程:

一、复习导入

1、提问:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。(指名回答)

2、提问:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

3、导入新课:

①课件出示:老师也搜集了一些生活中物品的图片

『房子、队旗、风筝、空心方砖、指示牌、火箭模型』

②提问:这些物品的表面,都有哪些图形?谁来选一个说说。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。……

③提问:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

④ 小结:组合图形是由几个简单的图形组合而成的。

⑤谈话:说一说,生活中有哪些地方的表面有组合图形?(学生自由回答)

⑥设问导题:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?

⑦板书课题:组合图形面积的计算。

二、新课教学

1、课件出示:下图表示的是一间房子侧面墙的形状。

2、提出问题:认真观察这个组合图形,怎样计算出面积呢?

3、分组讨论:大家在图上先分一分,再算一算。然后,在小组里互相说说自己的想法。

4、先分别算出三角形和正方形的面积,再相加。

5、教师边听边列式板演:

5×5+5×2÷2

=25+5

=30(平方米)

6、提问:还有不同的算法吗?

生:把这个组合图形分成两个完全一样的.梯形。『教师用课件演示:两个完全一样的梯形闪动』

7、回答:先算出一个梯形的面积,再乘2就可以了。

学生说算式教师进行板演:

(5+5+2)×(5÷2)÷2×2

=12×2.5÷2×2

=30(平方米)

8、提问:你认为哪种方法比较简便呢?

学生说自己的想法。

9、回答:在计算组合图形的面积时有多种算法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。

10、提问:通过学习,你认为怎样计算组合图形的面积?

11 、小结:在计算面积时,先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。

三、课堂练习

1、课件出示:『队旗』要做一面这样的队旗,需要多少布呢?认真观察图,选择有用的数据,你想怎样计算?把你的算法在小组里交流。

指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。

2、课件出示:『空心方砖』它的实际占地面积是多少?自己独立思考并计算,说说自己的想法。

3、课件出示:『火箭模型的平面图』选择有用的数据,独立完成,师生共同订正。

4、提问:同学们刚才计算的是老师搜集的组合图形的面积,你们想不想算一算自己搜集的组合图形的面积呢?选择一个简单的图形,量出有用的数据,算一算组合图形在纸上的面积。先指名汇报,再互相检查算得对不对。

5、出示题目:(单位:厘米)计算下面图形的面积。你有不同的算法吗?

四、全面总结

组合图形的面积计算可以用每个图形的面积之和来计算,也可以利用组成成特殊图形的面积来计算,关键是熟练把组合图形拆分成各个容易计算面积的特殊图形。

五、布置作业

教学反思:

1、选取的图形较为贴近学生实际生活,因此这些图形更容易让学生理解和掌握,可操作性强。

2、通过让学生自己动脑来寻找方法来计算组合图形的面积,此教学方式较为新颖,引起学生兴趣,学生课堂参与积极,参与面较广。

3、课堂中教学重点较为突出,学生通过活动基本能掌握组合图形的计算方法。

4、课程中由于安排学生自主动脑,动手的活动较多,但学生的讨论不太充分,对学生的思维启发的不够深入。

5、课前对学生的分析还不够充分,因此在课堂中对学生已经认识一致的问题安排了太多时间,显得有些浪费,因此在以后该课的教学中应该多些复杂图形,充分发挥学生的主动性,锻炼学生的多元化思维,寻找更多的计算方法。

热门教案

学诗词

学名句