以下是小编整理了16篇人教版两位数乘两位数的教学设计,希望你喜欢,也可以帮助到您,欢迎分享!
教学内容
人教版实验教材三年级下册P59例2
教学目标
1、结合具体问题情境让学生经历两位数乘两位数的估算过程,培养学生的估算意识,初步理解估算方法。
2、给学生创设主动探索估算知识的空间,解释估算过程,培养学生的数感,进一步提高学生的比较推理能力。
3、培养学生学习数学的兴趣,感受数学与生活的紧密联系。
教学重点
掌握两位数乘两位数的估算方法,培养估算意识。
教学难点
合理选择估算方法解决生活中的数学问题。
教学过程
一、复习铺垫,引出新知
1、口算
20×20=24×10=40×50=12×30=
2、下列算式,你能估算各题的结果吗?你是怎样想的?
28×4≈62×7≈
二、创设情景,自主探究
1、创设情景,引出主题
分析引导:完整地说一说你收集的信息?
“能坐下吗”是什么意思?
要比较座位数与人数的大小,必须先求出什么?
2、尝试估算,探索方法
学生独立完成,个人汇报,教师板书。(着重让学生说说是怎样想的。)
方法小结:两位数乘两位数的估算,它与一位数乘两位数的估算方法相类似,估算时可以把其中的一个两位数看成整十数,也可以把两个两位数都看成整十数,再用口算确定估算结果。
3、巧理信息,探究明理
师:同样是估算,为什么会出现几种不同的结果呢?
四人小组讨论,合作完成学习卡一,并对照黑板板书汇报成果。
分析小结:估算的时候我们可能把因数看大了,这时估算的结果比实际结果大,也可能会把因数看小了,这时估算的结果比实际结果小,不同的估算方法可能会有不同的估算结果,但都会与实际的结果之间存在一定的误差。
4、运用策略,解决问题
刚才我们用了3种不同的方法进行估算,得出3种不同的结果,那是不是每种方法都能比较有把握地判断出够不够坐呢?
着重引导学生明白:在第(3)种情况中,是估小了,既然估小了都够坐,那实际结果肯定就能坐下。这种方法在这里相对而言更有把握解决“够不够坐”的问题。
5、指导看书,质疑释疑
三、应用提高,巩固深化
1、随堂练习,检验效果
(1)、口算(书本P62第10题第一行)
89×30≈32×48≈43×22≈35×19≈
()()()()()()()
(2)、(书本P59做一做)一页有23行,每行约23个字,一页大约有多少字?
2、配对练习,突破难点
《气象知识知多少》每本19元,李老师决定买12本,李老师大约要准备多少钱?
选择答案:A、12看成1010×19=190(元)
B、19看成20xx×20=240(元)
针对不同争议,同桌互议,然后汇报。
难点小结:两位数乘两位数的估算,由于因数的不同特点,估算的方法可能有几种,但我们在解决不同的情境问题时,一定要考虑具体情况,灵活地选择合适的估算方法。
四、实践生活,升华教育
勇当小记者,采访听课老师,巩固所学知识。
内容A、我们组采访的是()老师,他家每月水费支出大约是()元,一年大约支出水费元。我们是这样估算的。
内容B、我们组采访的是()老师,他每天批改作业()本,每个星期(5天)大约批改作业本,每学年(40个星期)大约批改作业本。
看到这些数字,你有什么感受?
五、互动总结,课外延伸
互动总结:在今天的学习中你有什么感受?又有什么收获呢?
课外延伸:请你把你是怎样用估算来解决实际问题的小故事记录下来,写一篇生动的数学日记。
附:板书设计
教材简介:
本单元是在学生能够比较熟练地口算整十、整百数乘一位数(20×3200×3),两位数乘一位数的笔算(每位乘积不满十)(43×2),掌握了多位数乘一位数的计算方法的基础上进行教学的。本单元主要内容有:口算乘法、笔算乘法。
教材内容安排如下表:
教学目标:
1、会口算整十、整百数乘整十数,会口算两位数乘整十、整百数(每位乘积不满十)。
2、掌握两位数乘两位数的计算方法。
3、能结合具体情境进行乘法估算,并解释估算的过程。
教学重点:
笔算两位数乘两位数;解决问题。
教学难点:
两位数乘两位数的算理。
教学建议:
1、让学生通过解决问题学习计算方法。
2、让学生主动探索计算方法。
3、加强估算,鼓励算法多样化。
4、注意处理好口算、估算、笔算三者之间的关系,要做到三算互相促进,达到共同提高的目标。
课时安排:
9课时
口算乘法
第1课时
教学内容:
58页例1及做一做、练习十四1~4题。
教学目标:
经历探索口算方法的过程,学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)
教学重点:
学会口算整十、整百数乘整十数及两位数乘整十、整百数(每位乘积不满十)
教具准备:
口算卡片等。
教学过程:
一、回顾学过的口算方法
口算下面各题:
40×460×530×3300×7200×8
12×424×213×332×311×5
自己选两题,说说口算方法。
二、新课
1、提出问题
(1)仔细观察例1图
(2)请学生提出问题。
(3)从学生回答中选择例1的两个问题:
邮递员工作10天,要送多少份报纸?
工作30天,要送多少份报纸?
2、探讨口算方法。
(1)请学生思考、交流解决问题的方法。引出算式:
300×10300×30
(2)小组讨论:怎样想出得数?
(3)各组代表向全班汇报本组的各种口算方法。
(4)评价。
3、尝试解决问题。
(1)请学生运用口算方法解决其余的问题。如:工作10天,要送多少封信?工作30天,要送多少封信?
(2)组织交流。
请学生说一说解决问题的过程和结果。让学生在交流中品尝学习的乐趣。
4、探讨新的口算方法。
(1)出示:42×1023×3014×200
请学生思考,讨论怎么算?
(2)组织交流,并由教师评价每种方法。
三、练习
1、完成做一做的8道题。
(1)先由学生独立计算,集体订正。
(2)引导学生总结,发现规律。
2、独立完成练习十四1~2。
3、解决实际问题:练习十四3~4。
四、总结
请学生谈收获。
第2课时
教学内容:
59页例2(估算)
教学目标:
1、使学生初步掌握两位数乘两位数的估算方法。
2、能结合具体情境进行乘法估算,并解释估算的过程。
教学重点:
初步掌握两位数乘两位数的估算方法
教学过程:
一、复习旧知:
1、口算下面各题:
40×1060×20xx×40300×70200×80
12×400240×2130×330×311×50
2、求下面各数的近似数:
321868729535842
选择几个数说一说是怎样求近似数的。
3、估算:
198×4305×6485×3182×5
说一说你是怎么估的?
二、探究新知:
1、提出问题:
(1)出示例2图:请学生仔细观察。你从图中了解到什么?
(2)把在图中获取的信息汇总,说成完整的一道题:
大会堂里共有18排座位,每排22个座位。有350名同学来听课,能坐得下吗?
2、探讨估算方法。
(1)请学生思考、交流解决问题的方法。引出算式:
18×2222×18
(2)小组讨论:怎样估算得数?
(3)各组代表向全班汇报本组的各种估算方法。
方法一:18≈20xx≈20xx×20=400
方法二:18≈20xx×20=440
一、回顾整理,建构网络
出示: (一组混乱的计算题)79×52≈ 700×50= 15×20 = 40×60 =
18×26 = 15×21≈ 39×60≈ 16×42=
师:能将上面的计算题按一定的规律重新分类吗?
生:(教师依据学生的回答板书,若与教师思路发生冲突可逐步引导)
课件显示:(按一定的先后顺序出现)
口算 估算 笔算
40×60= 39×60≈ 18×26=
15×20= 15×21≈ 16×42=
700×50= 19×52≈
这也是我们这个单元所学的内容,如果把这些知识做成知识网你会吗?我们一起来试一下好吗?首先想一下我们本单元题目是什么(两位数乘两位数)板书
都学了有关两位数乘两位数的哪些知识?板书
口算 估算
两位数乘两位数 笔算 不进位乘法 进位乘法
解决问题
二,重点复习,强化提高
不同的题目有不同的解决方法,我们先来算一下第一组的题目要用什么方法呢?
1、口算的判断及方法的梳理
2、(1) 学生独立计算,开火车交流,选二题说说算理。
(2) 师:说说这类题目的特点 生:他们的末位都是零,是整十、整百数乘整十数。
师:能说说你算这种题目的思路吗?
生:用0前面的数去相乘,再在乘得的数的末尾
添写0,两个因数末尾共有几个0,就在得数末尾添几个0。
师:什么样的计算题用口算?怎么口算的?
生:比较简单的计算,也即数字是整十整百的计算。
3、估算的判断及方法的梳理
(1) 学生独立计算
(2)反馈 师:你为什么要将39看作是40?21看作20? 生:因为39和21离整40和整20很近?
师:那38和19离39和21也很近啊? 生:它们虽说也很近但数字计算起来不方便。
师:那也就是说我们在估算时所看作的数字既要比较接近原数也要计算起来比较简便,最好是看作整十整百的数。
师:那你是怎么知道这组题要用估算来计算的? 生:因为它是约等于。
师:(归纳)题目对结果的要求不是很精确的情况下我们用估算就可以了,估算应遵循简单好算、离准确值近的原则。
3. 笔算方法的回顾
(1)指名2位同学上台板演,其他学生做在练习本上
(2)展示计算结果,同时说说笔算两位数乘两位数要注意什么?
(3)教师根据学生所说的进行肯定和补充,同时强调用竖式计 算时,每次乘得的数的末位应该和那一位对齐,还要注意记住进位数,
正确处理进位问题。
(4)像这样比较难算得要用笔算
4.解决问题
三(2)班去春游, 每人交12元钱,如果全班53人参加,
共收到:
面值 /元 50 20 10 5 2 1
张数/张 2 12 15 24 18 14
(1)学生独立思考,再把你的想法跟小组里人员交流。
(2)组长汇报交流结果。
三,自主检评,完善提高
1、口算
70×30= 90×30= 20×60= 80×40= 80×80=
50×70= 15×20= 400×20= 23×20=
2、估算 19×29≈ 12×41≈ 11×89≈ 99×91≈ 39×33≈ 45×29≈
3、笔算:
16× 42= 18× 65= 31× 32= 27× 34=
4、比较大小
12 ×13 ○ 21 ×13
15 ×24 ○ 24 ×15
61 ×35 ○ 35 ×62
54 ×12 ○ 540
21 ×43 ○ 20×43+43
(1)同桌讨论后,把答案写在答题纸上
(2)21 ×43 20×43+43 提示学生从乘法的意义来思考。
5、北小有1200人去春游,现有31辆大客车,每辆大客车可乘坐42人,一次能坐下吗?
师:这题如何思考?
生:先求出31辆大客车能坐多少人?然后与1200比较大小。
师:很好,那么用什么方法来计算31乘42呢?
小组交流。反馈:
生甲:用笔算最好了,只有算出准确值与1200比较大小才能知道是否坐得下。
生乙:不必要那样做,用估算更快。
生丙:估算的不是准确得数怎么能知道是否坐得下呢?
生乙:因为31看作30,42看作40,估算得1200,得出的得数肯定比准确的得数小,看小了之后都有1200,人数也是1200,所以能坐下,用估算也可以。
师小结:说的真好,题目也没有一定要求我们算出准确值,而我们用估算也能更好更快的解决问题,当然可以用估算了。
四、拓展练习思考题
三(2)班去春游, 每人交12元钱,如果全班53人参加,共收到:
面值 /元 50 20 10 5 2 1
张数/张 2 12 15 24 18 14
请你们帮他们算一算,他们交上来的钱对吗?
(1)学生独立思考,再把你的想法跟小组里人员交流。
(2)组长汇报交流结果。
五、总结并揭题
这节课我们复习了两位数乘两位数的口算、估算、笔算(板书课题),并用这些知识解决了一些生活中的问题。
【课堂教学设计说明】
本节课是在学习了两位数乘一位数的乘法和两位数乘整十数的乘法基础上学习今天的新知识。导入 新课正是旧中引新,为讲授计算方法和算理做好知识上和心理上的准备。
讲授新课时,利用迁移的原理,在教师引导下,使学生一步一步地加深对算理和算法的认识和理解,从而很轻松地获得了新知识。
通过对练习的精心设计,使学生从不同的角度加深对算法及算理的认识,激发了学习兴趣,提高了计算能力,注意了培养学生认真计算、书写工整的良好学习习惯。
【设计理念】
重视知识间的“纵向”联系,有效把握知识的前后联系,提高教学设计与实施效果;尊重学生已有的知识基础与生活经验,可以提高教学的针对性和有效性。引导学生经历探究“两位数乘两位数”算法的过程,培养学生的数感,发展学生的比较、概括及抽象能力。
【教材与学情分析】
“两位数乘两位数”是青岛版五年制教材三年级上册的内容,是两位数乘一位数的继续,是学习两位数乘两位数的起始,是三位数乘两位数的基础,所以这部分内容起到了承上启下的作用。
学生已经学过了两位数乘一位数和两位数乘整十数,学生完全有可能利用已有的知识经验计算出得数,老师课上需要做的只是引导学生回忆、帮助学生规范、把认识加以提升。学生只要学会了这部分内容,三位数乘两位数的时候完全可以迁移过去。
教学内容:
青岛版五年制小学数学三年级上册第63~65页。
教学目标:
1.经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握算法。
2.通过小组合作和交流,感受计算两位数乘两位数(不进位)方法的多样化,培养数感和数学思维能力、交流能力及合作意识。
3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高交流合作的能力,获得成功的体验,树立学习的信心。
教学重点:
探索两位数乘两位数(不进位)的算法,理解算理。
教学难点:
理解“用十位去乘”时得数的写法及算理。
教学过程:
一、引出问题
课件出示信息窗,请学生观察图,找数学信息(注意引导学生分类找信息,找相关的信息),并将每组相关信息予以板书,然后让学生根据每组信息提出问题。
(学生可能找到的相关信息:这条街上有23根灯柱,每根灯柱上有12盏灯。可能提出的问题:一共有多少盏灯?)
二、理解算理,探索算法
1.列式
⑴根据信息和问题列式,并简单说一说列式的根据。(板书:23×12)
⑵找该算式和以前学过的乘法算式有什么不同?(使学生明确知识的发展点。)
⑶板书课题:两位数乘两位数
2.试算
⑴请学生动脑思考能不能用以前学过的方法计算出得数,并把算法写到练习本上,遇到困难时,可以和小组同学交流一下。(引导学生寻找知识的生长点)
⑵师巡视指导。
⑶交流算法。
学生可能会出现的算法:
A:23×10=230
23×2=46
230+46=276
B:20×12=240
3×12=36
240+36=276
(引导学生明确:两位同学都是把其中一个因数拆分之后,转化成了以前学过的算式。)
⑷小结:同学们真善于动脑筋,两位数乘两位数不会算,就想到了把它转化成我们学过的两位数乘一位数和两位数乘整十数。看来遇到新的问题的时候,想办法把它转化成我们以前学过的旧知识,的确是一个很好的学习方法。
3.笔算
⑴请学生试着用竖式计算23×12,遇到困难可以和小组的同学一起商量。
⑵学生试做,师巡视指导。
⑶展示交流。
学生可能会出现的算法:
A: 2 3
× 1 2
2 7 6
(引导学生明确:这样列竖式没法清晰地看出计算过程)
B: 2 3 2 3 2 3 0
× 2 ×1 0 + 4 6
4 6 2 3 0 2 7 6
(和刚才的那个竖式比,这种做法确实清晰地看出了计算过程,但也有点麻烦。)
C: 2 3
×1 2
4 6
+2 3 0
2 7 6
(请学生对比评价B和C两种算法,C方法既能看出计算过程,也比较简单。)
D: 2 3
×1 2
4 6
2 3
2 7 6
(请学生对比评价C和D两种算法,D方法也能看出计算过程,比C更简单。)
4.明算理
引导学生分别说一说46是怎么来的?表示什么?23是怎么来的?表示什么?尤其要明确23写在百位和十位上就是表示23个十,也就是230。
5.规范书写
师生共同梳理计算的过程。
2 3
×1 2
师:先用个位上的2和23相乘。(板书)
2 3
I↑
×1 2
4 6
师:再用十位上的1和23相乘。一三得三,3写在哪里?为什么?
师:在十位下面写3就表示3个十了。一二得二,2写在哪?为什么?
2 3
↑J
×1 2
4 6
2 3
2 7 6
师:竖式中的46是怎么来的?23实际上是多少?它是怎么来的?
(板书:23×2和23×10)
2 3
I↑
×1 2
4 6――23×2
2 3 ――23×10
2 7 6
6.练习
独立计算21×43,集体订正时说一说计算过程。
三、巩固练习
1.根据竖式写得数。
师:你是从竖式中的哪一部分看出来的?
2.你能很快判断出对错吗?
42×21=126(出示横式,不出竖式)
(学生可能根据个位上的数进行判断,也可能利用估算进行判断)
找错因,明算理。(出示竖式)
四、总结
师:你觉得在用竖式计算两位数乘两位数时应注意什么?
师:是呀,在用个位上的数去乘时,得数的末位要和个位对齐,用十位上的数去乘时,得数的末位就要和十位对齐。
【教材与学情分析】
“两位数乘两位数”是青岛版五年制教材三年级上册的内容,是两位数乘一位数的继续,是学习两位数乘两位数的起始,是三位数乘两位数的基础,所以这部分内容起到了承上启下的作用。
学生已经学过了两位数乘一位数和两位数乘整十数,完全有能力利用已有的知识经验计算出得数,老师课上需要做的是引导学生回忆相关知识,启发学生整合旧知、推出新知,帮助学生规范书写过程,把算理和算法加以提升。学生只要学会了这部分内容,到三位数乘两位数的时候完全可以迁移过去。
【设计理念】
1.计算教学要充分挖掘知识间的“纵向”联系,有效把握知识的前后联系,提高教学设计与实施的效果。
小学阶段安排的学习内容,一般都是由低年级到高年级,根据各个年龄段学生的思维特点及自主探索的能力,将内容分段安排,这一特点在有关计算的学习中尤为明显。
比如:整数加减法,大体分为四段,一是10以内数的加减法,二是20以内数的加减法,三是100以内数的加减法,四是万以内数的加减法,至于万以上数的加减法不再专门学习,有了万以内的加减法的基础学生自然就能通过迁移自己学会。每一段内容的学习都以前面内容为基础,又都为后面内容的学习做铺垫。
再如:整数乘法,也分为四段来学习,一是表内乘法(学习乘法的根基),二是两三位数乘一位数,三是两位数乘两位数(即是本节课涉及的内容),四是三位数乘两位数。从知识安排的顺序可以看出,本节课涉及的两位数乘两位数在整个整数乘法中处于一个承上启下的地位,既要在前面知识(两三位数乘一位数)的基础上进行学习,又要为后面的知识(三位数乘两位数,甚至是小数乘法)做好方法的铺垫。
2.尊重学生已有的知识基础与生活经验,可以提高教学的针对性和有效性。
正因为知识有了纵向的联系,所以在设计教学时,我们就要充分考虑学生已有的知识基础,引导学生对已经学过的知识进行整合,推导出新的知识;或者是将新的知识通过改造,转化成已经学过的知识。本节课的设计就是充分考虑到学生已经学过两位数乘一位数和两位数乘整十数这个基础,在学习两位数乘两位数这个新知识时,先让学生自己尝试把它转化成已经学过的知识加以解决。既提高了学习的效率,又培养了学生遇到新问题就尝试转化成旧知的意识。
3.引导学生经历探究算法的过程,培养学生的数感,发展学生的比较、概括及抽象能力。
计算的法则实际不难,如果直接告诉学生法则然后让学生计算会省去很多时间和麻烦,但是这样不利于培养学生的思维和能力。设计教学时我们还是要立足于让学生充分经历探究算法的过程,将计算法则的形成过程充分展开,让学生一步一步亲自动脑思考、动手操作,这样学生不仅学会了计算的法则,更重要的是在探索的过程中潜移默化的形成了比较、概括、抽象能力,培养了数感。
在探索23×12的口算过程时,用几个横式(23×10=230 23×2=46 230+46=276)来表达过程,如果把几个横式写为竖式再对其进行合并,就会出现我们一般认为比较简单的竖式计算过程。教学中,就要引导学生一步一步经历从口算到改为竖式,再到将几个竖式合并、简化的过程。
4.处理好算理和算法的关系,抓住计算教学的核心。
算法主要解决“怎样计算”的问题,算理主要回答“为什么这样算”的问题。算理是计算的依据,是算法的基础,而算法是依据算理提炼出来的计算方法和规则,它是算理的具体体现。算理和算法是计算教学中相辅相成、缺一不可的两个方面。
处理好算理与算法的关系对于突出计算教学核心,抓住计算教学关键具有重要的作用。当前,计算教学中“走极端”的现象实质上是没有正确处理好算理与算法之间关系的结果。一些教师受传统教学思想、教学方法的支配,计算教学只注重计算结果和计算速度,一味强化算法演练,忽视算理的推导,教学方式“以练代想”,学生“知其然,不知其所以然”,导致教学偏向“重算法、轻算理”的极端。与此相反,一些教师片面理解了新课程理念和新教材,他们把过多的时间用在形式化的情境创设、动手操作、自主探索、合作交流上,在理解算理上大做文章,过分强调为什么这样算,还可以怎样算,却缺少对算法的提炼与巩固,造成学生理解算理过繁,掌握算法过软,形成技能过难,教学走向“重算理、轻算法”的另一极端。
要正确处理好算理与算法的关系,就应引导学生在理解算理的基础上自主地生成算法,在算法形成与巩固的过程中进一步明晰算理。算法的形成不能依赖形式上的模仿,而要依靠算理的透彻理解,只有在真正理解算理的基础上掌握算法、形成计算技能,才能算是找到了算理与算法的平衡点。
本节课的重点是两位数乘两位数的笔算,其算法主要是:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数;用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位;然后把各次乘得的数加起来。教学中,不仅要让学生知道这些算法,更重要的是要让学生明白为什么用每一位上的数分别去乘另一个因数的各个数位上的数,为什么用哪一位乘就和哪一位对齐(这正是本节课的一个难点),为什么要把每次乘得的数加起来。如果让学生充分经历了算法形成的过程,这些问题就不难理解了。
【教学目标】
1.经历探索两位数乘两位数(不进位)口算和笔算方法的过程,理解算理,掌握算法。
2.通过小组合作和交流,感受计算两位数乘两位数(不进位)方法的多样化,培养数感和数学思维能力、交流能力及合作意识。
3.在探索算法和解决问题的过程中,感受数学与生活的联系,增强自主探索的意识,提高交流合作的能力,获得成功的体验,树立学习的信心。
【教学重点】探索两位数乘两位数(不进位)的算法,理解算理。
【教学难点】理解“用十位去乘”时得数的写法及算理。
【教学过程】
一、口算练习。
13×20= 13×2= 260+26=
11×40= 11×4= 440+44=
23×10= 23×3= 230+46=
(设计意图:经过第一次打磨,一部分老师认为新课改后,注重了知识形成的过程,但相应的学生的计算能力,尤其是口算能力有不同程度的下降,每节课前用3、5分钟时间练习一下口算会提高学生的计算能力;还有老师认为像原人教版教材一样,在新课进行之前,出一些学生学过的又和本节课新知识密切相关的题目,会为学生学习新知做一些铺垫,使学生看到新知识后更容易的联想到相关的旧知识,更容易的将新知转化成旧知。所以在第二稿中设计了一组这样的口算练习,请大家再讨论,这样设计是否可行?有何优缺点?)
二、引出问题
⑴师:上节课我们已经欣赏了美丽的街景,有同学提出了这样一个问题:这条街上有23根灯柱,每根灯柱上有12盏灯。一共有多少盏灯?这节课我们就来解决这个问题。
⑵根据信息和问题列出算式,并简单说一说列式的根据。(板书:23×12)
⑶找该算式和以前学过的乘法算式有什么不同?(使学生明确知识的发展点。)
板书课题:两位数乘两位数
(设计意图:在第一次打磨的过程中,有老师提出这是两位数乘两位数的第二课时,有关寻找信息提出问题的过程在上一节课中已经完成,本节课可以直接出示上节课未解决的问题,省出时间探索算法、理解算理,提高教学的有效性。感觉很有道理,第二稿中将引出问题这一环节做如上修改,请大家再讨论。)
三、理解算理,探索算法
1.估算
⑴让学生先估一估23×12的得数。(学生估算的结果可能可能是230或者240。)
⑵引导学生想一想:23×12的实际得数比估算出来的数大还是小?为什么?
(设计意图:在试算之前,先让学生进行估算,主要是引导学生联系上节课所学的两位数乘整十数来分析23乘12的结果大约是多少,从而为他们准确计算提供依据。而且在估算的过程当中学生很自然的想到把12看成10,估算出的230是10个23的和,还有2个23没算在里面,为下面口算准确得数渗透一个方法,实际上也是新知识的一个生长点。通过估算,还可以培养学生的近似的意识,用估算的方法来确定积的大致范围,可以帮助学生验证计算的结果。估算对学生做完题进行检验有很大价值,有一个好的估算习惯,能让学生及时发现并纠正计算中明显出现的错误。)
2.试算
⑴师:这道题的准确得数到底是多少?请同学们开动脑筋,看能不能利用以前学过的知识计算出这道题的得数?
把计算的过程简要写到练习本上,遇到困难时,可以和小组同学交流。
⑵师巡视指导。(个别学生可能想不出如何转化,老师可个别启发引导:23×12可以表示12个23,我们能不能把12个23拆开来算呢?)
⑶交流算法。
学生可能会出现的算法:
A:23×10=230
23×2=46
230+46=276
B:20×12=240
3×12=36
240+36=276
(引导学生明确:两种方法都是把其中一个因数拆分之后,转化成了以前学过的算式。)
⑷小结:同学们真善于动脑筋,我们遇到了一个两位数乘两位数的算式,是以前我们没学过的,大家想到了把它转化成我们学过的两位数乘一位数和两位数乘整十数。看来遇到新的问题的时候,想办法把它转化成我们以前学过的旧知识,的确是一个很好的学习方法。
(设计意图:将新知转化成旧知应是计算教学中一个主要的策略。)
3.笔算
⑴请学生试着用竖式计算23×12,遇到困难可以和小组的同学一起商量。
⑵学生试做,师巡视指导。
⑶展示交流。
学生可能会出现的算法:
A: 2 3
× 1 2
2 7 6
(引导学生明确:这样列竖式没法清晰地看出计算过程)
B: 2 3 2 3 2 3 0
× 2 ×1 0 + 4 6
4 6 2 3 0 2 7 6
(和刚才的那个竖式比,这种做法确实清晰地看出了计算过程,但也有点麻烦。)
C: 2 3
×1 2
4 6
+2 3 0
2 7 6
(请学生对比评价B和C两种算法,C方法既能看出计算过程,也比较简单。)
D: 2 3
×1 2
4 6
2 3
2 7 6
(请学生对比评价C和D两种算法,D方法也能看出计算过程,比C更简单。)
(在学生没有提前学习的情况下,可能不会出现后两种竖式,这时就得需要老师加以启发引导:我们能不能把3个竖式合并一下?如何使其成为一个竖式呢?怎样使笔算的形式变得更简单呢?然后再根据学生的合并情况交流、引导、提升)
(如果学生能将3个竖式合并为C竖式,可以引导学生重点讨论如下几个问题:230这个个位上的“0”可不可以不写?如果擦去“0”,大家会不会把它当成“23”,为什么?如果不写“0”除了少写一个数字,还有什么好处呢?学生充分讨论后,教师再让学生通过看竖式发现:乘完个位乘十位,十位上的1乘3得3,对齐4的下面写3,1乘2得2,在4的前面写2。这样算的时候不写“0”,可以简便我们的计算过程。)
(设计意图:引导学生经历将口算过程写成竖式形式,将几个竖式合并,再将竖式进一步简化的过程。同时在此过程中学生也很清晰的看出每一部分的来龙去脉,更容易的理解算理了。)
4.明算理
引导学生分别说一说46是怎么来的?表示什么?23是怎么来的?表示什么?尤其要明确23写在百位和十位上就是表示23个十,也就是230。
(设计意图:抓住关键,进一步明晰算理。)
5.规范书写
师生共同梳理计算的过程。
2 3
×1 2
师:先用个位上的2和23相乘。(板书)
2 3
I↑
×1 2
4 6
师:再用十位上的1和23相乘。一三得三,3写在哪里?为什么?
师:在十位下面写3就表示3个十了。一二得二,2写在哪?为什么?
2 3
↑J
×1 2
4 6
2 3
2 7 6
师:竖式中的46是怎么来的?23实际上是多少?它是怎么来的?
(板书:23×2和23×10)
2 3
I↑
×1 2
4 6――23×2
2 3 ――23×10
2 7 6
(设计意图:清晰再现计算过程,进一步明确算法。)
6.练习
独立计算21×43,集体订正时说一说计算过程。
(设计意图:紧扣新知,及时巩固。)
三、巩固练习
1.根据竖式写得数。
师:你是从竖式中的哪一部分看出来的?
(设计意图:进一步巩固算理。)
2.你能很快判断出对错吗?
42×21=126(出示横式,不出竖式)
(学生可能根据个位上的数进行判断,也可能利用估算进行判断)
找错因,明算理。(出示竖式)
(设计意图:有老师提出练习量小的问题,我个人认为本节课探索算法、理解算理的过程需充分展开,后面供练习的时间是很有限的,这些练习也不一定能处理完。一节课的时间是有限的40分钟,要抓住重点内容充分展开、透彻理解,至于计算技能的形成,后面肯定还要安排1―2课时专门进行相关练习,所有过程不可能在一节课中全部展示。)
四、总结
师:你觉得在用竖式计算两位数乘两位数时应注意什么?
师:是呀,在用个位上的数去乘时,得数的末位要和个位对齐,用十位上的数去乘时,得数的末位就要和十位对齐。
师:你还有哪些收获呢?(比如:转化的方法,横式变竖式的过程等)
教学目标:
1、掌握进位的两位数乘以两位数的计算方法,并能正确的进行计算。
2、在交流中,培养同学的合作意识,并能有条理的表达自己的想法。
3、主动参与新知识的学习与活动,增强对数学学习的成功与体验。
教学重点:掌握两位数乘以两位数的计算。
教具准备:小黑板
教学过程:
一、复习铺垫
笔算
133945
×12×6×5
指名学生上讲台进行板演,找同学进行检验。
二、自学尝试小组交流
1、学生观察信息窗2情景图
师:节日期间,街心花坛装扮的异常美丽,请仔细观察画面,你知道了什么:
1.“保护环境”花坛每排27盆花,共23排。
2.“美化家园”花坛每排22盆花,。共28排。
3.街心喷泉每排有43个喷头,共32行。…………
师:同学们观察的真仔细,发现了这么多的数学信息,真了不起!根据这些信息,你能发现哪些数学问题?和你组里的小伙伴交流一下。
学生根据信息,可能会提出以下问题:
“保护环境”花坛一共用了多少盆花?
“美化环境”花坛一共用了多少盆花?
喷泉里一共装了多少个喷头?…………么?
我们先来解决第一个问题。保护环境花坛一共用多少盆花?你想怎样做呢?学生自己尝试列出竖式进行解决,解决好以后,在小组内进行交流自己做题的步骤,同学之间互相进行说一说,找同学到黑板上进行板演并进行讲解,下面同学有什么疑问,进行提问,学生进行质疑,同学进行解答。有的同学用了估算的方法。
三、点拨升华
教师再进一步指着竖式对学生提出问题,让学生进一步明确,两位数乘两位数的笔算方法:
1、先用第二个因数的个位去乘第一个因数,得数末尾与第一个因数的个位对齐。
2、再用第二个因数的十位去乘第一个因数,得数末位与第一个因数的十位对齐3、然后把两次乘得的积加起来
四、巩固练习
1、出示小黑板让学生分组进行练习,每组中的2号同学到小黑板上进行计算,各组的组长进行判断。统计做对题的人数。
2、做书上的练习题,自主练习的第3、4、5、题。
让每组中的3号同学到黑板上进行展示。集体进行纠正
五、课堂小结
这节课学习了什么?在计算过程中要怎样做?
教学目标:
1、使学生经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力;感受数学在日常生活中的应用,初步形成综合运用数学知识解决问题的能力。
教学重点:
在解决问题的过程中巩固两位数乘两位数的计算方法。
教学难点:
形成综合运用数学知识解决问题的能力。
教学准备:
小黑板
教学设计
一、情境导入
师:这几天,我们学习了两位数乘两位数的口算和笔算,这一节课,刘老师和同学们用两位数乘两位数的知识解决实际问题。先来看一下本节课的教学目标:
二、目标导学
1、经历从实际生活中发现问题、提出问题、解决问题的过程,在解决问题的过程中巩固两位数乘两位数的计算方法。
2、能灵活运用不同的方法解决简单的实际问题,提高解决问题能力。(让学生看看教学目标,并让一个学生读一读
三、独立解答、小组合作解决问题
师:每当夜幕降临,街道上就亮起五彩缤纷的霓虹灯,我们的城市和建筑物在灯光的映射下显得更加迷人和漂亮,请同学们打开课本36页,我们一块来欣赏一下这迷人的夜景。(学生们看书36页夜景图)
师:夜景迷人吗?(生:迷人)通过欣赏夜景图,你都发现了哪些数学信息?
生一:48根灯条,每根71个灯泡
生二:一个广告灯一天的租金是45元,这条街上有29个同样的广告灯
生三:A型车限乘25人,B型车限乘8人,A租4辆型车正好。
生四:5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?
(通过让学生说数学信息,培养学生完整、正确表达的好习惯)
师:根据你发现的信息能提出哪些数学问题?
(学生各抒己见)
师:刚才同学们提了很多数学问题,都非常的好,今天咱们着重来解决这四个问题,把其余的放入问题口袋,再一节课再来研究。
出示四个问题:
1、一共有多少个灯泡?
2、29个同样的广告灯一天的租金多少元?
3、A型车限乘25人,B型车限乘8人,A租4辆型车正好。如果租B型车,需要多少辆?
4、5棵树用75米彩灯线,用400米彩灯线装饰剩下的25棵树,够吗?
师:同学们看看这四个问题,你会解答吗?下面请同学们在练习本上独立解答出来。
(学生独立解答,教师巡视大约10分钟)
师:刘老师看大部分同学做完了,而且发现没做完的同学的原因是做题过程中遇到了一点小麻烦,不要紧,下面咱们以小组为单位,把你的解题思路先在小组内交流一下,不会的地方提出来,同学们共同帮助你,待会再在班内交流。
(学生小组交流,教师巡视,看看各小组讨论情况)
师:各小组都讨论完了,下面请小组的同学上来汇报。
小组同学就各问题汇报,不对的和不完整的其余各小组及时纠正和补充。
师:刚才同学们讲的都很棒,特别是第3个问题和第4各问题。第3个问题同学们想的很周到,生活中经常遇到这样的问题,到底是舍去还是向前进一,根据生活实际情况解决;第4个问题同学们想到了那么多的解答方法,根据自己的情况选择喜欢的解答方法。
四、自主练习
教材37页第3题和第5题(学生独立解决,小组讨论订正,不会的再在班内交流)
【教学目标】
1.使学生进一步理解乘法的意义,在弄清用两位数乘两位数算理的基础上,掌握两位数乘两位数的笔算方法和书写格式,并能正确地进行计算。
2.培养学生准确计算的能力。
3.培养学生书写工整、认真计算的学习习惯及善于思考的学习品质。
【教学重点】两位数乘两位数笔算乘法的计算方法。
【教学难点】两位数乘两位数笔算乘法的算理。
【教学过程】
一、复习准备
1.口算练习。
(全体同学进行口算练习,投影出示)
14×2
31×30
214×3
16×5
23×4
22×3
21×5
12×20
18×3
23×6
27×4
42×3
请同学说一说,14×2,31×30,214×3的口算过程。重点强调要用第二个因数分别去乘第一个因数的每一位数的计算方法。
请同学回忆两位数乘一位数乘法的计算方法,教师再强调说明:在计算两位数乘一位数的乘法时,要用第二个因数依次去乘第一个因数的每一位,满几十就向前一位进几。
2.根据乘法的意义写出算式并口算出结果。
1个24
2个24
3个24
10个24
(24×1=24)
(24×2=48)
(24×3=72)
(24×10=240)
同学们想一想:2个24和10个24合起来是几个24?(12个24)
根据乘法的意义,12个24写成乘法算式:24×12。
揭示新课:两位数乘两位数(板书课题)
二、学习新课
1.理解算理,探索算法。
投影出示,引导学生看图片。
提问:图上画的是什么?每盒有多少只?
一共有多少盒?求的是什么?怎样求?
以上几个问题,四人小组讨论。
集体讨论,说明图意。(每盒彩笔24支,12盒彩色笔共多少支)
老师提出几个问题,请学生独立思考。
(这几个问题,投影出示)
(1)求12盒彩色笔共多少支,应该怎样列式?
(2)讲一讲24×12的意义。
(3)从图中看出12盒彩色笔可以分成几部分?怎样求出这两部分彩色笔的支数?
(先求2盒的支数,再求出10盒的支数,最后求出12盒一共的支数)
请学生回答,教师板书:
(1)2盒的支数
(2)10盒的支数
(3)12盒的支数
这三步是学生已掌握的旧知识,可由学生自己独立完成,请一名书写好的学生到黑板上板演。
根据学生的回答,老师在竖式中标明乘的箭头。
教师边重点补充讲解边完善板书:这道题分三步计算,先求2盒的支数,再求10盒的支数,最后把两部分加起来,得到12盒的支数。
提问:怎样把这三步写在一个竖式里呢?板书:
教师示范演示:
第一步:用纸片盖住12十位上的“1”,用个位上的“2”依次去乘24的每一位数。
第二步:揭开十位数字上面的纸片,用十位上的“1”依次去乘24的每一位,(用十位上的1去乘个位上的“4”得4,(即4×10=40,故4要写在十位上;用“1”去乘十位上的“2”,得20,即:20×10=200,故“2”写在百位上。)
第三步;综合一,二步,把两部分积相加起来。写一个完整的竖式。
在把两部分积相加的时候,个位上是计算2加0,0只起占位的作用,为了简便,这个0可以省略不写,边说边把“0”擦掉。
小组讨论:每个同学都有机会说一说计算的全过程。
(先用12个位上的2去乘24,得数的末位和个位对齐;再用12十位上的1去乘24,得数的末位和十位对齐;最后把48和240加起来。)
引导学生观察完整的竖式和分步计算的联系与区别。强调说明用一个竖式计算比较简便。
2.基本练习。
出示3道用竖式计算的两位数乘两位数题目,由三个学生分别板演,其余同学写在练习本上。
完成后进行集体订正。
3.小结。
今天我们一起学习了“两位数乘两位数的笔算方法”,想一想,用两位数乘两位数的笔算乘法应该怎样计算呢?
(同桌两个同学互相讨论一下)
投影出示:
两位数乘两位数用竖式计算的方法:
⑴先用第二个因数个位上的数去乘第一个因数,得数的末位和个位对齐;
⑵再用第二个因数十位上的数去乘第一个因数,得数的末位和十位对齐;
⑶然后把两次乘得的数加起来。
请个人读、集体读。
三、巩固反馈
1.计算下面各题。
要求:
(1)先说出下面各题的计算步骤,再计算;
(2)计算后请把两个因数调换位置再算一遍,看看两次计算的结果相同吗?
43×1231×2326×13
2.用竖式计算下面各题。
要求:计算后结合每道题具体说一说“为什么用第二个因数十位上的数去乘第一个因数,得数的末位要和十位对齐?
3.出示课件。
学校买了32把椅子,每把椅子的价钱是15元。根据左边的竖式在里填数。
通过读题、审题后,由学生独立完成后集体订正。
四、总结。
同学们学习得很好,老师再出一道思考题,用你们今天学习的知识能解决吗?
123×23
教学内容:
数学书76页例2。
教学目标:
会正确笔算两位数乘两位数的进位乘法。
教学用具:投影仪,多媒体课件
教学过程:
一、课前练习
10×9= 9×9= 19×19=
二、揭示目标
本节课的学习目标是什么呢?请看:(出示投影,生齐读)。
过渡:要达到本节课的学习目标,还要靠大家认真自学,怎样自学呢?请看自学指导。
三、自学指导
认真看课本65页例2,看图,看文字并填空,重点看笔算乘法进位的方法。思考:
1.先用哪一位上的数去乘哪个数?相乘时,如果满十怎么办?
2.再用哪一位上的数去乘哪个数?相乘时,如果满十怎么办?最后算什么?如果不懂的,可以问同学,或者举手问老师。
4分钟后,比谁会做与例题类似的题。
四、先学
1、过渡:现在自学竞赛开始,比谁自学后,能做对检测题。
2、看一看:
生看书自学,师观察督促学生紧张自学。(要保证学生看够4分钟,学生可以看看、想想,如果学生看完,可以复看。)
3、做一做:(课本第76页的“做一做”)
a、过渡:同学们看完了吗?看完的请举手。下面,就要考考大家。要比谁做得又对又快,比谁字体端正,数位对齐,数字要写得大些,数字间要有一定的间距(要划出学生板演的位置)。
b、板演练习,请2名后进生上台板演(65页“做一做”的1、3题,其余同学做在练习本上。教师巡视,要找出学生中的错误,并板书。
讲述:做完的同学,请认真看黑板上的练习。(要求:学生认真看板演的同学做的是否有错误,还要检查自己做的是否正确。)
五、后教
1、学生更正:
教师指导:发现错了的请举手!点名让学生上台更正。提示:用红色粉笔改,哪个数字错了,先划一下啊,再在旁边改,不要擦去原来的。
2.讨论。
过渡:到底谁对、谁错呢?下面请大家讨论,还要说出“为什么”。
(1)讨论几道题的第一步。
①师:哪个对呢?为什么?(手指一下不同的答案)
学生回答:教师要启发学生注意:a、进位的数字有无写错。b、进位的数字要写到前一位的右下角。C、要小一些。(如果学生写的不合格,要指出并更正)d、有无加到前一位上去。
②师:这个学生错在哪里?(忘了加上进位1…….)
③打“√”或“×”。
师:认为第2小题第一步对的请举手?(方法同第小题的第一步)
④小结:根据刚才的讨论,同学们想一想,相乘时如果各位上满几十怎么办?(幻灯出示:相乘时,个位满几十,就向前一位进几,进几就在前一位上加几。)
(2)讨论几道题的第二步。
①师:哪个对呢?为什么?(手指不同答案)
②师:这个同学错在哪里?(忘了加上进位1)
③小结:根据刚才的讨论,同学们想一想,相乘时如果十位上满几十怎么办?(幻灯出示:相乘时,十位满几十,仍向前一位进几,进几就在前一位上加几。)
(3)师:请同学们看几道题的最后一步对不对?为什么?(把两次乘得的积相加)
(4)给第二题打“√”或“×”。
(5)同桌互改。
讲述:a、同学们请把作业本交换一下,看看同桌做得对不对,对的打对号,如错打错号。b、全对的请举手?c、做错的同学请举手,错在哪里?请说一下。
(6)拓展练习
数学课本第66页第3、4题。
六、全课小结
小结:同学们,咱们学习了两位数乘两位数进位的笔算方法,会做的请举手,请说说计算时,要注意什么?(学生说对,教师不必重复)
①相同数位对齐,先从个位乘起。
②用第二个因数的个位去乘第一个因数的每一位,积的末尾和个位对齐。
③用第二个因数的十位去乘第一个因数的每一位,积的末尾和十位对齐。
④哪一位乘得的积满几十就要向前一位进几,进几就要加几。
⑤再把两次乘法得的积相加。
两位数乘两位数的笔算乘法,学生通过前面学习不进位的笔算乘法,初步了解了乘的顺序及部分积的书写位置,理解笔算的算理。本课教学进位的,是为了进一步让学生经历两位数乘两位数需要进位的笔算过程,从而帮助学生掌握笔算乘法的方法。
两位数乘两位数的笔算是本单元的教学重点。掌握其计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
学情分析
“数的运算”在小学数学课程中占有重要的地位。计算教学直接关系着学生对数学基础知识与基本技能的掌握,关系着学生观察、记忆、意志、思维等能力的发展,关系着学生学习习惯、情感、意志等非智力因素的培养。计算能力是每个公民具备的基本素养之一。
教学目标
1.结合彩笔问题,经历用已有知识解决问题,在口算乘法的基础上,掌握两位数乘两位数(不进位的)笔算乘法计算方法的过程。
2.培养学生的迁移推理能力,掌握其数学学习方法。
3.在与他人交流各自算法的过程中,体验算法多样化,提高学习数学的兴趣。
教学重点和难点
重点:理解算理的基础上掌握两位数乘两位数(不进位)乘法的计算方法。
难点:理解用一个因数十位上的数去乘另一个因数,得数的末位要与十位对齐的道理。
教学过程:
一、创设情景,导入课题:
1.教师利用多媒体出示画面:学校买了一些彩色笔要奖给数学竞赛获奖的同学,每盒彩色笔24枝。
2.让学生观察情景图,了解图中的数学信息,并根据画面情景提出问题,自己尝试解答。
3.全班交流,进行互评。
学生可能提出两位数乘两位数的乘法,这时就可以沿着这个问题导入新课的学习。如果没有,教师也参加活动,提出问题。
比如:10盒一共多少枝?20盒呢?学生口答,说说你是怎么想的。
4.导入例题,猜测得数。
再问:如果买了12盒呢?学生独立猜测,并记录结果。
二、主动探索,验证结果。
怎么验证你猜测的结果是否正确?(教师引导学生明确应该计算出结果)
1. 教学24×12的算法。
(1)学生利用已有的知识,独立思考解法,并用算式表示出来。(教师巡视,了解学生的解答情况,对有困难的学生进行帮助。)
(2)明晰计算思路,汇报交流,体验算法多样化。(在电脑上展示学生的算法)以小组为单位汇报,其它小组要认真听,及时补充。(学生的方法里可能有用竖式的方法,如果没有,还需要老师继续引导。)
(3)讨论哪种方法最简便?
(4)统一认识,确定最简便的方法,引导学生试写成竖式。
(5)针对出现的情况讨论,关键处教师点拨,让学生领悟计算方法。
比如,讨论大头蛙提出的问题:这个“4”为什么写在十位上呢?(看竖式)
明确:因数12十位上的“1”乘24个位上的“4”得4个十,所以4要写在积的十位上。
(6)练习:如果买了23盒呢? 请一名学生 板演,其它在本上做。
(7)师生共同归纳两位数乘两位数(不进位的)笔算方法。
2.反馈练习,巩固知识。第39页练一练的第2小题。练习后,两位数乘两位数的计算时应该注意什么?
三、识应用,扩展思维。
1. 第39页练一练的第1、3小题。
2. 趣味练习。11x11 12x12 13x13 你能发现什么规律嘛?和同学说说吧!
教学内容:冀教版《数学》三年级下册40-41页。
教学目标:
1、结合计算浪费水的问题,经历自主尝试、学习两位数乘两位数(进位)的计算方法的过程。
2、会笔算两位数乘两位数(进位)的乘法。
3、在解决现实问题的过程中,认识水在人类生活中的重要性,增强节水意识。
教学准备:多媒体课件
教学过程
设计意图
教学预设
一、创设情境 激趣导入
师:同学们,水和空气是我们每个人生存的必要条件,谁也离不开它。今天有一位好朋友要和大家见面,你们看它是谁?
小水滴:大家好,我是你们真诚的朋友小水滴。水,是人们赖以生存的重要资源。中国是水资源紧缺的国家,在全国640个城市中,缺水城市达300多个,其中,有100多个城市严重缺水。据医学专家介绍,一个健康的人,如果4天喝不到水,就会有生命危险。爱护水资源就是爱护我们的生命。可是在我们生活中有很多浪费水的现象,同学们,在你周围有这种不好的现象吗?学生发言。
以“小水滴”可爱的形象来引起讨论的话题,亲切自然生动,学生乐于接受。
通过小水滴的介绍,引起学生对浪费水现象的思考,为新知的教学创设了良好的情境。
在浪费水的话题上学生可能会提到身边发生的小事,例如:水笼头没有拧紧,总是滴水浪费的现象。老师应适时引入例题。
学生讨论适可而止。
二、自主探索 教学新知
(1) 教学例题
一个没有拧紧的水笼头,每天要白白流掉12千克水。照这样算,2个月要浪费多少千克水?
(附3、4月份的月历表)使学生了解“2个月”的含义。
让学生自己试着算一算,然后和周围的同学互相说一说自己是怎样想的`,怎样算的。
在此学生可能出现的计算方法:
1、12×31=372(千克)
12×30=360(千克)
372+360=732(千克)
2、31+30=61(千克)
12×61=732(千克)
1 2
×61
1 2
7 2
7 32
答:2个月要浪费732千克水。
学生交流展示个性化的计算方法时,关注用竖式计算方法,并让学生生讨论:这个7是怎样算出来的?帮助学生掌握进位的方法。
(2)情感培养 节约用水
师:同学们,我们平时喝一瓶矿泉水才500克,一个没有拧紧的水笼头两个月要浪费掉732千克水,够我们一个人喝1000多瓶水了。多可怕的数字啊!在生活中我们应该怎样做才能节约用水呢?
学生从生活中的小事谈一谈如何节约用水。
小水滴发出号召:朋友,让我们一起节约用水!
三、综合练习巩固新知
让我们一起到神秘的海洋世界去游览一番吧!你能解决可爱的小鱼背后的题目吗?
请选择题目试一试吧。
(1)校园小主人
学生独立解决问题。全班交流。
(2)计算小能手
学生自己完成,让学生说一说验算方法和验算时出了哪些问题。
(3)小小超市
让学生自己计算、填表,再交流。
P41页练习1—3题。
四、知识窗
介绍古人计算乘法时用的一种巧妙方法—格子法。
这个环节充分调动了学生学习的主动性,积极性。学生自主探索、合作交流个性化的计算方法。在相互交流中解除困惑,并有机会分享自己和他人的想法,在探索活动中解决问题,理解和掌握了数学知识。
关注学生竖式计算的方法,通过讨论百位上的7是怎样算出来的,帮助学生掌握进位的方法。培养学生细心认真的学习习惯。
认识水在人类生活中的重要性,从身边小事作起增强节水意识。
通过情境创设,设计三道练习题,了解学生笔算方法的掌握情况。
在开拓学生思维的同时,培养民族自豪感。
在此过程中,学生在交流个性化的计算方法时,可能还会出现以下方法:
1、把两个月都看作30天。
30×2=60(天)
12×60=720(天)720+12=732(天)
2、把两个月都看作31天。
31×2=62(天)
12×62=744(天)
744-12=732(天)
老师应及时鼓励算法多样化。当学生用竖式计算时会遇到进位的问题,可先让学生自己试着计算,然后在小组中交流计算方法。
在练习“小小超市”一题中,36×31这道题中出现三次进位,老师应重点关注学生的计算过程,并酌情进行点拨引导。
教学目标:
1、对两位数乘两位数的口算、估算、笔算方法进行回顾和整理,提升学生对本单元知识的掌握水平,培养学生总结和归纳的能力
2、通过解决实际问题,使学生进一步体会计算与生活的紧密联系,增强应用知识。
教学过程:
一、导入新课
1、向学生生动地讲述这个小故事,然后请学生说一说想法。
2、看书P68页故事的文字叙述,提出问题。
二、复习指导
1、组织学生小组讨论方法,并将小组内的方法汇总。
(1)出示各组的方法,并请学生说明解决问题的过程。
(2)师对学生想出的各种方法进行总结和讲评。例如:一个字一个字地数可以得到精确的数字,但费事费力,不宜操作。
(3)借助学生所用的估算、笔算等方法,让学生回顾口算、估算、笔算方法,并说说计算过程。
2、练习十七第1题
(1)比一比,看谁算得又对对快!
(2)让学生说说自己是怎样算的并引导其总结出规律
3、练习十七第2题
(1)谁能说说企鹅的生活习性?
(2)出示企鹅卡片:它们要选择一块属于冰块嬉戏,大家愿意帮助它们吗?
(3)核对大家选择的结果,表扬学生助人为乐的精神
4、练习十七第4题
(1)观察情境图,让学生独立思考如何解决问题
(2)组织学生小组讨论,说说题意,问题是什么,基本的数量关系是什么?需要哪些数据,怎样列式计算等。
(3)请学生说说自己解决这个问题的全过程
三、总结、布置作业
1、本节课对这一章所学内容进行了整理复习,这一章我们主要学习了哪些知识呢?在进行口算、估算、笔算的过程中要注意什么问题呢?
2、作业
(1)将你自己总结出的口算、估算和笔算规律和你认为要注意的问题写在作业本止。
(2)回家收集有关世界杯足球赛的资料,完成练习十七第3题。
教学内容:冀教版《数学》三年级下册第 38 、39 页
教学目标:
1、结合彩笔问题,经历用已有知识解决问题,学习两位数乘两位数(不进位)乘法的计算方法的过程。
2、会笔算两位数乘两位数(不进位)的乘法。
3、在与他人交流各自算法的过程中,体验算法多样化,提高学习数学趣。
培养学生的分析、综合能力。
教学准备:课件
教学过程:
教学环节
设计意图
教学预设
一、情境引入
同学们,新的学期开始了,动物学校的同学们很快也开学了,看,这是谁?兔博士来了,它要奖励假期作业出色的同学,正为它们购买奖品呢。
二、创设情境、探究新知.
1.创设情境,引出例1呢?你能得到哪些数学信息?提出什么问题?怎么列式?怎样计算12盒彩笔多少枝呢?
2、自主探索。
小组同学合作研讨:12盒有多少枝?怎样算?鼓励学生先独立思考,在在小组里交流。
3、交流算法。
让学生各抒己见,展示自己的算法,并说清算理。
鼓励学生说出自己的个性化算法
实物投影展示不同算法。
刚才大家说得方法都很好,今天我们重点要学习竖式计算的方法,我刚才就看到有些同学用竖式计算的,谁来说说你是怎么想的?
3、竖式计算
在交流的基础上重点解决用竖式计算的方法,
重点解决大头蛙提出地问题。使学生明确:乘数12十位上的“1”乘24个位上的“4”得4
个十,所以4要写在积的十位上。
多找几位学生说计算方法,明确算理。
三、尝试应用
兔博士还买了些东西,请同学们帮忙算算每种商品需要多少钱,你们愿意帮忙吗?
出示表格。(课件)
四、综合运用
1、练一练第1题。兔博士买好了奖品,准备召开表彰会了。
学生表彰会在学校礼堂召开,每排22个座位,有23排。500位同学够吗?独立思考解答,再交流。
2、表彰会快开始了,可是还有3位同学没到,原来它们被难题难住了,同学们快帮帮它们。
3、刚才大家表现都很出色,现在老师给大家带来一些人类得好朋友。你认识它们吗?出示益鸟图片。同学们手中有它们吃害虫的资料,请你帮忙算一算,它们21天能吃多少害虫?
五、布置作业
聪明屋:用11去乘两位数,看看你能发现了什么规律?
创设情境,吸引学生的注意力和学习兴趣。
通过情境引入新知识得学习,贴近学生生活。
培养学生独立解决问题的能力和合作精神。
通过交流讨论,丰富了学生解决问题的不同方法。让学生亲身经历探索两位数乘法计算方法的过程。
明确算理,使学生计算时能掌握住方法。
通过对练习的精心
设计,提高学生学习的兴趣。使学生从不同的角度加深对算理的认识,激发了学习兴趣,提高了计算能力,注意了培养学生认真计算、书写工整的良好学习习惯.
两盒彩笔多少枝?
十盒彩笔多少枝?
12盒彩笔多少枝?
24×12
⑴24×10=240(枝 )
24×2=48(枝)
240+48=288(枝)
⑵20×12=240(枝)
4×12=48(枝)
240+48=288(枝)
⑶有的用竖式计算。
为什么“4”要写在十位上呢 ?
杜鹃每天吃14只松毛虫;
猫头鹰每天吃12只田鼠;
燕子每天吃24只害虫;
啄木鸟每天吃23只害虫;
喜鹊每天吃11只害虫;
给学生创造个性发展的机会,丰富课程资源。
一、教材:
1、教学内容及简析:
本课的教学内容是两位数乘两位数的笔算,它是学生在已经掌握了两位数乘一位数和两位数乘整十数的口算的基础上进一步学习的,为后面学习乘数数位是更多位的笔算乘法垫定基础。这部分内容是学生计算方面学习的重要转折点。
2、教学目标:
知识目标:经历探索两位数乘两位数笔算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。
能力目标:培养观察力、探究能力、抽象概括能力。
情感目标:获得成功的体验,树立学习的信心。
3、教学重点、难点:
重点:掌握两位数乘两位数的笔算方法。
难点:理解乘的顺序及第二部分积的书写方法。
二、教法、学法:
针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。
在学法指导上,让学生掌握观察、比较、发现、交流、合作等学习方法。
三、教学设想:
课本中以订牛奶为情境,我进行了改编,以学生献爱心活动为研究题材,贴合学生实际,通过四个环节进行教学:创设情境,激发兴趣;自主探索,研究算法;巩固强化,拓展延伸。
(一)创设情境,以旧引新
在教学的导入环节,老师充分依据学生原有的知识和经验,从复习两位数乘一位数、两位数乘整十数,在此基础上,再引出两位数乘两位数。老师有意识提问:你想怎样学习新知识?让他们运用已有知识经验将难点转化,以旧知解决新问题,从而渗透数学学习的方法。
(二)自主探索,研究算法
1、渗透估算意识。教学过程中先让学生估算,再尝试用笔算,这样使估算、笔算有机结合。
2、计算方法的多样化到优化。计算教学,内容比较枯燥乏味。为激发学生的求知欲望,老师通过充分创设问题情境,多种方式体会两位数乘两位数的计算方法。学生可能出现3种情况,情况一:28×6×2;情况二:28×4×3;情况三:28×10+28×2。让学生从不同的角度、运用不同的策略去思考、探索计算的方法,通过比较认识到笔算方法的重要性,从而一起探索竖式计算的方法。
3、注重沟通,理解算理。在师生共同交流中引导学生理解把两位数乘两位数的计算分成三个部分,前面两部分都可以看成是两位数乘一位数、整十数,但着重让学生明确第二次计算的书写,第三部分,将两次计算的结果相加。竖式计算的算理与学生前面的方法是一致的,教师要注重沟通,让学生更好地理解算理,掌握每一步计算的意义。
4、归纳总结。两位数乘两位数的计算方法的叙述对三年级学生来说,有点困难,要求学生根据对算理的理解用自己的话来讲就行了,教师简要的板书为学生提供思考方向。
5、验证结果,提高效率。在笔算中,验算是最好的验证方法。因此,让学生交换48和12的位置再乘一遍,然后引导学生观察:你发现了什么?总结出乘法的验算方法。
(三)有效练习,巩固延伸
第一组安排的4题不同的练习,主要是让学生在理解的基础上从而进行独立的计算过程,第1题明确得数数字相同意义却是不同的,3、4两题的计算都有向前一位进位的问题,拓展了例题的教学。
第2题纠错题,让学生进一步理解每一步计算的意义。
第3题解决问题部分的设计,是为了增加数学计算的趣味性,让学生觉得数学学习与生活的紧密联系。
第4题是开放性练习,也是提高了计算难度,有基础练习、有提高性的进位练习,自己出题时还有可能两次相乘都有进位。
练习中的习题从不进位到进位,主要是基于这样的考虑,因为对于学生来说,顺序方法都是一样的,进位的问题也是在多位数乘一位数中学过了,对于学生来说,不是新问题,但会感觉有点困难。当然,计算要达到一定的正确率和熟练程度,必须要相当的练习量。
教学目标:
知识与技能:
1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。
2、自主探究出多种两位数乘两位数的计算方法。
3、根据具体题目情景,合理选择解题策略。
过程与方法:
经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。
情感态度与价值观:
调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。
教学重点:
自主探究出多种两位数乘两位数的计算方法,并能正确地进行计算。
教学难点:
通过让学生亲身经历两位数乘两位数的计算过程,培养他们的算法思维。
教学过程:
一、情景导入,激发学生学习兴趣。
师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。
瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?
二、自主探究。
(一)、探究算法
1、列式:14×12=
2、14×12等于多少呢?
(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。
(2)将学生生成性资源展示在黑板上(包括错误的),组织学生独自看各种展示的方法,记录下有意见或有疑惑的算法
(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。
(4)将上述方法进行整理归类(小组讨论)
(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?
(二)、体会算法;体验不同的题,最优的方法也不同
1、师:那就请你先用自己最喜欢的方法算一算13×18,然后告诉你的同桌你怎么算的?
交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?
师:看来小朋友不但会用自己喜欢的方法来算,而且还能从别人那里学到不一样的方法,很会学习。
2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计算呢?
3、学生自己例举判断(如不行,教师出题:17×29)
(1)、学生独立计算17×29
(2)、不同的题,有不同的好方法
(3)、小结:先要观察题目数字的特点,根据题目数字的特点选择计算起来比较快的好方法。
4、出示25×24
(1)思考:观察题目数字的特点,对这题你会选择那种方法呢?
(2)计时赛一赛,选前10名,统计不同算法名次
(3)思考:这是巧合么?是这些同学写字速度快,还是……?
(三)、练习47×73 25×32 85×16
三、整理归纳,探究规律
1、师:这就是今天我们共同探究的学习内容:两位数与两位数相乘。从中你有没有发现两位数与两位数相乘的积有什么特点
2、制造矛盾冲突,引发理性思考
师:两位数与两位数相乘的积一定是三位数或四位数吗?肯定吗?
3、学生展开争论
4、获得结论
5、99×99怎样计算会更方便?
四、课堂总结
一、教学内容
人教版《义务教育课程标准实验教科书数学》三年级下册P65两位数乘两位数(进位)。
二、教学准备
多媒体课件、学习评价卡
三、教学目标与策略选择
在两位数乘两位数(不进位)计算中,学生已经理解了笔算的算理,知道乘的顺序及积的书写位置,因此,本节课主要利用学生已有的认知经验进行迁移,让学生自主建构两位数乘两位数(进位)的计算过程。在认真分析教材,深入了解学生的实际认知水平后,我将本节课的教学目标定位如下:
⑴结合讲成语故事这一富有趣味性的情境,体会两位数乘两位数(进位)的计算是伴随着解决问题而产生的;
⑵运用已有经验对问题情境进行探索,得出自己计算两位数乘两位数(进位)的方法,通过与同伴的交流,体验计算方法的多样化,并通过比较,完善自己的方法;
⑶经历两位数乘两位数(进位)的计算过程,掌握笔算乘法的方法;
⑷在故事情节中渗透德育,让学生懂得做任何事情都要持之以恒、专心致志。
由“好的服装=好的布料+好的式样+好的工艺”联想到“好的教学效果=好的教材内容+好的呈现形式+好的教学方法”,在本节课的设计中,我尝试从以下几个方面进行探索:
1、创造自己的“吸引子”,先声夺人。孩子是听故事长大的。本节课我由一个源于围棋的成语故事引入,巧妙地将要解决的数学问题融于其中,引发学生愉快、主动地去探究它。
2、经历发现知识的过程。授人以鱼不如授之以渔场,课堂上我给学生提供了充分积极思考、合作交流的渔场,让他们在交流中不断地反思自我、完善自我。
3、注重过程评价,使学生在学习数学的过程中通过正确的评价,不断调整自我。纸上得来终觉浅,绝知此事要躬行,心中悟出始知深。本节课结束时,我给每个学生发一张评价卡,让学生简单反思自己本节课中所学的知识和情感体验,树立学好数学的信心。
4、教学流程设计及意图
教 学 流 程 设 计 意 图
一、引入
1、(出示卡片)专心致志
师:大家知道成语“专心致志”是什么意思吗?关于“专心致志”这则成语的来历还有一个小故事呢!
2、(电脑呈现下围棋画面)教师讲成语故事——专心致志。
师:大约战国初期,有位名叫弈秋的人特别喜欢下围棋。由于棋术高明,当时有很多家长把自己的孩子送去跟他学棋。其中有两个孩子特别聪明,一个六岁,已经会计算棋盘的总交叉点数,听老师讲棋时注意力非常集中,秋老师给他取名叫弈实;另一个孩子八岁,志向远大,决心要成为象秋老师一样的“大国手”,秋老师给他取名叫弈虚。开始讲课时,实和虚都能够认真地听讲,掌握了围棋的基本知识,学会了下棋的基本着法。一段时间后,弈虚因为水平比弈实高就觉得自己很了不起,小尾巴翘了起来,听讲的时候不用心,心里想着会飞来鸿鹄,自己可以拿弓箭把它射下来。不久,弈实的水平大大地超过了弈虚。
师:同学们,听完这个故事,你有什么想对大家说的吗?
生:下围棋时要专心,要不然就学不到真本领。
师:是啊,这个故事告诉我们干任何事情都要持之以恒、专心致志。
3、提出问题
师:同学们,弈实六岁时就已经会计算棋盘的总交叉点数,
那大家会计算吗?
(电脑呈现棋盘图,使学生了解到:围棋的棋盘面由纵横19道线交叉而成。)
棋盘上一共有多少个交叉点?
请学生说一说用什么方法解决这个问题,从而列出算式:
19×19
4、猜一猜:
⑴学生先猜一猜大约有多少个交叉点,并说一说你是怎样猜测的?
生:因为19≈20 20×20=400 所以大约有400个。
⑵想一想有什么方法能说明你猜测的数较正确?学生说出需要计算19×19=?
二、展开
1、独立思考,尝试解决问题
师:独立思考2分钟,你能想出几种方法计算19×19=?
2、梳理思路,小组合作交流
师:刚才很多同学不止用一种方法计算出了结果,接下来,请把你的想法和小组同学交流一下,在交流中有两个要求:⑴请你注意听小组内每位同学的意见、方法;⑵小组长每人发一张活动记录卡,请你边听边记下你们小组的活动情况。下面开始交流。
3、整理成果,全班汇报
⑴各小组长派代表将自己组的研究成果写在黑板上。
⑵小组代表说说他们的想法,其他小组可以补充。
①我们组的方法是:19×10=190 19×9=171 190﹢171=361
②19+19+…+19=361(19个19相加)
③我们组是把19×19看成20×19,20×19=380,再从380中减去19,380-19=361
④列竖式: 1 9
×1 9
1 7 1
1 9
3 6 1
⑤我们组也是用竖式计算,但结果不同。
1 9
×1 9
9 1
1 9
2 7 1
(揭示矛盾,突破“进位”这一教学难点。)
4、反思各种计算方法。
⑴教师提问:还有不同算法吗?那我们先来看这两个竖式计算:大家觉得他们的方法对吗?你对他们的方法有什么疑问吗?
①学生当“小记者”对用竖式计算组的同学进行现场采访,重点讲清“进位8”。
②师:同学们,“智慧宝宝”刚才也听到了大家精彩的发言,我了奖励大家,下面他要给大家讲个故事,想听吗?(电脑随录音逐一动态显示画面)
附:录音内容
数字妈妈有一对非常可爱的双包胎姐妹。有一天,数字姐姐19来到草地上,看到美丽的大自然,不由得坐下来欣赏起来,这时,数字妹妹19也来到这里,也被这景色吸引住了,她想坐下来和姐姐一起欣赏,可是究竟坐哪儿呢?姐姐看出了她的心思,就提醒她说:“我的1是十位,9是个位。”妹妹高兴地说:“噢,我知道了,我们应相同数位对齐。”突然,9和9说话了,“对不起,我们坐不下了。我们相乘满十了,要向前进8。”她们的前一位友好地收下了各自的新朋友。
学生主动学习,肯定来自于内部需求;如果没有这个需求,学生不会无缘无故地进行主体参与。因此,课堂伊始,我先创设讲成语故事这一情境吸引学生,然后从故事中引出需要解决的问题,使自主探究变成学生的一种需求。这样,在短时间内就将学生的注意引内容,让他全身心地走进数学的“门槛”。
学生间出现了不同的解题策略,在独立思考到达一定的程度时,教师教给学生必需的合作技能,接着,小组内每一个同学讲述了自己的解题方法,并对其他同学的解法充分发表自己的看法。通过这个过程,培养学生数学交流的能力,体验算法多样化,并在交流中学会倾听,学会换位思
学生当“小记者”采访用竖式计算的小组,向他们提出自己还不清楚的问题,这样就把单向的言说,变成了多向的对话。在交流中,学生不仅理解了算理,也解决“进位”这个教学难点。
“数字姐妹赏春”这一环节的设计,把数字拟人化,更拉近了学生与数学知识的距离,他们在静心聆听故事中小数字对话的同时,使知识进一步得到了巩固,而且不容易忘却。
两位数乘两位数(进位)笔算乘法教学反思、本节课是教学小学数学三年级下册课本65页例题2的笔算乘法,重点讲解19乘19的竖式,让学生掌握两位数乘两位数的笔算乘法的方法,进位的乘法计算格式。
从本节课看学生参与积极,学习的兴趣较浓。由于学生在二年级时学习了多位数乘以位数,本学期前一节课学习的两位数乘两位数不进位乘法,有了这个基础。因此,本节课我就放手让学生自己去尝试算一算,说一说,想通过让学生动脑思考、计算归纳两位数乘两位数的计算方法。在让学生计算“19×19”时,我是有意识的安排三个学生到黑板算(典型算法),让学生观察讨论,找到正确的计算方法,这样就突破了“进位”这一教学难点。
教学完这个例题后,我出了3题填一填,分层练习,学生填完后并说出计算的方法,目的让学生在计算的过程中去感悟,归纳出两位数乘两位数的笔算方法。学生都能填得出,但从学生的课后作业看,结果了现有部分学生对笔算方法不熟,尤其是在做第二层计算时就乱写了,例如:
4 5 6 3
× 3 4 × 5 2
———— —————
1 8 0 1 2 6
2 7 3 5
—————— —————
4 5 0 4 7 6
第一题学生当乘到十位上的数时,却是用第一个因数的个位加上进位的数2得7,再用5-3得2。
第二题是用十位上的数和个位相乘后,再用进位的数和个位相乘。这些学生为什么会出现这样的错误,我真不明白。
课后对这堂课进行反思,我想如果在讲完例1后,再叫几名学习没那么好的同学讲述一下笔算顺序,然后出一组改错题组织学生集体讨论,总结出笔算方法,让学生在讨论、口述的过程中对笔算乘法的算理有更清楚的认识,从而掌握笔算方法。学生在巩固训练中失误可能会更少,教学效果可能会更好。