时光在流逝,从不停歇,我们的工作同时也在不断更新迭代中,此时此刻我们需要开始做一个计划。拟起计划来就毫无头绪?为同学们带来了三角形边的关系四年级数学下学期教案优秀4篇,希望能够在作文写作上帮助到同学们。
教学目的
1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
重点、难点
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。
教学过程
一、复习提问
1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全
部工作量的多少?
2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成
全部工作量的多少?
3.工作量、工作效率、工作时间之间有怎样的关系?
二、新授
阅读教科书第18页中的问题6。
分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。
2.怎样用列方程解决这个问题?本题中的等量关系是什么?
[等量关系是:师傅做的工作量+徒弟做的工作量=1)
[先要求出师傅与徒弟各完成的工作量是多少?]
两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。解方程得x=2
师傅完成的工作量为=,徒弟完成的工作量为=
所以他们两人完成的工作量相同,因此每人各得225元。
三、巩固练习
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现
由甲独做10小时;
请你提出问题,并加以解答。
例如(1)剩下的乙独做要几小时完成?
(2)剩下的由甲、乙合作,还需多少小时完成?
(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
四、小结
1.本节课主要分析了工作问题中工作量、工作效率和工作时间之
间的关系,即工作量=工作效率×工作时间
工作效率=工作时间=
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
五、作业
教科书习题6.3.3第1、2题。
1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
理解、掌握三角形任意两边之和大于第三边的性质。
引导探索三角形的边的关系,并发现三角形任意两边的和大于第三边的性质。
课件、不同长度纸条若干张、实验表格。
一、创设情境
1、出示情境图。
政府
师:同学们仔细观察这幅图,想一想从老师家到学校有几条路可以走?
(学生通过观察并结合自己的生活经验,可以说出这样几条线路:从老师家直接到学校;从老师家经过政府再到学校,或者从老师家经过新华书店再到学校。)
师:你觉得老师走哪条路最近呢?为什么?
(学生会说出中间这条线路最快,但原因说不清楚。)
师:今天,这节课我们就要从数学的角度眼研究为什么走中间这条路最近。
2、大胆猜测
师:请同学们观察,在这幅图中,你可以发现几个三角形?
(学生边说边用手指出两个三角形)
师:在每个三角形里,老师从家直走到学校的路程是三角形的一条边,走旁边的路走过的路程又是这个三角形的什么呢?
师:根据大家的判断,你们猜猜看,三角形三条边之间会有怎样的关系呢?
(学生通过观察会猜出:三角形两边的和大于第三条边)教师板书。
师:是不是所有是三角形的三条边都有这样的关系呢?你们能肯定吗?
现在,我们就用数学方法来研究一下,看看三角形中,三边的关系是怎样的。?
揭示课题:三角形的三边关系。
二、自主探究
动手实验:
用三张纸条摆一个三角形。
师:同学们的桌上都有一些不同长度的纸条,请大家随意拿三张来摆三角形,看看有什么发现?(同桌合作)
教学目标:
1、通过动手实践,自主探索,合作交流发现三角形任意两条边的和大于第三边。
2、能判断给定长度的三条线段是否能围成三角形,能运用三角形三边关系解决生活中简单的实际问题,感受到生活中处处有数学。
3、在探索体验的过程中,能进行简单、有条理的思考。通过学习,发展空间观念,体验成功的喜悦,激发学生学习数学的兴趣。
教学重点:理解、掌握“三角形任意两边之和大于第三边”的性质。
教学难点:引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。教学准备:、不同长度纸条若干张、实验表格。
教学过程:
一、 创设情境
1、出示情境图。
师:通过刚才摆三角形,你发现了什么?
(引导学生提出这样的问题:为什么我们用的三张纸条中有两条长的和大于第三条长却没有摆成三角形呢?)
师:通过刚才是实验,我们可以发现三角形三条边在长短上有某种关系,但究竟怎样的三张纸条才能摆成一个三角形?让我们再来做一个实验。
2、 动手实验2:进一步探究怎样的三张纸条才可以摆成三角形。
师:每组同学任意选择下面三组中的任意一组纸条做进一步实验,并完成相应的实验记录。
(1)4c 5c 9c (2) 3c 6c 10c (3) 6c 7c 8c
学生汇报展示:能或不能摆成三角形任意两边的和是否大于第三边
( 1 )不 能4+5=9 4+9>5 5+9>4发现:两边之和有时大于第三边,有时等于第三边,不能摆成三角形
( 2 )不 能6+10>3 3+10>6 3+6<10发现:两边之和有时大于第三边,有时小于第三边,不能摆成三角形
( 3 )能6+7>8 6+8>7 7+8>6发现:任意两边之和大于第三边,能摆成三角形师:对于三角形的三边关系,怎样表达更严密?体会任意两边的含义。
三、 拓展应用:
1、 说一说老师为什么走中间的这条路最近?
2、 判断:哪一组中的3根小棒可以摆成一个三角形?(单位:厘米)
(1)3,6,9 (2)4,4,10
(学生通过比较任意两边之和是否大于第三边,来判断是否可以围成三角形,教师再让学生讨论交流好方法)
3、解决问题:
师:小明想要给他的小狗做一个房子,房顶的框架是三角形的,其中一根木条是3分米,另一根是5分米。
(1)第三根木条可以是多少分米?(取整数)
(2)第三边的木条的长度是a分米,那么a的取值范围是( )<a<( )
四、 回顾反思:
同学们,今天学到了什么知识?你最大的收获是什么?还有哪些不懂的地方吗?
教材分析
本课通过实验来发现三角形任意两边的和大于第三边。
学生们知道“两点之间线段最短”,能对线段的长度进行基本的测量与计算。
教学目标
1、使学生知道三角形任意(较短)两边的和大于第三边。
2、让学生经历探索数学的过程,通过猜想—实验—结论的方式,感受数学在学习、生活中的作用。
3、通过学生动手操作、想像、猜测,进一步发展空间观念,提高观察能力和动手操作能力,培养学生的数学思维。
教学重点:通过实验发现三角形任意两边的和大于第三边。
教学难点:判定两条线段的和等于第三条线段时能不能组成三角形。
预设过程
一、引入:
1、把一根吸管任意剪成三段,再用电线穿在一起,(这电线穿在一起做什么用知道吗?)头尾相连,会得到什么图形?
2、首尾相连一定是三形吗?(举手表决)。刚才有的同学认为可能围成,有的认为可能围不成,那到底能不能呢?同桌合作,剪一剪,围一围。
二、展开:
1、学生操作:把一根吸管任意剪成三段,再用电线绕一绕。
2、反馈:
把具代表性的三种不同情况的贴在黑板上。为了便于研究,给标上序号。
(围成的贴三个、围不成的各一个,)
3、同桌讨论思考:假如我们把吸管看成三角形的三条边,也就是三条线段。同样的一根线段,任意剪成三段,为什么1、2、3号能围成三角形,而4、5号却围不成呢?课件演示。
4、交流并作第一次。板书:三角形两条边的和大于第三边。
5、尝试:出示4厘米、10厘米、5厘米的三条线段。
符合两边和大于第三边,能围成三角形吗?
6、第二次:板书:任意(较短)两边的和大于第三边。
7、自学:书上是怎样说三角形的三边关系的,自学书本第82页。
三、巩固:
1、书上86页习题,在能围成三角形的各组小棒下面画钩。集体交流,能不能用刚才的算式来说明?有没有用简单的方法来判断或你认为哪个办法能快速判断?
2、对习题进行变式练习
①3厘米4厘米5厘米:观察边有什么特点?是不是所有的三个连续自然数都能围成三角形呢?举例:1、2、3或0、1、2或7、8、9。
想象一下,这三条线段围成的三角形是怎样的?(初中会学到勾三、股四、弦五)
②3厘米3厘米3厘米:三边有什么特点?围成的图形是怎样的?(正三角形或等边三角形)是不是所有的三条相等的线段都围成正三角形?
③2厘米2厘米6厘米:怎么变才能围成?怎样判断呢?
④3厘米3厘米5厘米:用手势表示一下围成的样子,知道是什么三角形吗?如果换掉其中5厘米的这条边,可以怎么换?讨论一下。
交流:为了研究方便,我们都以取厘米的数。
331:搭起来的三角形会是怎样的?用一个词来说:细细的、尖尖的。
332、333(这是什么三角形)、334、335。发现图形有什么变化?(扁了、胖了、矮了)
如果要换调3厘米的边,可以怎么换?
四、拓展
1、哪条路最近?请用今天所学知识来解释。
2、抽象出三角形:用字母表示三角形三边关系
3、根据三角形的三边关系剪三段围成三角形中的奥秘解析。