六年级上册《圆的面积》教案(优秀6篇)(六年级上册《圆的面积》)

作为一位兢兢业业的人民教师,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?这次帅气的小编为您整理了六年级上册《圆的面积》教案(优秀6篇),如果有助于您的写作,还请您介绍给您的同学。

圆的面积教案 篇一

教学目标:

1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

教学重点:

掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

教学难点:

应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

教学准备:

圆规,环形图片,教学情境图。

教学过程:

一、创设情境,引入新知

1.出示自然界中的一些环形图片。

(l)观察图片,说说这些图形都是由什么组成的。

(2)你能举出一些环形的实例吗?

2.引入:今天这节课我们就一起来研究环形面积的计算方法。

二、合作交流,探究新知

1.教学例11。

(1)出示例11题目,读题。

(2)提问:这是由两个同心圆组合成的圆环,要计算它的面积,你有什么好的方法?独立思考。

(3)小组讨论,理清解题思路。

(4)集体交流

①求出外圆的面积。

②求出内圆的面积。

③计算圆环的面积。

(5)学生按步骤独立计算。

(6)组织交流解题方法,教师板书

①求出外圆的面积:3.14102 =314(平方厘米)

②求出内圆的面积:3.1462 =113.04(平方厘米)

③计算圆环的面积:314-113.04=200.96(平方厘米)

(7)提问:有更简便的计算方法吗?

圆的面积教案 篇二

一、以旧引新(6分钟)

1.复习正方形的面积公式和圆的面积公式。

2.回答下面各圆的面积。

1.说出S正=a2、S圆=πr2

2.左圆面积=π×22=4π

右圆面积=π×(2÷2)2=π

1.边长是5cm的正方形面积是多少?

5×5=25(cm2)

2.如果r=4cm,则圆的面积是多少?

3.14×42

=3.14×16

=50.24(cm2)

二、动手操作,感知特点。(15分钟)

1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,

思考:

(1)外方内圆的图形是怎样组成的?它有什么特点?

老师明确:外方内圆的图形称为圆外切正方形。

(2)外圆内方的图形是怎样组成的?它有什么特点?

老师明确:外圆内方的图形称为圆内接正方形。

2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。

3.引导学生在圆内画一个最大的正方形。

4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。

1.

(1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。

(2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。

2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的圆心。

3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。

4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。

3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。

三、探究思考,解决问题。(10分钟)

1.计算圆外切正方形与圆 m.xiaozongshi.com 之间部分的面积。

(1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。

(2)组织学生算出正方形和圆之间部分的面积。

2.计算出圆内接正方形与圆之间部分的面积。

课件出示半径为1m的圆的。方形组合图形,组织学生讨论计算方法。

1.

(1)观察图形的特点,讨论计算方法并尝试汇报交流。

(2)分别算出这个圆和正方形的面积:

S圆=3.14×12=3.14m2

S正=2×2=4m2

S阴=S正-S圆

=4-3.14

=0.86m2

2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。

4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?

四、拓展应用。(5分钟)

1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。

2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?

1.读题,审题,明确题意后,尝试独立完成。

2.独立完成,然后全班汇报。

5.计算阴影部分的面积。

×102π-102≈57(cm2)

五、全课总结。(5分钟)

1.谈谈这节课你有哪些体会。

2.布置作业。

学生谈本节课学习的收获。

教学过程中老师的疑问

《圆面积》小学数学评课稿 篇三

《圆面积的计算》评课稿

一、目标定位正确:

1、课内充分培养学生动手操作、观察、分析、概括推理等能力。

2、理解圆面积计算公式的推导过程。掌握圆面积的计算公式。

3、让学生能利用圆面积公式进行计算,解决实际问题。

二、引入自然。

1、复习巩固了圆的周长计算公式,同一圆内半径与直径关系。

2、复习巩固了什么叫面积,让学回忆,平行四边形、三角形、梯形、面积计算的推导过程。从而自然引入圆面积计算的推导过程。

三、注重学生的动手操作。

在教学过程中,充分体现让学生自己动手画圆,把圆平均分成若干份,再让学生拼成近似的长方形或平行四边形。让他们仔细观察,研究长方形的长(或平行四边形的底)是什么,长方形的宽(或平行四边形的高)是什么,从而推导圆面积的计算公式。与此同时,更重要的是培养了学生的空间想象能力。

探讨的地方

在学生动手操作的`过程中,为了照顾中差学生,教师应充分了;利用教具或课件展示,让学生有充分的观察和思考,真正感悟圆面积公式推导的整个过程。其次是在计算公式中对半径的平方还需要指导和练习,以便学生在解决问题的实际过程中很好的运用。

圆的面积教案 篇四

1、教学目标

1.理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。

2.学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。

3.认真观察、深入思考,面对困难勇于克服、弃而不舍。

2、学情分析

《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。

看到这样的教学过程我产生了一些困惑:

1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。

2.在老师的讲授下又有多少学生能理解多种转化方法呢?

我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。

一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?

3、重点难点

教学重点:运用转化思想探索圆面积的解决办法。

教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。

4、教学过程

活动1【导入】引入课题

同学们圆是我们在小学阶段接触的。第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)

今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)

活动2【导入】交流困难

我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!

(1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作

ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。

生1:因为他和圆最接近,

师:你能想一想,为什么说正方形和圆最接近吗?

生2:正方形正正方方的,四边都一样长,

生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。

生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。

师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。

(2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。

提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?

生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。

生2:我们以前学习的很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。

师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!

(3)还有一种想法也来和大家分享。

他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?

活动3【讲授】小结

同学们你们开动脑筋,用你们的智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作

活动4【活动】全班交流

师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作

(1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!

生1:我在空余部分补了补了三角形。

还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。

师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?

生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。

生2:如果只看图形最外面一圈,我发现是一个正多边形。

师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?

生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。

师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?

同学们一定发现了多边形边数越多越接近圆。

ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)

(2)我们再来看看刚才画小方格的同学们后面的研究吧!

生:可以把剩下的地方画更小的方格就可以算出准确的面积了。

师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?

生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?

小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?

生:这样画下去倒是可以,但是算起来太麻烦了。

师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。

(3)我们再来看看第三位同学又有了什么新的发现吧!

生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。

师:对于他们的方法你有什么疑问或是受到什么启发吗?

生:圆看似很特殊,其实和其他图形也是有联系的,

生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作

的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?

Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。

师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2

活动5【讲授】总结

看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?

前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?

我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。

《圆面积公式推导》教学设计 篇五

圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。因此在教学《圆的面积》时,我力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展,教学中我是这样设计的:

一、导学激趣,以旧促新。

本课开始,我引导学生回忆学过图形面积公式,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。这部分学生在口述过程中对推导的过程说得不是十分到位,许多同学都忘记了,里面具体环节没有说出来。但通过我用课件演示,给学生视觉的刺激,调动了学生原有的知识储备,为新知的“再创造”做好知识的准备。

二、大胆猜测,激发探究。

在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

三、直观演示,加深理解。

当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。

在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。总之,这节课上得自我感觉还是比较成功,从始至终思路清晰,教学媒体运用较好,环环相扣,使学生学得活,学得扎实,达到预期的教学效果。

苏教版五年级下册圆的面积教案 篇六

教学目标:

1. 通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

3. 渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

学情分析:

本课是在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时要注意遵循学生的认识规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有的知识出发。

学法指导:

教学本课时,重点引导学生提出将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,并发展学生的空间观念。

教具准备:

多媒体课件,圆片。

学具准备:

把圆片分成十六等分,并按课本图所示,剪拼并贴成近似长方形。

热门教案

学诗词

学名句