五年级数学梯形的面积教案

教学目标:1使学生经历梯形面积计算方法的探索过程,感受转化的数学思想。下面是的小编为您带来的五年级数学梯形的面积教案【优秀8篇】,您的肯定与分享是对小编最大的鼓励。

五年级数学梯形的面积教案 篇一

教学内容:

混合练习(课本第84-85页,练习十九第11-18题)

教学目标:

⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

⒉在复习与梳理中学会联系,进而提高综合分析解题能力。

教学过程:

一、复习梳理

⒈公式的复习

我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

师生共同进行:边回顾、边画图、边讨论;

⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

二、练习巩固

⒈独立完成练习十九的第12题--看谁正确率最高!

要求:开列已知条件;写出相应的面积公式;列式解答。

⒉完成第14题

先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

⒊完成第13和15题

在求得面积之后,怎样选择算法求解。

三、综合提高:

讨论:

⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

四、:

多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

五、板书设计:

梯形面积的计算

六、教后感:

2、应用题

梯形面积计算教学设计 篇二

小学五年级数学教案--梯形面积计算

教学内容:小学数学第七册74-75页的内容

教学目的:

1、使学生在理解的基础上掌握梯形面积的计算公式,能够正确的计算梯形的面积。

2、使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生进一步认识转化的思考方法在研究梯形面积时的运用,进一步培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

教学重点、难点:理解梯形面积计算公式的推导,并能应用公式正确的进行计算。

教具准备:课件。

教学过程:

(一)复习旧知,做好铺垫。

1、指名让学生说说平行四边形和三角形的面积公式,(课件出示公式)并讲讲怎样推导三角形的面积公式的。

2、练习(出示)

口答下面各图形的面积。(单位:厘米)

(二)创设情景,提出问题

师:前不久,我们学校开展“植树护绿”活动,四年级同学要在劳动实践基地的一块空地里种桃树,你们看看这块地的形状近似于那种平面图形呢?(课件显示图)

师:谁能指出这个梯形的上底、下底和高各是多少?(指名回答)

师:如果每棵桔树占地4平方米,那么这块地里能种多少棵桔树呢?(让学生思考一下)你认为应该先求什么?(指名说说,引入新课。)

(三)小组学习,解决问题。

师:梯形面积怎么计算呢?它是不是也有公式呢?下面就请同学们小组合作,想办法推导出梯形面积公式,看一下合作要求:(课件出示)

合作要求:

(1)想一想:我们已经学过哪几种图形的面积公式?

(2)试一试:把梯形转化成已经学过的图形。(任选一种)

(3)比一比:转化成的图形的各部分跟梯形的各部分有什么关系?

(4)写一写:把梯形面积公式的推导过程写下来。学生分组讨论。

全班交流时,教师根据学生说的方法用课件演示转化及推导过程。

教师板书:梯形的面积=(上底+下底)×高÷2,并让学生讲讲为什么要“÷2”。)

师:如果用s表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,梯形的面积计算公式用字母该怎样表示呢?(学生回答,教师板书:S=(a+b)h÷2)

师:梯形的面积公式推导出来了,我们就可以帮助四年级同学解决问题了。

课件出示:四年级同学要在一块梯形地里种树,如图,如果每棵树占地4平方米,那么这块地里能种多少棵树?

让学生独立计算,在集体订正。

师:同学们的表现都非常出色,你们帮助四年级同学解决了这个难题,我代表他们感谢你们。

(四)应用拓展,巩固知识。

师:下面我们来做练习吧。

1、练习

a.课件出示:P75例1,指名读题,教师出示渠道模型说明“横截面”的意思,再由学生解答,完成后集体订正。

b.课件出示:P75做一做,由学生独立完成,集体订正。

c.课件出示:判断

1)两个梯形能拼成一个平行四边形。( )

2)平行四边形的面积是梯形面积的2倍。( )

让学生独立判断,并说明理由。

2、练习

a.课件出示:

一个梯形的上底是9厘米,比下底短3厘米,高是1分米,它的面积是多少?小组计算,集体交流。

b.课件出示:

我们经常见到圆木,钢管等堆成如图的形状,通常用下面的算法求总根数:

(顶层根数+底层根数)×层数÷2

想一想是什么道理,并算出图中圆木的总根数。

3、三☆练习

课件出示:用篱笆围成一块养鸡场(如图),一边靠墙,篱笆总长65米,求养鸡场的面积。

学生独立解答,再交流。

(五)小结全课,结束教学

让学生讲讲这节课的收获,并布置作业。

第九册梯形面积计算 篇三

《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。 这节课的教学,紧紧抓住“梯形面积公式的推导”这一教学重点,放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把梯形面积转化成了其他的平面图形,进而归纳、概括出梯形的计算方法。这种多角度的思考,既沟通了新旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

这节课我运用了多媒体课件的演示,充分调动了学生的学习兴趣,提高了课堂教学效率,是其他教学手段无法比拟的。

本节课要教会学生一种学习方法,即在求梯形的面积计算公式时,学生在原有知识经验的基础上通过学生自主动手剪拼,运用转化的思考方法,把梯形转化成已学过的图形,然后研究两者之间的联系,从而推导出梯形的面积计算公式。 在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。这节课中我努力激发学生的学习积极性,向学生提供充分从事数学活动的机会,通过“猜想-验证”来展开知识的发生发展过程,促使学生主动探索,学生以小组合作的形式自主探索,通过观察、操作、猜测、验证、推理和交流等活动,全面参与新知的发生、发展和形成过程。

《梯形的面积》的教学设计及反思 篇四

一、教材分析

“梯形的面积”是在学生认识梯形的特征,掌握了平行四边形,三角形的面积计算,并形成一定空间观念的基础上进行的教学。因此,教材没有安排用数方格的方法求梯形的面积,引导学生把梯形转化为已学过的图形来计算它的面积,让学生在自主探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的构建。

二、教学目标

1、知识技能目标

通过剪、拼、摆等操作活动,运用转化思想,寻找图形之间的联系,推导梯形面积计算公式,并运用公式解决简单的实际问题。

2、过程方法目标

通过梯形面积公式推导过程,培养学生观察、比较、分析、概括能力,发展学生空间观念。

3、情感态度价值观目标

使学生能用梯形的面积公式解决简单的实际问题,体会学数学,用数学的乐趣。

三、教学重点

理解并掌握梯形面积计算公式。

四、教学难点

理解梯形面积公式的推导过程。

五、学具教具准备

梯形纸片、小剪刀、多媒体课件

六、教学过程

(一)我们来回顾

1、动画引入:生动的动画小金鱼

图中有哪些几何图形?你知道哪些图形的面积公式?

2、回顾平行四边形面积公式,三角形面积公式的推导过程,突出“转化”的数学思想方法。

生1:探索平行四边形面积时,把平行四边形转化为已经学过的长方形,长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,所以平行四边形面积=底×高。

生2:探索三角形面积时,把两个完全一样的三角形拼成一个平行四边形。

(二)我们来探究

1、情景导入

车窗玻璃是梯形的,你算车窗玻璃的面积吗?

2、自主探究

摆一摆,剪一剪,拼一拼,你能用所学过的方法推导出梯形的面积计算公式吗?

(三)我们来交流

1、小组交流

2、全班汇报展示

演示你们小组的实验操作过程,说说你的推导方法和过程

A组汇报展示:我们小组是把两个完全一样的梯形拼成一个平行四边形(操作演示),这样平行四边形的底等于梯形的上、下底的和,高等于梯形的高,所以得到:

梯形的面积=(上底+下底)×高÷2

同学们有没有问题?

生问:为什么要除以2?

A组同学解疑:因为是两个完全一样的梯形拼成一个平行四边形,所以这两个梯形的面积等于这个平行四边形的面积,即(上底+下底)×高,求一个梯形就要除以2。

B组汇报展示:我们小组是把一个梯形沿对角线剪成两个三角形(操作演示),它们的面积分别是“上底×高÷2”和“下底×高÷2”,所以梯形的面积=上底×高÷2+下底×高÷2。

C组汇报展示:我们吓阻是把一个梯形剪成一个平行四边形和三角形一个(操作演示),它们的面积分别是“(下底-上底)×高”和“上底×高÷2”,所以梯形的面积=(下底-上底)×高+上底×高÷2。

D组汇报展示:我们小组是沿着中位线剪开,拼补成一个平行四边形(操作演示)这个平行四边形的底等于梯形上、下底的和,高等于梯形的高的。一半,所以梯形面积=(上底+下底)×高÷2。

……

师:同学们真棒!用这么多的方法求出了梯形的面积,再一起把这些方法梳理一下(课件展示不同方法的推导过程)。

概括梯形面积公式:梯形面积=(上底+下底)×高÷2,如果用s表示梯形面积,a、b分别表示上底、下底,h表示高,那么s=(a+b)×h÷2。

注意转化前后的图形之间的联系并体验多种策略解决数学问题的魅力和乐趣。

3、概括梯形面积计算公式

(四)我们来解决

1、求三峡水电站横截面的一部分面积(课件出示题目及图形)

学生独立解答

展示学生解答过程,并点评强调不要忘记除以二

2、求车窗玻璃面积

课件出示题目

提示学生要求两块车窗玻璃的面积

展示学生独立完成的过程并点评

(五)我们来挑战

1、一个梯形上、下底的和是10,厘米,高6厘米,求它的面积。如果高不变,面积不变,它的上、下底可能分别是多少?画一画,你能够发现什么?梯形、平行四边形、三角形的面积公式有联系吗?

2、下次研究圆的面积计算,你打算用什么策略?

(六)我们来小结

说说你这节课学到了哪些知识?用到了哪些数学思想方法?

(七)教学反思

这节课通过学生动手操作、自主探究、小组合作、全班交流,经历了从探究中发现,从发现中体验,在体验中发展的过程。在这个过程当中,同学们运用类比思想、转化思想,得出了多种计算梯形面积的方法和策略,体验了数学的无限魅力和无穷乐趣,学生在一次次成功的喜悦中,学得其乐无比,兴趣盎然。

在这节课“我们来挑战”的活动中,第一题有利于同学们研究梯形、平行四边形、三角形面积公式的联系,对所学知识进行有效的整合,还渗透了极限思想方法。第二题多数同学能够类比想到以后研究圆时,仍然把它转化为已将学过的图形研究,让转化的思想深入人心。

《梯形的面积》的教学设计及反思 篇五

一、 教学目标

1、 在实际情境中,认识计算梯形面积的必要性。

2、 在自主探索活动中,经历推导梯形面积公式的过程。

3、 运用梯形面积的计算公式,解决相应的实际问题。

二、 重点难点

重点:梯形面积公式的推导过程。

难点:能运用梯形面积的计算公式,解决相应的实际问题。

三、 教学准备

相等梯形若干个、小剪刀、挂图

四、 教学设计

(一)复习旧知,铺垫引导

1、 前面我们推导了平行四边形和三角形面积的计算公式,还记得三角形面积的计算公式是怎么推导出来的吗?(转化成平行四边形)

2、 把不知道的'转化成知道的从而得出结论,是我们常用的探究新知的方法。

(二)揭示课题,探索新知

1、 出示主题图:这是一个堤坝的横截面,从图中你得到了哪些信息?(横截面是梯形,上底是20米,下底是80米,高是40米)

2、 今天我们就一起动手推导梯形面积的计算公式。(板书:梯形的面积)

3、 下面请同学们拿出准备好的梯形,通过转化的方法,自己动手拼一拼或剪一剪,推导出梯形面积的计算公式。(教师巡视指导)

4、 小组内交流方法。

5、 学生汇报,教师总结。

(1)平移法

用两个大小完全一致的梯形。经过旋转、平移组成平行四边形。

(2)分割法

将梯形分割成两个三角形。

(3)割补法

取两条边的中点(中位线)剪开,经过旋转、平移组成平行四边形。

得出结论: 梯形面积=(上底+下底)高2

字母表示:S=(a+b)h2

(三)巩固练习

1、 P28试一试。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

2、 P28练一练1题,继续巩固练习。

(四)总结全文

1、 这节课我们学习了什么?

2、 梯形面积公式的推导〈梯形面积=(上底+下底)高2〉

五、 板书设计

梯形的面积

梯形面积=(上底+下底)高2

字母表示:S=(a+b)h2

六、 教学反思

本节课的教学,我是采取学生亲自动手操作实践来得出梯形的面积公式。但在学生探索的时候,学生的思维大多只停留在平行四边形上,也就是书中的第一个例子。在课堂练习的时候,由于公式记得不牢,在求面积的时候经常忘了除2。

梯形面积计算教学设计 篇六

《梯形的面积》这节课的内容是在学生学习习近平行四边形面积、三角形面积计算的基础上进行教学的,主要是引导学生通过梯形面积公式的推导去理解和掌握梯形面积计算公式,因此,在教学中我注重学生自己动手操作,从操作中掌握方法,发现问题,解决问题。

一、动手操作,感知梯形面积公式的推导过程

在教学中,我让学生动手操作,分别将两个完全一样的梯形拼成一个平行四边形;一个梯形分割成两个三角形和一个梯形沿高的中线分割成两个梯形三种方法,并比较每个梯形与所拼成的图形各部分间的关系,然后学生同时在操作中向学生渗透切割、平移的方法,让学生体验和感知梯形面积公式的推导过程。在这个过程中,学生们表现出了浓厚的兴趣,个个都很积极、很投入地动手操作,极大调动了学生思维活动。学生真正成为了学习的主体。但课堂上学生活动的时间不够多,这是本课中的缺憾。

二、引导学生发现问题、思考问题,培养合作精神

在这节课中,探讨梯形面积公式中的“除以2”是怎么来的?在探讨这个问题时,我采用小组讨论的方式,在讨论中发现问题,解决问题,这样既培养学生的合作精神,又活跃课堂气氛。学生对公式记得也牢固。

三、应用公式解决实际问题

新课程非常重视学生在活动中身临其境的体验。让学生运用所学梯形面积公式解决实际问题。这点在本节课中做得还不够。在时间许可的情况下,应该多补充一些生活中的实例,使学生尝到应用知识的快乐,把课堂气氛推向高潮。

此外,在这节课的教学过程中,我发现了在教学中存在不足。例如学生在回答问题时,采用齐答的办法,为了节省时间没有彻底了解中下学生的掌握情况。今后要注意在教学中避免运用这种方法。还有个别同学发表了自己的。错误想法,我就直接给驳回,没有让学生自己找到自身的错误所在。

数学教案-三角形面积计算 篇七

《梯形的面积计算》的评课稿

今天听了徐老师上的《梯形的面积计算》这节课,整堂课的教学,我们感觉较为满意的是,突出了以下几个方面:

一、体现了探究性教学的特点。

《数学课程标准》指出:有效的数学学习活动不能单纯地依赖模仿与记忆。动手实践、自主探索与合作交流是学生学习数学的重要方式。本课的教学应该说较好地落实了这一理念:充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,并在形式上响应地组织了小组合作交流。体现了探究性教学的特点。具体在教学中的体现如下:

放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,老师十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。在这一环节中,学生出现了多种操作方法,如:一部分学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;一部分学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;还有一部分学生用一个梯形沿梯形的右上角到对腰的中点剪下,翻转180度,拼成一个三角形,推导出面积公式。这样的教学正好落实了《标准》提出的“数学教学要在学生已有的知识背景下学习”的理念。尤其突出的是充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了“学生是学习的主人,教师是组织者、引导者和参与者”。发展了学生的创新能力。值得指出的是:这当中还蕴含了数学思想方法的教学:让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想。经过课堂小结的点拨,使得这一教学效果尤其明显。

二、体现数学与生活的联系

首先,在导课时,创设了猜两个与数学有关的谜语,不仅有效培养了学生的学习兴趣,同时还激发了学生求知的愿望。其次,创设应用探索出来的方法解决实际生活中的问题。主要是通过解决一些生活中的梯形的面积来实现的。课堂上黄老师依据学生的心理特点,做到了《标准》对于情景的创设“要联系学生的生活实际”的要求。在这一前提下让学生进行探究,是水到渠成,显示了学习的'自主性。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学“来源于生活,回归于生活”的思想。

三、体现练习的层次性

练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。

总之,在本节课中,教师注重了以学生为主体,通过学生的动手操作和实物展示、合作交流等各种教学手段,促进学生的思维能力,合作能力的发展,培养了学生的动手能力,更重要的是展现知识形成的过程,让学生亲身体验知识的形成,体现了学生自身的价值,从而感受到成功的喜悦,提高了教学效率,收到较好的教学效果。

《梯形的面积》的教学设计及反思 篇八

教学内容:

教材95—96页梯形的面积及例3;第96页“做一做”;第98页练习二十一第6,7,8题。

教材分析:

本课试在学生认识了梯形的特征,掌握了长方形,正方形,平行四边形和三角形面积的计算,并形成了一定空间观念的基础上进行教学的,因此教材没有安排数方格的方法求梯形的面积,而是直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法,把梯形转化成我们已经学过的图形来计算它的面积,引导学生在主动参与探索的过程中,发现并掌握提醒的面积计算方法,让学生在学习的再创造过程中实现对新知识的意义的构建,解决新问题,获得新发展。

教材中多角度地推导出了梯形面积公式,并展示了三种方法:一是两个一样的梯形拼成一个平行四边形;二试把一个梯形剪成两个三角形;三是把梯形剪成一个平行四边形和一个三角形。通过学习能够提升学生的合作意识,培养学生多角度思考问题的能力。

教学目标:

知识与能力:

在探索活动中深刻体验和感悟梯形面积计算公式的推导过程,并能运用梯形的面积公式解决生活中的实际问题。

过程与方法:

通过动手操作,观察比较,发展学生的空间观念,并在动手操作的活动中,逐步培养学生归纳,推理和语言表达的能力。

情感,态度与价值观:进一步培养空间观念,不断发展空间想象力,体验数学再创造的乐趣,并获得个性化的发展。

教学重难点及突破:

重点:理解并掌握梯形面积公式的推导过程,会计算梯形的面积。

难点:理解梯形面积公式的推导过程。

教学设想:

本课教学由学生谈对梯形的认识和讲述平行四边形,三角形面积公式的推导方法引入,为后面的探究活动提供保障。在新课中,教师要向学生讲明探究梯形的面积的方法及合作的要求,可以通过多媒体展示出来,让学生完全按要求完成学习。接下来为学生的探究过程,学生利用自己准备好的梯形,通过分割法和组合法对图形进行重组,并用文字写出梯形面积的计算方法,然后在交流中找到最为简便的公式,并在教师的引导下写出字母公式。学生完成公式的推导之后要独立完成例3及“做一做”,在练习的同时提高学生对公式的理解和认识。除此之外,为了巩固学生所学知识,还要多收集一些习题,开拓学生的视野,提高学生的能力。

教学准备:

教师准备:

多媒体课件,练习题

学生准备:

前置作业,梯形若干个,彩笔,练习本。

教学设计:

一,复习旧知

师谈话:说一说你对梯形的了解。

学生自由发言,教师进行评价。

生1:梯形有上底,下底和高。

生2:梯形有等腰梯形和直角梯形。

……

师接着谈话:同学们,我们前面学习的平行四边形和三角形的面积公式是怎样推导出来的?

学生举手,教师指名回答。学生发言预设:

生1:平行四边形的面积试用割补法把它变成与它面积相等的长方形,由长方形面积推到出来的。

生2:三角形的面积是把两个完全相同的三角形拼成一个平行四边形,因为三角形的面积是这个平行四边形面积的一半,所以用平行四边形面积除以2,得到的就是三角形的面积。

……

师小结:同学们能不能用学过的这些方法设计一种推导方案,推导出梯形的面积计算公式呢?

板书课题:梯形的面积。

设计意图:通过师生交流揭示课题,提示学生可以把已学过的学习方法运用到新的学习情境中,为学生提供了创新的机会,变“要我学”为“我要学”,为下面的学习作好了铺垫。

二,探索新知

1,方法迁移,自主探究梯形的面积公式。

师谈话:下面请同学们运用我们学习的平行四边形和三角形的面积公式的方法推导一下梯形的面积公式吧!要看清要求,在小组研究中要分好工。

多媒体出示自学要求:

(1)做一做:利用手中准备好的梯形纸片,或拼或剪,转化成一个以前我们学过的图形。

(2)想一想:可以转化成什么图形?与梯形有哪些联系?

(3)说一说:你发现了什么?试着推导梯形面积的计算公式。

(4)瑶以小组为单位,进行合作学习。

学生小组探究梯形面积的计算方法,教师参与学生的交流。

学生汇报结果,教师评价并板书。学生汇报预设:

生1:我们组把梯形剪成一个平行四边形与一个三角形(如下图),梯形的面积等于一个平行四边形的面积与一个三角形面积之和,平行四边形的面积等于梯形的上底乘高,三角形的高就是梯形的高,三角形的底是梯形的下底减去上底,分别求出面积再相加,梯形的面积=上底×高+(下底—上底)×高÷2。

生2:我们小组把梯形剪成两个三角形(如下图),小三角形的底试梯形的上底,大三角形是梯形的`下底,高是一样的,所以梯形的面积=上底×高÷2+下底×高÷2

生3:我们组用两个完全一样的梯形拼成一个平行四边形(如下图),得出拼成的平行四边形的面积试梯形面积的2倍,平行四边形的高与梯形的高相等,平行四边形的底等于梯形的上底加下底之和,从而推出梯形面积=(上底+下底)×高÷2。

师:大家通过探究推导出了梯形面积的计算公式,从不同的角度去想,推导出的公式也不相同,请同学们观察一下三个公式,哪一个最简便?

生齐:第三种。

师:通过我们多角度的实验,可以推导出梯形面积公式=(上底+下底)×高÷2(师板书)。如果上底用子母a表示,下底用字母b表示,高用字母h表示,那么梯形面积公式用字母公式可以表示为什么呢?

学生举手,教师指名回答。

S=(a+b)×h÷2

设计意图:在这个环节中,教师防守让学生去实践,去探索,学生在研究梯形面积的过程中,不仅掌握了梯形的面积计算公式,更有力地促进了学生思维能力的发展和问题策略意识的形成。

2,教学例3

出示例3

学生独立完成,教师对学生进行指导。

学生完成后全班交流,教师进行方法指导。

学生发言预设:从图中可知大坝的上底是36m,下底是120m,高是135m,利用梯形的面积计算公式S=(a+b)h÷2可求出大坝的面积是(36+120)×135÷2=10530(m2)

3,完成教材96页“做一做”

请你说一说“做一做”的习题所表达的意思。

学生举手,教师指名回答。

学生独立完成习题,教师对学困生进行指导。

学生汇报,教师评价。

设计意图:通过学生阐述解题过程,能够深化学生对公式的理解。

三,巩固应用

(一)预习答疑

1,完成“旧知链接”习题

学生回答对梯形的认识及研究平行四边形,三角形面积的方法。

说明:通过复习这些知识点,让学生加深对平行四边形,三角形面积公式的推导过程的认识,为本课学生推导梯形面积公式奠定基础。

2,完成“新知速递”习题。

学生全班订正答案。

教师对方法进行小结。

(二)教材习题

1,练习二十一第6题

师提问:怎样计算梯形的面积?

学生举手,教师指名回答。

学生独立完成习题,教师对学困生进行指导。

学生汇报,全班评议。

2,练习二十一第7题

师:怎样列方程解决问题?

学生举手,教师指名回答。

学生独立完成练习,并全班汇报订正,教师进行方法小结。

(三)课堂作业

1,想一想,填一填。

两个完全相同的梯形可以拼成一个(),这个平行四边形的底等于(),这个平行四边形的高等于(),每个梯形的面积等于拼成的平行四边形面积的(),因为平行四边形的面积等于(),所以梯形的面积等于()。

2,计算下面梯形的面积。(单位:cm)

3,把一块平行四边形的铁片剪去一个角(如下图中的阴影部分,单位:cm),剩下部分的面积试多少平方厘米?

4,求下图阴影部分的面积

教学反思:

新的数学课程标准指出:教师不能只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在于教师对教材的把握。梯形的面积一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的,学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识进行教学,整个教学设计充分运用猜想,探索,验证等学习方式,给每个学生提供思考,表现,创造的机会,使他们称为知识的发现者,创造者,能否培养学生自我探究和实践的能力。针对本课教学设计主要有以下几点思考:

1,动手操作,培养探索能力。在推导梯形面积计算公式时,教学设计安排学生合作学习,防守让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生用过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形,再通过“拼,剪,割”的动手操作活动,看一看能转化成什么图形,然后引导学生思考讨论:转化的图形与原梯形有什么关系?通过学生自主探索的实践活动,让学生亲自参与面积公式的推导过程,真正做到“知其然,也知其所以然”,而且能让学生的思维能力,空间感受能力,动手操作能力都能得到锻炼和提高。

2,重视学生解决问题的能力的培养。在学生验证自己的想法是否正确时,瑶鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识,在此基础上归纳出梯形面积的计算方法。这种方式的学习,既能够使学生理解,掌握梯形的面积公式,同时又能够培养学生获取知识的能力。

热门教案

学诗词

学名句