作为一位杰出的老师,时常需要准备好教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。优秀的教学设计都具备一些什么特点呢?以下是人见人爱的小编分享的小学数学教案(优秀4篇),如果有助于您的写作,还请您介绍给您的同学。
教学目标:
1、通过教学,使学生牢固掌握中间、商末尾有0的除法计算方法。
2、能正确地、比较熟练地进行计算。
3、养成认真、仔细的良好学习习惯。
教学重点:巩固、掌握除数是两位数除法的计算方法。
教学过程
一、揭示课题、明确目标
二、基本训练
1、口算
49×3 840÷70 61×7 320÷80
120÷40 18×6 570÷30 65×5
2、先说说下面各题的商是几位数,再计算。
8505÷17 8355÷83 8160÷34
9045÷45 7816÷26 8232÷56
三、综合训练
1、对比练习
2856 ÷28 3840 ÷16
8484 5760
5788 8485
2、判断,把不对的改正过来?
25 12
26)5330 54)5508
52 54
130 108
130 108
0 0
3、计算并验算。
8640÷36 4935÷47 8945÷85
1185÷29 9600÷32 3854÷82
4、文字题
(1)一个数乘63得7560,这个数是多少?
(2)9548是77的多少倍?
(3)除数是24,商7余11,被除数是多少?
四、提高练习
+7004÷34=300(-)×26=3640
五、课堂
一、章节名称:
1.1集合
二、计划学时:1(45分钟)
三、教学目标:
1、知识目标:
(1)使学生初步理解集合的概念、性质,知道常用数集的概念及其记法
(2)使学生初步了解“属于∈”关系的意义
(3)使学生初步了解集合的分类:有限集、无限集、空集
2、能力目标:
探究集合在现实社会中的意义的能力;使学生学会自觉探究数学学习方法的能力。
3、情感、态度与价值观目标
通过集合学习,使学生认识自己在社会这个大集合中的地位与作用,树立正确的三观。
四、教学重难点
1、教学重点:集合的基本概念、集合中元素的性质
2、教学难点:点集与数集的特点及常用的数集及其记法
五、学习者特征分析:
学习特点:学习对象为高一新生,高一学生虽然在智力等各方面都有
较之初中的发展,但毕竟刚刚由初中阶段上升而来,对于新的知识朦胧性较大,虽然集合的思想在小学以及初中就有了渗透,但是由于学生之间知识的差异层次较大,再者,一个概念的引入,如想较理性的认识还得靠深入的学习和多一些的训练。
学习习惯:高中级学生经过多年的学习,已经有了自己初级的学习习惯和方法,我们可以充分调动他们的积极性,并且适当帮助他们调整学习方法中的不妥之处。
六、课程类型与教学方法
课型:理论课与现实材料相结合的形式为主导,打破传统的数学课的枯燥乏味性。
教学方法:以教师授与学生互动为主采用实例归纳、自主探究、合作交流等方法。教学中通过列举例子,引导学生进行讨论和交流,并通过创设情境,让学生自主探索一些常见集合的特征性质。。
七、教学过程设计
(一)、课前安排
由于是初次试讲,老师与学生都是第一次见面。所以,课前准备要求老师把所有的问题都想清楚,努力做到课程流畅不卡壳。
(二)、课堂教学
【教材分析】
重叠问题,学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,所以设计的重叠问题有较简单的,也有一题多法的,还有课后让学生继续研究重叠问题的实践题目,使每个学生各取所需,各有所得,各有所乐,同时培养学生的创造意识和实践能力;又由于重叠问题中各部分之间的关系较复杂和抽象,所以设计让学生在操作学具中领会重叠问题的基本结构,并让他们借助实物图等帮助思考。
【学情分析】
学生从一开始学习数学,其实就已经在运用集合的思想方法了。如学习数数时,把2个三角形用一条封闭的曲线圈起来。而以后学习的平面图形之间的关系都要用到集合的思想。集合是比较系统、抽象的数学思想方法,针对三年级学生的认识水平,应让学生通过生活中容易理解的题材去初步体会集合思想,为后续学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
【教学目标】
1.通过观察、猜测、操作、交流等活动,让学生在自主探究活动中感知集合图形的过程,体会集合图的优点,能用集合图分析生活中简单的有重复部分的问题。
2.结合具体情境体会用“韦恩图”解决有重复部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重复部分的问题。
【教学重难点】
重点:理解集合图的各部分意义,能用集合图分析生活中简单的有重复部分的问题。
难点:借助直观图解决集合问题。
【教学准备】
课件。
【教学流程】
【情境导入】
1.看电影:两位妈妈和两位女儿一同去看电影,可她们只买了3张票,便顺利地进了电影院,这是为什么?
2.小明排队:小明排队去做操,从前数起小明排第3,从后数起小明排第4,你猜这排小朋友一共有几人?
师:在生活中这种现象很多,我们经常会遇到,今天我们就一起走进数学广角,来研究一下这有趣的重复现象。(板书课题)
【探究新知】
1.巧妙设疑,直观感悟,初步感知重复现象。
(1)调查本班学生参加数学小组、作文小组的情况。
(2)游戏:参加数学小组、作文小组的学生分别站在两个呼啦圈里。
问题:当有同学既参加数学小组,又参加作文小组时怎么站?
引出问题,学生想办法解决。
(3)说说呼啦圈里各部分学生所表示的意思。
2.自主绘图,加深理解。
课件出示:
三(1)班参加数学、作文课外小组的学生情况表
数学
小明丁旭小小小强小兵小东张伟赵军
作文
小平刘红小东于丽小史陶伟小小卢强小光
(1)提问:参加数学课外小组的学生有几人?参加作文课外小组的学生有几人?参加数学、作文课外小组的学生共有多少人?(学生意见不统一,请学生说说理由)
师:能不能设计一幅图,把学生的姓名写在合适的位置,让我们能一眼就看出参加数学的、参加作文的和两个项目都参加的有哪些同学呢?
(2)学生小组合作,自主绘图。教师巡视指导。
3.学生汇报交流,逐步整理出简洁明了的直观图(韦恩图)。
师:你们知道吗?这个图是一个名叫韦恩的科学家创造的。你们刚才也像科学家一样,把这个图创造出来了,真了不起!
4.读图训练。教师引导学生用准确的语言表述图中的各种信息。
5.观察图表,算法探究。
师:你们能很快地算出参加数学、作文课外小组的一共有多少人吗?怎样列式?
学生回答列式。
6.比较图与表格,突出韦恩图的优点,肯定学生的科学创造过程。
【巩固应用】
教材第106页练习二十三第1、2、3题。
【课堂小结】
通过今天的学习,你有什么收获?
【板书设计】
既……又……
8+9-2=15(人)8-2+9=15(人)
9-2+8=15(人)6+7+2=15(人)
一、目标
通过观察粘贴活动,寻找两个集合交集、差集中元素,依据特征进行尝试摆放;发展幼儿多纬度的思维能力。
二、准备
《水果找家》、《图形组合物》幻灯片个1张(NO.86-87),幼儿每人相同内容练习纸2张(见练习册NO.4-5)。
三、过程
(一)观察
1、出示《水果》幻灯片,引导幼儿思考:
(1)左圈内的水果么特征?(有叶子)
(2)两圈相交部分中的水果么特征?(有叶子且有梗子)
(3)右圈内的水果么特征?(有梗子)
(4)两个圈内分别有什么?各有几个?
2、出示《图形组合物》幻灯片,引导幼儿思考:
(1)两圈相交部分中的东西有什么特征?(红色且个数是5个)
(2)右圈内的东西有什么特征?(个数是5个)
(3)两个圈内分别有什么特征?各有一个?
(4)左圈内的东西有什么特征?(红色)
(二)区分
让幼儿思考:依据特征,如把右边的水果或左边的娃娃脸摆放到圈内,该分别放在哪里?
个别幼儿口述位置和理由,如图(1)中的桃子该放在左圈但不在右圈中,因为桃子有叶无梗;图(2)中的圆脸娃娃该放在两圈相交部分,因为她是红色且组成的圆形个数是5个。
(三)粘贴
幼儿在练习纸上将左(右)边的各图示物一一撕下,分别粘贴在两个圈中的相对位置。
(教师巡回指导,帮助幼儿正确粘贴)
四、建议
(一)亦可用实物材料在集合摆放圈中进行分类摆放。
(二)本活动设计内容亦可分两次进行。