教案的撰写切忌抄袭和照搬,因为优秀的教案或许在其他人那里可以产生很成功的效果,但自己可能就不适用。为同学们带来了人教版五年级上册数学教案【优秀4篇】,您的肯定与分享是对我们最大的鼓励。
1、比较熟练地进行小数乘法和除法的笔算。
2、在具体情境中会用字母表示数,理解等式的性质,会用等式的性质解简单的方程,用方程表示简单情境中的等量关系并解决问题。
3、探索并掌握平行四边形、三角形、梯形的面积公式。
4、能辨认从不同方位看到的物体的形状和相对位置。
5、理解中位数的意义,会求数据的中位数。
6、体验事件发生的等可能性以及游戏规则的公平性,会求一些事件发生的可能性;能对简单事件发生的可能性作出预测,进一步体会概率在现实生活中的作用。
7、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
8、初步了解数字编码的思想方法,培养发现生活中的数学的意识,初步形成观察、分析及推理的能力。
9、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
10、养成认真作业、书写整洁的良好习惯。
第一单元 小数的乘法
单元教学目标:
1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。
2、使学生会用“四舍五人法”截取积、商是小数的近似值。
3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。
教案
教学内容 小数乘以整数 课型 新授课
教学目标 1、使学生理解小数乘以整数的计算方法及算理。
2、培养学生的迁移类推能力。
3、引导学生探索知识间的练习,渗透转化思想。
教学重点 小数乘以整数的算理及计算方法。
教学难点 确定小数乘以整数的积的小数点位置的方法。
教具准备 放大的复习题表格一张(投影)。
教学过程 一、引入尝试:
孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。
1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:
⑴例1:风筝每个3.5元,买3个风筝多少元?(让学生独立试着算一算)
(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)
用加法计算:3.5+3.5+3.5=10.5元 3.5元=3元5角
3元×3=9元 5角×3=15角 9元+15角=10.5元
用乘法计算:3.5×3=10.5元 理解3种方法,重点研究第三种算法及算理。
⑶理解意义。为什么用3.5×3计算? 3.5×3表示什么?
(3个3.5或3.5的3倍。)
(4)初步理解算理。怎样算的? 把3.5元看作35角
3.5元 扩大10倍 3 5角
× 3 × 3
1 0. 5 元 1 0 5角
缩小到它的1/10
105角就等于10.5元
(5)买5个要多少元呢?会用这种方法算吗?
2、小数乘以整数的计算方法。
象这样的3.5元的几倍同学们会算了,那不代表钱数的 0.72×5你们会算吗?(生试算,指名板演。)
⑴生算完后,小组讨论计算过程。
板书: 0.7 2
× 5
3、 6 0
(2)强调依照整数乘法用竖式计算。
(3) 示范:0. 7 2 扩大100倍 7 2
× 5 × 5
3、 6 0 3 6 0
缩小到它的1/100
(4) 回顾对于0.72×5,刚才是怎样进行计算的?
使学生得出:先把被乘数0.72扩大100倍变成72,被乘数0.72扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)
(5)专项练习
①下面各数去掉小数点有什么变化?
0.34 3.5 0.201 5.02
②把353缩小10倍是多少?缩小100倍呢?1000倍呢?
③判断
1 3.5
× 2
2.7 0
(6)小结小数乘整数计算方法
计算 7 ×4 0.7×4 25×7 2.5×7
观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?
① 先把小数扩大成整数;② 按整数乘法的法则算出积;
③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。
教学目的:
1、会用数学的语言描述获胜的可能性。
2、通过游戏活动,让学生亲身感受到游戏规则的公平性,学会用概率的思维去观察和分析社会中的事物。
3、通过游戏的公平性,培养学生的公平、公正意识,促进学生正直人格的形成。
教学重、难点:
让学生认识到基本事件与事件的关系。
教学准备:
投影仪、扑克牌。
教学过程:
一、复习
说出下列事件发生的可能性是多少?
1、盒子中有红、白、黄三种颜色的球各一个,只取一次,拿出红色球的可能性是多少?白色呢?黄色?
2、商场促销,将奖品放置于1到9号的罐子里,幸运顾客有一次猜奖机会,一位顾客猜中得奖的可能性是多少?
3、盒子中有红色球5个,蓝色球12个,取一次,取出红色球的可能性大还是蓝色球?
二、新授
1、在上题中,我们知道取出蓝色球的可能性大,到底取出蓝色球的可能性是多大呢?这就是我们今天要研究的问题。
出示击鼓传花的图画。
请学生说一说,击鼓传花的游戏规则。
小结:每一个人得到花的可能性相等,每个人得到花的可能性都是。
2、画图转化,直观感受
(1)每一个人得花的可能性是,男生得花的可能性是多少呢?
生发表意见,全班交流。我们可以画图来看看同学们的想法是否正确。画图。
生:从图中可以发现,每一个人得花的可能性是,两个人就是,9个人就是,女生的可能性也是。
师:如果18个学生中,男生10人,女生8人,男生女生得到花的可能性又各是多少呢?......
(2)练习本班实际,同桌同学相互说一说,男生女生得到花的可能性分别是多少?
(3)解决复习中的问题
拿到蓝色球的可能性是。
3、小结
4、巩固练习
完成P。101。做一做。
(2)题讲评中须注意,指针停在每个小区域的可能性相等,因此次数也大体上相等,红色区域占了这样的3个,因此停在红色区域的次数就是一个区域的3倍。要让学生感受到这只是一可能性,出现的次数不是绝对的。
三、练习
完成练习二十一
1、第一题,准备9张1到9的扑克牌,通过游戏来完成。
2、第二题,学生在独立设计,全班交流。
3、第三题,独立思考,小组合作,全班交流。
四、课内小结
通过今天的学习,你有什么收获?
板书:
设计说明
本节课的设计体现了“让学生在活动中学习数学,在自主学习中得到发展”的思想,通过学生的主动参与,增强应用数学的意识,培养观察、试验、合作的能力。
1、注重逆向思维的启蒙训练。
本节教案侧重于逆向思维题目的设计与训练,充分利用学生已有的知识资源,巧妙地引导学生根据事件发生的可能性的大小推断物体数量的多少。学生的思维在自然的过渡中顺势转换,使逆向思维能力得到初步的训练和提高。
2、培养学生的创新意识。
本节课在设计中创设了宽松和谐的课堂氛围,鼓励学生大胆发表自己的意见,对于学生的不同见解给予肯定和赞扬,保护学生幼小的创新思维萌芽。
课前准备
教师准备
PPT课件、10张扑克(其中梅花1张、方块3张、红桃6张)
学生准备
1个纸盒、10个红球、3个黄球
教学过程
⊙游戏活动,激趣引入
师:同学们认识这是什么吗?(师举起扑克牌)
预设
生:扑克牌。
师:现在老师想利用手中的10张扑克牌和大家玩一个小游戏,谁愿意参加?
师指出21名同学参加,其中一名同学在统计表中用画“正”字的方法记录,其余20名同学每人依次抽取一张扑克牌,记录后再放回去。
设计意图:利用学生熟悉的扑克牌导入新课,调动学生参与的热情,激发学生学习的兴趣。
⊙交流实践,探索发现
1、讨论交流,体会可能性的大小与物体数量间的关系。
师:通过刚才的游戏,我们得到了一张简单的统计表,这张统计表显示了每种花色的扑克牌被抽出的次数,同学们能从这张统计表中发现什么数学问题吗?
预设生:从这张统计表中可以看出红桃被抽出的次数最多,梅花被抽出的次数最少。
师:能用我们学的可能性的知识说一说吗?
(红桃被抽出的可能性最大,梅花被抽出的可能性最小)
师:说得很准确,上节课我们已经学习过,一种事物对应总数中的数量越多,它被摸出的可能性越大;反之,可能性越小。那同学们能不能根据统计表上的结果,猜一猜老师手中的扑克牌,哪种花色的多?哪种花色的少?
预设生:因为红桃被抽出的可能性最大,梅花被抽出的可能性最小,所以一定是红桃最多,梅花最少。
(师把手中的扑克牌举起,让学生看清楚每种花色的扑克牌的数量)
师:同学们真聪明!红桃被抽出的可能性最大,所以数量最多;梅花被抽出的可能性最小,所以数量最少。这又一次证明了事件发生的可能性的大小与物体数量的多少有关。
2、实践操作,深入探究不确定事件发生的规律性。
(师出示教材46页例3情境图)
(1)小组活动:盒子里装有红、黄两种颜色的球,每个小组的盒子里装的球都是一样的。从中摸出一个球后再放回去摇匀,重复20次并记录下球的颜色。
(2)分8组完成汇报,教师出示表格并进行填写。
(3)观察表格,你发现了什么?猜测一下,盒子里是红球多还是黄球多?
教学目标
小数乘整数的算理及计算方法。
教学重难点
小数乘整数的算理及计算方法。
教学工具
多媒体课件
教学过程
教学设计(续页)
一、复习导入
竖式计算:2.05×6
师:同学们,前面我们已经学习了小数乘整数的计算方法,现在就让我们一起通过一道练习来检查一下大家掌握的情况。请大家迅速的将2.05×6在你的练习本上完成。
(1)请一名同学汇报答案。
(2)通过练习,谁能来给大家说一说,小数乘整数我们应该怎样进行计算?
【设计意图:通过复习激活学生的原有知识,教师应重点引导学生清晰阐述小数乘整数的算法和算理,为探索小数乘小数的算法和算理做好准备。】
二、类比迁移,情境展开
(一)教学例3。
1.出示例题。
(1)师:同学们,仔细观察大屏幕,你得到了哪些数学信息?
生:给一个长2.4m、宽0.8m的长方形宣传栏刷油漆,每平方米要用油漆0.9千克。求一共需要多少千克油漆?
【设计意图:通过生活情境的引入,调动学生的学习兴趣,渗透数学来源于生活、应用于生活的思想,并为下面学生主动探究小数乘小数提供信息。】
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
生:需要先算出长方形宣传栏的面积有多大。
(3)请学生列出算式,教师板书(或用PPT课件演示):
2.4×0.8=________
2.尝试计算。
(1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同?
生:两个因数都是小数。
(2)师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又怎么计算呢?
(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢?如果能,应该怎样做?请同学们尝试在练习本上完成。
(4)指名学生口答,在澄清错误的过程中,引导学生学会阐述小数乘小数的算法和算理,形成如下的完整板书,教师适时板书(或PPT课件演示)学生的汇报结果。
3.理解算理。
引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。
4.进一步明确算理(两个因数的小数位数不同)。
(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?
(2)请学生列式,教师板书(或用PPT课件演示):
1.92×0.9=________
(3)师:这道题也可以先按整数乘法计算吗?积里的小数点应该点在哪里呢?
【设计意图:在给宣传栏刷油漆的问题背景下,迁移已有的小数乘整数的经验,为学生进一步探究小数乘小数的计算方法奠定坚实的基础。】
(二)探究因数与积的小数位数的关系
师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么?
生:因数中的小数位数之和等于积中的小数位数。
(三)小结小数乘法的计算方法
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)
课后小结
(三)小结小数乘法的计算方法
1.组织学生回顾、讨论小数乘法是怎样计算的。
2.组织学生汇报、交流自己的计算方法。
课后习题
生:给一个长2.4m、宽0.8m的长方形宣传栏刷油漆,每平方米要用油漆0.9千克。求一共需要多少千克油漆?
o:p>
2.组织学生汇报、交流自己的计算方法。
板书
【设计意图:通过生活情境的引入,调动学生的学习兴趣,渗透数学来源于生活、应用于生活的思想,并为下面学生主动探究小数乘小数提供信息。】
(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?
生:需要先算出长方形宣传栏的面积有多大。
(3)请学生列出算式,教师板书(或用PPT课件演示):
2.4×0.8=________