课时备课就是以课时为单位、设计出具体的教学方案。显然,要完成单元的学期的教学任务就是要靠每一个课时教学计划逐一落实。下面是整理的五年级数学下册教案最新7篇,希望能为您的思路提供一些参考。
教学目标:
1.掌握长方体和正方体的特征,认识它们之间的关系。
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点:
1.长方体和正方体的特征;
2.立体图形的识图。
教学难点:
1.长方体和正方体的特征;
2.立体图形的识图。
教具准备:
教具:长方体框架、长方体、正方体、圆柱、圆台、长方台等;投影片;动画。 学具:长方体和正方体纸盒。
教学设计:
一、复习准备
1.请同学们自己画一个已经学习过的平面图形;再请每位同学用手摸一摸画出的图形;老师明确:这些图形都在一个平面上,叫做平面图形。
2.教师摆出长方体、正方体、圆柱、圆台、长方台、墨水瓶盒等。 教师提问:这些物体的各部分都在一个面上吗?(不是) 教师明确:这些物体的各部分不在一个面上,它们都是立体图形。
3.引入:今天这节课我们要进一步认识长方体有什么特征。
教师板书:长方体的认识
二、学习新课
(一)长方体的特征
1.请同学取出自己准备的长方体。 教师提问:请用手摸一摸长方体是由什么围成的? 请用手摸一摸两个面相交处有什么? 请摸一模三条棱相交处有什么?
教师板书:面、棱、顶点
2.参考讨论提纲来研究长方体的特征。
【演示动画“长方体的特征”】
讨论提纲:
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
教师板书:长方体:
面:6个,长方形(也可能有两个相对的面是正方形),相对的面完全相同。
棱:12条,相对的4条棱长度相等。
顶点:8个。
教师:请完整地说一说长方体的特征。
3.比较立体图形与平面图形的区别。
老师提问:长方体是立体图形,画在纸上如何与平面图形区别呢? 请观察,你能看到几个面?哪几个面? 你能看见几条棱?哪几条棱?
教师介绍长方体的画法: 看不见的棱画在图纸上用虚线表示,最后面画出的是长方形,其它的面画出的是平行四边形。
4.出示长方体框架观察。
教师提问:框架上的12条棱可以分几组?怎样分? 相交于一个顶点的三条棱长度相等吗?
教师明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(二)正方体特征
1.【演示动画“正方体的特征”】
教师提问:看一看新得到的长方体与原来长方体比较有什么变化? (长、宽、高变为相等,六个面都变成了正方形,长方体变为正方体)
2.对照长方体的特征学生自己研究正方体的特征。 学生讨论、归纳后,
教师板书:正方体:
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
3.学生讨论比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
(正方体是特殊的长方体)
活动目标
通过发豆芽活动,了解生活中的相关知识,运用多种途径查询和收集相关资料,并能运用数学的方法记录和描述豆芽的生长情况,培养同学们动手实践、分析问题以及解决问题的能力。
活动准备
教师收集相关资料,并先做一次实验。学生分组准备黄豆、绿豆各50g,以及发豆芽的器皿。
活动过程
一、提出问题,揭示课题、
1、师:同学们,你们知道豆芽的生长过程吗?你自己发过豆芽吗、
2、学生根据查询的资料和咨询科学教师得到的知识进行交流。
3、根据学生的交流,提出:我们也来试一试发豆芽。
揭示课题:发豆芽。
二、讨论交流,得出活动步骤
1、提问:发豆芽要做哪些准备?怎样记录发豆芽的过程呢?对最后的记录如何分析呢?
结合学生的交流,得出本次活动的主要步骤:调查与收集;发制与记录;整理与分析;推测与应用。
2、学生结合教材了解4个环节应该做什么,并在全班交流。
教师重点提问:发豆芽的`统计图画什么好?为什么?如何计算发豆芽的盈利情况?
三、学生分组活动
1、教师演示发豆芽的过程。
2、教师提出要求:
(1)发豆芽活动要做的事情比较多,我们要分组进行,每组5个人。
(2)为了方便观察与记录,我们都将豆芽统一放在教室里进行观察,每天每个组在固定时间进行浇水。
3、各组学生进行发豆芽实验。
时间大约是6天。教师对各组实验的情况进行适时的指导,对各组的记录进行及时督促与检查。各组在发豆芽完成后,及时进行数据分析,制作好相应的统计图表,写好分析总结。
四、小组交流,感受价值
交流发豆芽的具体做法和注意事项。
五、观察、记录、分析
1、观察豆芽的生长情况。(大约6天时间)
2、记录豆芽的生长情况。(每天进行记录)
3、把豆芽的生长情况制成统计图表。
4、分析统计图表,写好总结。
六、总结反思
小组结合统计图汇报豆芽生长情况,说说在发豆芽活动中的收获。
教学目标:
1、在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2、从不同角度探究解题的思路,让学生学会在计算公式中求各个量的方法。
3、让学生初步体会利用等量关系分析问题的优越性。
教学重点:
1、让学生学习在计算公式中求各个量的方法。
2、让学生体会利用等量关系分析问题的优越性。
教具准备:
配套教与学的平台
教学过程:
一、复习引入
1、解方程
8x ÷ 2 =28 7(x+3)÷ 2 =28
2(x +17 )=40 6(5+x)÷ 2 =36
2、任意选择一题进行检验。
3、复习以前学过的公式:C=2(a+b)
C=4a S=ab S=ah÷2 S=(a+b)h÷2 ……
4、揭示课题:列方程解应用题(1)
[说明:复习部分安排解方程,一方面帮助学生巩固方程的合理解法;另一方面也对方程的检验格式稍作复习,便于学生养成良好的验算习惯。同时,适当地帮助学生整理与复习计算公式,这样导入新课比较自然,也有助于展开后续的学习。]
二、探究新知
1、出示例题:用一根长为28厘米的铁丝围成一个长方形,这个长方形的长是8厘米,宽是多少厘米?
(1)学生尝试。(抽生板演)
(2)分析、交流
先设这个长方形的宽是x厘米,
再找等量关系来列方程。
(长方形的周长计算公式就是一个等量关系。)
(3)板书:解:设这个长方形的宽是x厘米。
2(8 +x )=28
8+x =14
x =6
答:这个长方形的宽是6厘米。
(4)比较算术与方程的解法。(建议学生,选择方程的方法。)
(5)检验。
2、补充例题:一块三角形土地的面积是900平方米,高36米,它的底边长多少米?
问:(1)这道题已知条件是什么?要求什么?
(2)能不能直接用三角形的面积计算公式算出高。
(3)可以利用三角形的面积计算公式列方程,未知数高怎样表示?
学生练习并交流。
3、小结:根据计算公式列方程解应用题。
[说明:让学生通过尝试、分析、交流、比较的探究活动,进一步体会用方程解的优越性。探究活动开始,先让学生尝试练习,学生会出现方程和算术两种解法;后小组比较、大组交流,让学生自己来解决问题。其主要目的是通过方程与算术解法的比较,让学生体会用方程解的优越性,特别是列方程时的优越性。]
三、巩固练习
1、只列方程不求解
(1)有一个长方形的面积是3600㎡,宽是40m,长应是多少米?
(2)已知长方形的周长是26厘米,它的长是8厘米,它的宽应是多少厘米?
(3)已知正方形的周长是100厘米,它的边长是多少厘米?
2、练一练:列方程解应用题
(1)长方形游泳池占地600平方米,长30米,游泳池宽多少米?
(2)面积为15平方厘米的三角形纸片的底边长6厘米,这条底边上的高是多少厘米?
(3)一块梯形草坪的面积是30平方米,量得上底长4米,高6米,它的下底长多少米?
(学生练习并交流。)
3、总结:列方程解应用题的一般步骤。
四、课堂总结
1、通过这堂课的学习,你有什么收获?还有什么问题?
2、布置作业:练习册
一、教学目标:
1、初步体会到体积与重量的关系。
2、知道单位体积的重量,体积与物体重量之间的数量关系。
3、会计算形状是长方体或正方体的物体的重量。
二、教学重点、难点:
理解重量,体积与物体重量之间的数量关系。
三、教学过程:
(一)创设情境:
师:这是两块同样的木料,你估计哪块更重一些呢?
师:其实这里的大小也就是我们已经学习过的体积。这节课我们就来继续学习有关重量与体积的知识。
(二)探究新知
1、出示长方体木料。
(1)问:如何能知道1立方厘米这样木块的重量吗?
(2)交流。
(3)出示测量数据。
2、1立方分米、1立方米这种木料重多少克?是多少千克?
生:独立解答,交流。
师:你从中获得了哪些启示呢?
3、小结:
①同样的物体体积越大重量越大。
②1 立方厘米、1立方分米、1立方米物体的重量统称为单位体积的'重量。
4、练习
①1立方米这种木料重700千克,仓库里堆放了39立方米这种木料,这些木料重多少千克?
②1立方米这种木料重700千克,一辆卡车一共装了3.5t这种木料,这些木料的体积是多少立方米?
这两道题已知什么,要求什么?要能够熟练解答关键要知道单位体积的重 量,体积与物体重量三者之间的数量关系。
5、解决情境中的问题 只要比较两个木块的体积就能比较他们谁更重。给出数据:长方体长4分米、 宽3分米、高5分米,正方体棱长4分米。
生独立解答。
(三)巩固练习。
1、一块钢板长3.2 米,宽1.4 米,厚0.02 米,每立方分米钢重7.8 千克,这块钢板的重量是多少千克?
2、一块正方体花岗岩,棱长是2分米,如果这块花岗岩重20千克,那么每立方分米石料重多少千克?
(四)课堂总结:
这节课你有什么收获?有什么感想吗?
一、教学内容
1、因数和倍数
2.2、5、3的倍数的特征
3、质数和合数
二、教学目标
1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2、使学生通过自主探索,掌握2、5、3的倍数的特征。
3、逐步培养学生的数学抽象能力。
三、编排特点
1、精简概念,减轻学生记忆负担。
三方面的调整:
A.不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
B.不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
C.公因数、公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2、注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
四、具体编排
1、因数和倍数
因数和倍数的概念
过去:用÷=表示能被整除,÷=表示能被整除。
现在:用=直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1(一个数的因数的求法)
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点
(1)因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2(一个数的倍数的求法)
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征作准备。
一个数的倍数的特点
(1)最小倍数是其自身,没有的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――-猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3、质数和合数
质数和合数的概念
(1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1(找100以内的质数)
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
五、教学建议
1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
2、要注意培养学生的抽象思维能力
教学目标和要求
1. 会解决有关百分数的简单实际问题,体会百分数与现实生活的密切联系。
2. 在解决实际问题过程中,理解小数、分数化成百分数的必要性,能正确地将小数、分数化成百分数。
教学重点
1. 正确地将小数、分数化成百分数
2. 理解小数、分数化成百分数
教学难点
1 .体会百分数与现实生活的密切联系。
教学准备
1 .计算机课件
教学时数 1 课时
教学过程
一、引入课题
1 .看一看说一说
出示课本图,让学生认真观察然后结合自己的经验说一说什么是“合格率”。
师相机帮助学生理解“合格率”就是合格的箱数占检查的总箱数的百分之几。
2. 、想一想做一做
让学生自由开展讨论,鼓励学生尝试解决教材中的问题
甲牌的合格率: 43 ÷ 50 乙牌的'合格率: 52 ÷ 60
二、教学小数、分数化成百分数
1. 当学生在比的过程中,出现矛盾时,引导学生将小数、分数化成百分数,然后在进行比较。
2. 练一练
将下面的分数、小数化成百分数(电脑显示)
0.3560.025
3 、说一说
1. 请学生同桌之间讨论,如何将小数、分数化成百分数
然后学生汇报
小数、分数化成百分数的方法:把小数化成百分数,只要把小数的小数点向右移两位,同时在后面添上百分号;把分数化成百分数,
可以先把分数化成小数(除不尽时,通常保留三位小数),再写成百分数。
三、巩固练习
1 做一做教科书“试一试”
引导学生根据成活率的意义,独立解决。
2. 生活的百分数
鼓励学生举出生活中求百分数的例子
比如,计算全班同学的出勤率
四.总结
这节课你学会了什么?
教学内容:
书第50——51页,体积单位的换算,想一想、试一试第1、2题,练一练第1、2、3、4题。
教学目标:
1、知识与技能:通过探究、推导,使学生知道:1立方米=1000立方分米,1立方分米=1000立方厘米,1升=1000毫升。
2、过程与方法:能够正确进行单位间的换算。
3、情感、态度价值观:培养学生良好的思维习惯和与人合作的能力。
教学重点:
知道常用体积单位之间的进率并能正确运用。
教学难点:
体积单位与长度单位、面积单位的联系与区别。
教学准备:
棱长为1分米的正方体盒子和棱长为1厘米的小正方体若干个。
教学过程:
一、复习旧知
1、填空:30厘米=( )分米 5米=( )厘米
2平方米=( )平方分米 45平方厘米=( )平方分米
师:常用的长度单位之间的进率是多少?
常用的长度单位之间的进率是多少?
2、计算:
(1)一个长方体盒子,长5分米,宽4分米,高3分米,它的体积是多少?
(2)一个长方体水池,它的底面积是30平方米,高是2米,它的体积是多少?
二、探究新知
1、质疑:猜测一下体积单位之间的进率可能是多少?
可以用什么方法验证你的猜想?
2、师:我们是怎样推导出常用的面积单位之间的进率的?
3、探索立方分米和立方厘米之间的进率
(1)说一说:你准备怎样利用学具来操作。
(2)四人小组活动。
(3)抽生完整表述操作过程:1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。
(4)师:如果用分米作单位,大正方体的体积是多少?
如果改用厘米作单位呢?
(5)师:由此你能得出什么结论?
据学生回答板书:1分米3=1000厘米3
师:1立方分米等于多少升?1立方厘米等于多少毫升?
你还能想到什么?
据学生回答板书:1升=1000毫升
4、探索立方米和立方分米之间的进率
(1)师:关于立方米和立方分米之间的进率,你有什么想法?
(2)四人小组交流。
(3)抽生汇报,师注重引导学生表述准确、完整:体积为1米3的正方体,它的棱长为1米;也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000dm3。
三、新课小结
通过今天的学习,你有什么收获?
作业设计:
1、书第50页试一试第1题,独立完成。
2、书第51页试一试第2题,独立完成,引导学生比较。
3、书第51页练一练第1题,独立完成,集体订正。
4、书第51页练一练第2题
通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。
5、书第51页练一练第3题
先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米),也可以换算成120立方分米。
6、书第51页练一练第3题
先让学生独立计算,再说说是怎么想的,实际上就是求1.5米高的水的体积。50×20×1.5=1500(立方米)
板书设计:
体积单位的换算
30厘米=( )分米 5米=( )厘米
2平方米=( )平方分米 45平方厘米=( )平方分米
1分米3=1000厘米3 1米3=1000 分米3
1升=1000毫升 1m3=1000 dm3