初一数学课件怎么写。教学设计是老师对每一课时做的特定教学方式的规划,是一个老师对他的工作尽职尽责的表现。以下是人见人爱的小编分享的最新七年级数学下册教学设计及反思【优秀3篇】,如果对您有一些参考与帮助,请分享给最好的同学。
第一课时
①了解无理数和实数的概念以及实数的分类;
②知道实数与数轴上的点具有一一对应的关系。
在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
①通过了解数系扩充体会数系扩充对人类发展的作用;
②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
①了解无理数和实数的概念;
②对实数进行分类。
对无理数的认识。
利用计算器把下列有理数3,,34795,,写成小数的形式,它们有什么特征? 58119
发现上面的有理数都可以写成有限小数或无限循环小数的形式即:33.0,34791,50.5 0.6,5.875,0.858119
归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,
反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,
把无限不循环小数叫做无理数。比如,5,等都是无理数。3.14159265也是无理数。
1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:
按照定义分类如下:
整数小数)有理数(有限小数或无限循环实数分数数)无理数(无限不循环小
按照正负分类如下:
正有理数正实数负无理数实数零
负有理数负实数负无理数
3、实数与数轴上点的关系:
我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?
活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是
可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。
归纳:①实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;
反过来,数轴上的每一个点都表示一个实数。
②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
例1、下列实数中,无理数有哪些? 2。事实上通过这种做法,我们
2,2,3.14,,0,10.12112111211112,π,(4)2。 3,0.717
解:无理数有:2,5,π
2注:①带根号的数不一定是无理数,比如(4),它其实是有理数4;
②无限小数不一定是无理数,无限不循环小数一定是无理数。
比如10.12112111211112。
例2、把无理数5在数轴上表示出来。分析:类比2的表示方法,我们需要构造出长度为的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5。
解:如图所示,oa2,ab1,
由勾股定理可知:ob5,以原点o与数轴的正半轴交于点c,则点c就表示5。
1、判断下列说法是否正确:
⑴无限小数都是无理数;
⑵无理数都是无限小数;
⑶带根号的数都是无理数; ⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数;
⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。
2、把下列各数分别填在相应的集合里:
有理数集合无理数集合
22, 3.1415926,7,8,2,0.6,0,,,0.313113111。 73
3、比较下列各组实数的大小:(1)4,(2)π,3.1416 (3)32,
1、无理数、实数的意义及实数的分类。 2、实数与数轴的对应关系。
p57习题6.3第1、2、3题;
掌握幂的乘方法则,并能够运用法则进行计算。
会进行简单的幂的混合运算。
在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点
幂的乘方法则的运用。
难点
幂的乘方法则的推导以及幂的混合运算。
一、复习导入
1.表示什么意义?表示什么意思呢?
2.同底数幂乘法法则是什么,它是怎样推导的?
通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方(★)运算,怎样进行幂的乘方运算呢?
二、新课讲解
探究新知
1.思考:
①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?
②你能说出、的意义吗?
③请你计算、,并想一想每一步计算的依据是什么?
(鼓励学生站起来回答,培养学生数学表达的能力)
2.发现:
①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?
②验证猜想,得出结论
===(m,n都是正整数)
用语言叙述为:幂的乘方,底数不变,指数相乘。
三、典例剖析
例1计算:
(1);(2);(3)(m是正整数);(4)(n是正整数)
要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。
例2计算:
学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。
四、课堂练习
基础练习
1.填空:
(1);(2);
2.下面的计算对不对?如果不对,应怎样改正?
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。
提高训练:
3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?
引导学生观察两种运算的共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。
4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。
学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。
5.已知,求的值。
逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。
五、小结
师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
1.p40第2题
2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。
采用多媒体课件,导学案进行教学。
在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容。不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识。解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因而解一元一次不等式是一项基本技能。另外,不等式解集的数轴表示从形的角度描述了不等式的解集,并为解不等式组做了准备。本节内容是进一步学习其他不等式(组)的基础。
解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐渐将不等式化为x>a或x
●重点
一元一次不等式的解法。
●难点
不等式性质3在解不等式中的运用是难点
●目标
1.使学生了解一元一次不等式的概念;
2.使学生掌握一元一次不等式的解法,并能在数轴上表示其解集。
3.经历探究一元一次不等式解法的过程,培养学生独立思考的习惯和合作交流的意识。
●目标解析
达到目标1的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集。
达到目标2的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x
达到目标3的标志是:学生能够独立思考后积极参与学习中去,在轻松,没有负担在氛围中完成对新知的学习。
本节课是在学生了解不等式的解和解集的意义,了解不等式解集的数轴表示方法,能利用不等式的性质对不等式进行简单变形的基础上学习本课的。现在学生已经具备了一定的自主学习的能力,本节的学习中我以问题串的形式贯穿整个教学过程,引导学生对比一元一次不等式和一元一次方程的有关内容,尤其是一元一次不等式和一元一次方程解法的比较,有利于对新知识的掌握,同时培养了学生类比的学习方法。
<一>、问题导入,探索新知1
问题1:举出一元一次方程的例子?
【设计意图】复习一元一次方程的概念,便于对比探索一元一次不等式概念。这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的类比和探究能力。
问题2:
将学生举出的一元一次方程中的等号改写成不等号。请学生观察有哪些共同的特征?
通过以上问题归纳得到一元一次不等式的概念:只含一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。
【设计意图】问题2采用自主发现的教学方法引导学生从众多的不等式中,通过归纳其共同特点,得到一元一次不等式的概念,培养了学生观察、归纳和语言表达能力。
问题3:学生举一元一次不等式的例子,学生判断。
师:判断下列各式是否是一元一次不等式?
①②③④⑤
⑥
【设计意图】此题让学生运用概念识别一元一次不等式,考察学生是否达成教学目标1。
<二>、探索新知2
通过前面的学习,我们知道解不等式的目的,就是将不等式变形成x>a或x
【设计意图】让学生明白不管一元一次不等式有多复杂,最终都可以转化为x>a或x
师:那怎么来解一元一次不等式呢?有具体的解法吗?请看下题
(1)解方程解不等式
2(1+x)=3 (1) 2(1+x)<3>
学生回答不等式含有分母
师:怎样变形使不等式不含分母?
师生共同去分母解(2)题
师:通过(1)、(2)题的学习你有什么发现?
生:解一元一次不等式的解题步骤和解一元一次方程的解题步骤相同,都是:去分母,去括号,移项,合并同类项,系数化为1.
师:在解(1)和(2)题的过程中注意些什么?
生:系数化为1时,注意未知数系数的符号,未知数的系数是正数,则不等号的方向不变,若未知数的系数是负数,则不等号的方向改变。
【设计意图】根据学生已经会解一元一次方程的实际情况,学生主动地参“探究——讨论——交流——总结”等数学活动,把一元一次方程和一元一次不等式进行了对比,实现了知识的自然迁移,使学生在自主探索和合作交流的过程中不知不觉地学到了新知识,理解并掌握了解一元一次不等式的一般步骤,教学重点得以基本达成,教学难点也取得相应突破。
练习小明解不等式的过程如下,请找出错误之处,并说明错误的原因。
解:2x-2+2<3x>
2x-3x<-2+2
-x<0>
本节课你学会了些什么?
解一元一次不等式和解一元一次方程有哪些相同和不同之处?
【设计意图】通过问题引导学生再次回顾本节课。
<四>布置作业
教科书习题9.2第1,2,3,题
<五>目标检测
解一元一次不等式?,并把它的解集在数轴上表示出来.
本节课主要以问题串的形式贯穿整个教学过程,学生任务明确。教师在每一个教学环节中灰渗透了类别的学习思想,这使学生在学习新知的过程中利用正迁移,在轻松的氛围中完成了对新知的学习。课上回答的问题及解题在正确率以小组的得分的形式计入到小组教学成绩日常评比中。