读书不是为了考试,本来考试是一件正确的事情,它是用来检查我们对学习过的知识是否懂了,懂了多少 多深 分数只是反映了我们对学过知识的掌握程度,为同学们精心整理了最新小学六年级数学教案上册 小学六年级数学教案(优秀5篇),如果对您有一些参考与帮助,请分享给最好的同学。
义务教育课程标准实验教科书二年级下册第20页辨认方向。
1.知识目标:结合具体的情境给定一个方向,能辨认其余的七个方向,名能用这些词语描述物体所在的位置。
2.技能目标:借助辨认方向,进一步发展空间观念。
3.情感目标:在具体的情境中体验数学与生活的密切联系。
1.重点:结合给定的一个方向辨认其余三个方向。
2.难点:用所学的方向词描绘物体所在的位置。
提问法、讨论法、练习法
课件、小卡片。
一、复习
说一说,我们上学期学过哪些方向?再说一说位于自己东、南、西、北四个方向的同学分别是谁?
二、新授
1、引入。
师:在生活中,除了听说过东、南、西、北这四个方向之外,还听说过哪些方向词?(板书:东南、东北、西南、西北。)现在我们就来认识这些方向。
2、认识东南、东北、西南、西北四个方向
课件出示主题图让学生观察:你看到什么,并说出它们的方向。
让学生将自己置身于学校这个位置,用已经学过的方向知识,说一说体育馆、商店、医院、邮局分别在学校的什么方向。教师先让学生4人一组说一说,再由教师指名让学生自己说一说。
教师让学生观察剩下的4个建筑物所在的方向与以前所认识的方向有什么特别之处。
发现剩下的4个方向分别在学校的斜方向的位置上。也就是在两个方向的中间。如:图书馆在北面和西面的中间。
说一说:少年宫、电影院、动物园所在的方向。
师:这样描述方向真是太麻烦了,请大家分别给这4个方向取名字
问:你们是如何得出这些名称的?
教师让学生多说一说这4个建筑物分别在学校的什么方向,最后教师总结。
师生共同制作方向板,教师在黑板上板书指导,先将8个方向的点找出,并将北的方向给出,再让学生自己写出剩下的7个方向,
3.试一试
(1)利用方向板说一说教室里8个方向分别有什么?
(2)让学生坐在自己的座位上,教师给出班级面朝的方向,小组内说一说自己的东南、东北、西南、西北分别是哪位同学。
(3)使用方向板时,教师应让学生注意方向板中的方向应与现实中面朝的方向相符。
三。练一练
教师出示地图,问:这是哪个国家的地图,地图的形状像什么?在地图上看到了什么?(教师可适时对学生进行爱国主义教育。学生在观察地图时,教师让学生注意面朝北的方向标。)
教师说出一个方向,让学生在图中将其指出。
问:你还可以提出哪些数学问题?
四。实践活动
到操场上看一看,说说校园内各个方向分别有些什么?
观察后,到班级交流观察的结果。
五。你知道吗?
读书中的一段话后,说一说自己对指南针的了解,再让学生回家去找资料,查找有关指南针的知识,增强学生收集信息的能力。
六。小结
这节课,同学们都学习了哪些数学知识呢?
1.通过复习,使学生进一步认识学过的一些立体图形的特征,掌握不同立体图形之间的异同.
2.通过复习,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题.
3.进一步发展学生的空间观念.
1.通过复习,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题.
2.进一步发展学生的空间观念.
进一步发展学生的空间观念.
我们已经复习了平面图形的相关知识,从今天开始,复习立体图形的知识.这节课,复习立体图形的特征.(板书课题)
提问:我们学习过哪些立体图形?谁来拿出不同的立体形体,告诉大家各是什么名称.
出示立体图形
请你分别说一说每个立体图形的名称及各部分的名称.
(圆锥体、长方体、正方体、圆柱体和长方体)
它们有什么特征呢?我们先来复习长方体的特征.
(一)复习长方体的特征.【演示课件立体图形的认识】
出示长方体:
1.同学以组为单位一起回忆.
a.长方体的特征.
b.想一想你是从那几方面对长方体的特征进行总结的.
1、在活动中将已学的“比的认识”进行梳理、分类、整合,从而体会知识间的内在联系。
2、进一步理解比的意义,能够正确熟练化简比、求比值,并能合理地应用比的意义解决一些实际问题。
3、向学生渗透对各类知识点的整合、梳理意识,培养学生科学的学习方法。
1、串联信息,整合单元复习内容。
2、沟通联系,自主搭建知识网络。
3、聚焦对比,分析说理易混知识。
4、数形结合,提炼方法优化思路。
厦门市群惠小学六(4)班学生善于思考,思维活跃,勇于表达自己的观点。为了更好地以学定教,我通过前测,对学生平时学习中的薄弱知识进行查缺:求比值和化简比混淆了;比的应用中,没有掌握解答的关键与诀窍。针对学生学情和复习目标,本课设计融入四元素:激趣+梳理+补缺+挑战,并利用电子白板的优势,引导学生自主复习,掌握知识,培养能力。
教学重点:对本单元的知识进行梳理,使之系统化、条理化,学生能够熟练的运用比的知识解决实际问题。
教学难点:经历知识的整理过程,建构知识网络图;能够熟练比的化简以及应用比的知识解决实际问题。
学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
推导并总结出圆周长的计算公式。
深入理解圆周率的意义。
备注:
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体
中找出一个圆形来,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2.怎样才能知道这个正方形的周长?说说你是怎么想的?
3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总
是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)滚动--把实物圆沿直尺滚动一周;
(2)缠绕--用绸带缠绕实物圆一周并打开;
(3)折叠--把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)转化
曲直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,
猜猜看,圆的周长应该是直径的倍?
(正方形的边长和圆的直径相等,直接观察可发现,圆周长
小于直径的四倍,因为圆形套在正方形里;而且由于两点间
线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
活动二:动手操作,探索圆的周长与直径的关系。
北师大(版)六年级数学(上册)第80页~第81页。
1、同学们要经历将眼睛、视线与观察的范围抽象为点、线、区域的过程。
2、我们还要理解观察点、遮挡点、可视区域等词语的意思。
3、感受观察范围随观察点、观察角度的变化而改变。
经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念。
能运用“观察的范围”的相关知识解决日常生活中的一些问题。
一、古诗引入,导入课题。
1.我们在小学学了五年的古诗,那么你们积累了那些古诗呢?谁能说一说。谁还记得王之涣写的诗《登鹳鹊楼》?齐读。
这首诗中哪一句描述诗人登高远望时的感受,(欲穷千里目,更上一层楼)。作者为什么要说:欲穷千里目,须“更上一层楼 ”呢?今天我们就来研究“观察的 范围”,从数学的角度来研究这个问题。
2.引入课题:观察的范围(板书课题)
二、自主探究、发现规律。
1、秋天到了,桃树下落了一地桃子,小猴闻到香味,在墙外向里张望 。可是前面一堵墙,小猴子能看到墙内的桃子吗?
2、看,小猴子爬到了这个位置,能看见地上全部的桃子吗?你猜想小猴看见多少个桃子?看来,光靠眼睛看是不准确的,你们能不能想出办法,准确找到猴子看到多少桃子呢?说说你的想法。
3、在a点时,我们把猴子的眼睛看作“观察点”,(板书:眼睛 观察点)。
4、阻碍小猴子观察视线的是什么?(墙) 它的最高处在哪里?(墙的右上角 )
5、我们把阻碍视线的这个最高点叫“阻碍点“(板书:阻碍点)。
6、观察点和阻碍点进行连线,这条连线和地面的交点,就是离墙最近的点。
连接观察点、墙的右上角、到地面的交点的线是一条什么线?(虚线) 这条虚线就是观察的视线。为什么要把视线画成虚线?(视线是看不见的,所以要画虚线)
7、这条线能往上画一点吗?往上画会怎么样?(观察范围变小)
这条线能往下画吗?往上画会怎么样?看来,这条线必须穿过围墙的右上角 。
8、小猴子想看得更多桃子,该怎么办?(再往上爬)
9、如果小猴子继续往上爬,爬到b处、c处,你能找到墙内离墙最近的点吗?(打开课本第80页,画一画)
10、汇报
11、观察点的变化,直接影响观察范围 的变化。那么,怎样确定观察范围 呢?
先看( 观察点),再找(阻碍点),连接这两点,延长到(地面的交点)确定观察范围(齐读一遍)。
12、我们把三次观察的结果放在一起,你发现了什么?
观察的范围与观察的高度有关,还与什么有关?
(观察的范围与观察的高度、观察的角度有关)
小猴爬得越高,看到的桃子越 多 ;说明小猴看到的范围就越 大 。
可见,观察点越高,观察的范围越大。(板书:观察点越高,观察的范围越大。)
13、联系古诗:现在你明白王之涣为什么说“欲穷千里目,更上一层楼”吗?
你能从数学的角度来探究其中的道理吗?说明了“站得高才能看得远”的道理。
三、应用新知,解决问题。
下面,请同学们 用学过的知识,解决一些生活问题。
1.完成课本80页试一试第1题。
2.课本80页试一试第2题。变化的楼房。
(1) 如果客车继续向前行驶,那么他所能看到b楼的部分是如何变化呢?生:逐渐缩小
(2) 客车行驶到位置2时,司机还能看到建筑物b吗?为什么?
3.小猫捉老鼠。一天小花猫出来散步,迎面遇到了一堵残墙,有一只聪明的小老鼠就躲在这堵残墙的后面。
(1)请你在图中画出小老鼠可以活动的区域。(学生在课本上操作)
(2)如果你是小猫,你希望自己的位置怎样变化?如果你是小老鼠,你希望小猫的位置怎样变化?
(3)比一比:小猫的位置改变后,它的观察区域分别有什么变化?说一说你的发现。
4.(1)在黑夜里把一个球向电灯移动时,球的影子是怎样变化的?
(2)晚上与家长在路灯下散步,当走向路灯时,你的影子是如何变化的?远离路灯 时呢?
5、在城市建设中,规定两幢楼的距离不能太近。为什么?
6、小丽能看到甲楼上的a点吗?能看到甲楼上的b点吗?
7、填空
(1)观看物体时,站的越( ),观察到的范围就越( )。
(2)路灯下物体影子的变化规律是,离路灯越近,物体的影子就越( );离路灯越远,物体的影子就越( )。
(3)红红和芳芳分别住在同一栋房的4楼和8楼,她们观看夜景,( )比 ( )观察的范围要大。
8、判断题
(1) 同样的电线杆离路灯越远,它的影子就越长。( )
(2)人远离窗子时,看到窗外的范围变大。 ( )
四、归纳整理,全课总结。
这节课学习了什么?你学到了什么?你认为观察的范围与什么有关?这节课学习了什么?你学到了什么?你认为观察的范围与什么有关?怎样确定观察范围?