初中数学教案:用公式解一元二次方程(五)(初中数学教案大全.doc)

在近几年中考中,经常出现利用一元二次方程解决的应用题,这类问题主要考查同学们利用一元二次方程的相关知识分析问题和解决实际问题的能力,这对大部分同学而言仍具有一定的挑战性。这次漂亮的小编为您带来了初中数学教案:用公式解一元二次方程(五)【优秀5篇】,在同学们参考的同时,也可以分享一下给您的同桌。

元二次方程的应用 篇一

12.6 一元二次方程的应用(三)

一、素质教育目标

(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。

(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。

二、教学重点、难点

1.教学重点:学会用列方程的方法解决有关增长率问题。

2.教学难点 :有关增长率之间的数量关系。下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。

三、教学步骤

(一)明确目标。

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)原产量+增产量=实际产量。

(2)单位时间增产量=原产量×增长率。

(3)实际产量=原产量×(1+增长率).

2.例1  某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?

分析:设平均每月的增长率为x.

则2月份的产量是5000+5000x=5000(1+x)(吨).

3月份的产量是[5000(1+x)+5000(1+x)x]

=5000(1+x)2(吨).

解:设平均每月的增长率为x,据题意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=±1.2.

x1=0.2,x2=-2.2(不合题意,舍去).

取x=0.2=20%.

教师引导,点拨、板书,学生回答。

注意以下几个问题:

(1)为计算简便、直接求得,可以直接设增长的百分率为x.

(2)认真审题,弄清基数,增长了,增长到等词语的关系。

(3)用直接开平方法做简单,不要将括号打开。

练习1.教材P.42中5.

学生分析题意,板书,笔答,评价。

练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程。

(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率。

(1+x)2=b(把原来的总产值看作是1.)

(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数。

(a(1+x)2=b)

(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数。

((1+x)2=b+1把原来的总产值看作是1.)

以上学生回答,教师点拨。引导学生总结下面的规律:

设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.

规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力。

例2  某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?

分析:设每次降价为x.

第一次降价后,每件为600-600x=600(1-x)(元).

第二次降价后,每件为600(1-x)-600(1-x)•x

=600(1-x)2(元).

解:设每次降价为x,据题意得

600(1-x)2=384.

答:平均每次降价为20%.

教师引导学生分析完毕,学生板书,笔答,评价,对比,总结。

引导学生对比“增长”、“下降”的区别。如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).

(四)总结、扩展

1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程。培养学生用数学的意识以及渗透转化和方程的思想方法。

2.在解方程时,注意巧算;注意方程两根的取舍问题。

3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率。3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程。

四、布置作业

教材P.42中A8

五、板书设计

12.6  一元二次方程应用(三)

1.数量关系: 例1…… 例2……

(1)原产量+增产量=实际产量 分析:…… 分析……

(2)单位时间增产量=原产量×增长率 解…… 解……

(3)实际产量=原产量(1+增长率)

2.最后产值、基数、平均增长率、时间

的基本关系:

M=m(1+x)n  n为时间

M为最后产量,m为基数,x为平均增长率

元二次方程的相关教案 篇二

教学内容:12.1 用公式解一元二次方程(一)

教学目标:

知识与技能目标:使学生了解一元二次方程及整式方程的意义;掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.

过程与方法目标:通过一元二次方程的引入,培养学生分析问题和解决问题的能力;通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.

情感与态度目标:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.。

教学重、难点与关键:

重点:一元二次方程的意义及一般形式.

难点:正确识别一般式中的“项”及“系数”。

教学程序设计:

1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.

2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?

教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.

板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.

学生看投影并思考问题

通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.

探究新知1

1.复习提问

(1)什么叫做方程?曾学过哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含义?

(3)什么叫做分式方程?

2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?

引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的`概念.

整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.

一元二次方程:只含有一个未知数,且未知数的最高次数是2,这样的整式方程叫做一元二次方程.

3.练习:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4x2;

(2)7x2+6=2x(3x+1);

(3)

(4)6x2=x;

(5)2x2=5y;

(6)-x2=0

4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.

一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.

5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?

教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.

讨论后回答

学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,

独立完成

加深理解

学生试解

问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫

反馈训练应用提高

练习1:教材P.5中1,2.

练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:.

(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化

要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.

小结提高

(四)总结、扩展

引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?

1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.

3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.

学生讨论回答

布置作业

1.教材P.6 练习2.

2.思考题:

1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”

2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).

元二次方程的应用 篇三

第一课时

一、教学目标

1.使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。

2.通过列方程解应用问题,进一步体会提高分析问题、解决问题的能力。

3.通过列方程解应用问题,进一步体会代数中方程的思想方法解应用问题的优越性。

二、重点·难点·疑点及解决办法

1.教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。

2.教学难点:根据数与数字关系找等量关系。

3.教学疑点:学生对列一元二次方程解应用问题中检验步骤的理解。

4.解决办法:列方程解应用题,就是先把实际问题抽象为数学问题,然后由数学问题的解决而获得对实际问题的解决。列方程解应用题,最重要的是审题,审题是列方程的基础,而列方程是解题的关键,只有在透彻理解题意的基础上,才能恰当地设出未知数,准确找出已知量与未知量之间的等量关系,正确地列出方程。

三、教学过程

1.复习提问

(1)列方程解应用问题的步骤?

①审题,②设未知数,③列方程,④解方程,⑤答。

(2)两个连续奇数的表示方法是,(n表示整数)

2.例题讲解

例1  两个连续奇数的积是323,求这两个数。

分析:(1)两个连续奇数中较大的奇数与较小奇数之差为2,(2)设元(几种设法)a.设较小的奇数为x,则另一奇数为,b.设较小的奇数为,则另一奇数为;c.设较小的奇数为,则另一个奇数。

以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。

解法(一)  设较小奇数为x,另一个为,

据题意,得

整理后,得

解这个方程,得。

由得,由得,

答:这两个奇数是17,19或者-19,-17。

解法(二)  设较小的奇数为,则较大的奇数为。

据题意,得

整理后,得

解这个方程,得。

当时,

当时,。

答:两个奇数分别为17,19;或者-19,-17。

第 1 2 页

元二次方程 篇四

教学目标

1. 了解整式方程和的概念;

2. 知道的一般形式,会把化成一般形式。

3. 通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学重点和难点:

重点:的概念和它的一般形式。

难点:对的一般形式的正确理解及其各项系数的确定。

教学建议:

1.  教材分析:

1)知识结构:本小节首先通过实例引出的概念,介绍了的一般形式以及中各项的名称。

2)重点、难点分析

理解的定义:

是 的重要组成部分。方程 ,只有当 时,才叫做。如果 且 ,它就是了。解题时遇到字母系数的方程可能出现以下情况:

(1)的条件是确定的,如方程 ( ),把它化成一般形式为 ,由于 ,所以 ,符合的定义。

(2)条件是用“关于 的”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。如“关于 的 ”,这时题中隐含了 的条件,这在解题中是不能忽略的。

(3)方程中含有字母系数的 项,且出现“关于 的方程”这样的语句,就要对方程中的字母系数进行讨论。如:“关于 的方程 ”,这就有两种可能,当 时,它是一元一次方程 ;当 时,它是,解题时就会有不同的结果。

教学目的

1.了解整式方程和的概念;

2.知道的一般形式,会把化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:

重点:

1.的有关概念

2.会把化成一般形式

难点: 的含义。

第 1 2 页

元二次方程 篇五

教学目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

→←教学难点和难点:

重点:

1.一元二次方程的有关概念

2.会把一元二次方程化成一般形式

难点: 一元二次方程的含义。

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程   (     x(x十5)=150    )

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程--------一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。(板书一元二次方程的定义)

3.强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:  (2)x2=4

(2)(x十3)(3x·4)=(x十2)2;  (4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4. 一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0   (a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称。

3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本p6)

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=o  (2)x2—3x十4=0;  (3)3x2-5=0

(4)4x2十3x—2=0;  (5)3x2—5=0;       (6)6x2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6x2=3-7x;  (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。

课外作业:略

热门教案

学诗词

学名句

赏诗词、传文化、品生活!

Copyright © 2017-2025 学古诗词 | 粤ICP备2022125586号-4