《完全平方公式》教案优秀8篇(完全平方公式变形公式及常见题型)

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:下面是为同学们带来的《完全平方公式》教案优秀8篇,可以帮助到您,就是小编最大的快乐。

《完全平方公式》教案 篇一

学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同。相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

(1)切勿把此公式与平方差公式混淆,而随意写。

(2)切勿把“乘积项”2ab中的2丢掉。

(3)计算时,要先观察题目是否符合公式的条件。若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算。

今后在教学中 ,要注意以下几点:

1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征。

2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力。

《完全平方公式与平方差公式》教学设计 篇二

一、课 题 8.3.3实际问题与二元一次方程组(三) 编写备课组

二、本课学习目标与任务:1、进一步提高分析,解决问题的能力。

2、学会条件整理,明晰解题思路。

3、理解设间接未知数的意义。

三、知识链接:1、学会用列表格或画图法分析题目,理顺关系,使得各种数量关系一目了然,具有直观易懂的优点,避免了因数据多,关系复杂而混淆不清。

2、当直接设未知数时难于列出方程或找到相关的等量关系,我们可采取用间接设未知数的办法。

四、自学任务(分层)与方法指导:1、长青化工厂与A,B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,已知公路运价为1.5元/(吨。千米)。铁路运价为1.2元/(吨。千米),且这两次运输共支出公路运费15000元。铁路运费97200元。这批产品的销售款比原料费与运输费的和多多少元?

问题设疑:从A到长青化工厂,铁路走多少公里?公路走多少公里?

从长青化工厂到B,铁路走多少公里?公路走多少公里?

铁路每吨千米运价是多少?公路每吨千米运价是多少?

两次运输总支出为多少元?

分析:销售款与产品数量有关,原料费与原料数量有关,设产品重 吨,原料重 吨,根据题中数量关系填定下表:

产品 吨

原料 吨

合计

公路运费(元)

铁路运费(元)

价 值(元)

题目所求数值是 ,为此需先解出 与 。

由上表,列方程组

解这个方程组,得

因此,这批产品的销售款比原料费与运输费的和多 元。

五、小组合作探究问题与拓展:1七年级某班同学参加平整土地劳动,运土人数比挖土人数的一半多3人,若从挖土人员中抽出6人去运土,则两者人数相等,原来有运土________人,挖土_______人。

2、足球比赛的计分规则为胜一场得3分,平一场得1分,负一场得0分,一个队打11场,负3场,共得16分,那么这个队胜了______ 场。

3、甲、乙两厂计划在五月份共生产零件360个,结果甲完成了计划的112%,乙完成了计划的110%,两厂生产了零件400个,则五月份甲、乙两厂超额生产的零件分别为_多少个?

六、自学与合作学习中产生的问题及记录

当堂检测题

1、学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2:3,三种球共41个,则篮球有_______个,排球有______个,足球有_______个。

2、已知梯形的面积是28平方厘米,高是4厘米,它的下底比上底的2倍少1厘米,则梯形的上、下底分别是____________。

3、小兵最近购买了两种三年期债券5000元,甲种年利率为5.8%,乙种年利率为6%,三年后共可得到利息888元,则他购甲种债券________ 元,乙种债券_______元。

4、甲对乙风趣地说:“我像你这样大岁数的那年,你才2岁;而你像我这样大岁数的那年,我已经38岁了。”则甲、乙两人现在的岁数分别是_______。

5、某商店为了处理积压商品,实行亏本销售,已知购进的甲、乙商品原价共为880元,甲种商品按原价打8折,乙种商品按原价打七五折,结果两种商品共亏196元,则甲、乙商品的原价分别为( )

A、400元,480元B、480元,400元

C、360元,300元D、300元,360元

《完全平方公式与平方差公式》教学设计 篇三

授课教师:

授课时间:

课型:新授

课题:3.4探究实际问题与一元一次方程组

教学目标基础知识:掌握一元一次方程得解法,了解销售中的数量关系。

基本技能:能够分析实际问题中的数量关系,找相等关系,列出一元一次方程。

基本思想

方法:通过将实际问题转化成数学问题,培养学生的建模思想;

基本活动经验体会解决实际问题的一般步骤及盈亏中的关系

重点探索并掌握列一元一次方程解决实际问题的方法,

教学

难点找出已知量与未知量之间的关系及相等关系。

教具资料准备教师准备:课件

学生准备:书、本

教 学 过 程自备

补充集备

补 充

一、创设情景 引入新课

观察图片引课(见大屏幕)

二、探究

探究销售中的盈亏问题:

1、商品原价200元,九折出售,卖价是 元。

2、商品进价是30元,售价是50元,则利润

是 元。

2、某商品原来每件零售价是a元, 现在每件降价10%,降价后每件零售价是 元。

3、某种品牌的彩电降价20%以后,每台售价为a元,则该品牌彩电每台原价应为 元。

4、某商品按定价的八折出售,售价是14.8元,则原定售价是 。

(学生总结公式)

熟悉各个量之间的联系有助于熟悉利润、利润率售价进价之间联系

三、探究一

某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25?,另一件亏损25?,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?

分析:售价=进价+利润

售价=(1+利润率)×进价

练习(1)随州某琴行同时卖出两台钢琴,每台售价为960元。其中一台盈20%,另一台亏损20%。这次琴行是盈利还是亏损,或是不盈不亏?

(2)某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%。这次交易中的盈亏情况?

(3)某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 则该商品的标价为 元。

注:标价×n/10=进(1+率)

(4)2、我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a元,

则这种药品在2005年涨价前价格为 元。

四、小结

通过本节课的学习你有哪些收获?你还有哪些疑惑?

亏损还是盈利对比售价与进价的关系才能加以判断

小组研究解决提出质疑

优生展示讲解质疑

五、作业布置:

板书设计 一元一次方程的应用-----盈亏问题

相关的关系式: 例题

课后反思售价、进价、利润、利润率、标价、折扣数这几个量之间的关系一定清楚,之后才能灵活运用,通过变式练习加强记忆提高能力。

《完全平方公式》教案 篇四

学习任务

1、了解完全平方公式的特征,会用完全平方公式进行因式分解。

2、通过整式乘法逆向得出因式分解方法的过程,发展学生逆向思维能力和推理能力。

3、通过猜想、观察、讨论、归纳等活动,培养学生观察能力,实践能力和创新能力。

学习建议教学重点:

运用完全平方公式分解因式。

教学难点

掌握完全平方公式的特点。

教学资源

使用电脑、投影仪。

学习过程学习要求

自学准备与知识导学:

1、计算下列各式:

⑴(a+4)2=__________________⑵(a-4)2=__________________

⑶(2x+1)2=__________________⑷(2x-1)2=__________________

下面请你根据上面的等式填空:

⑴a2+8a+16=_____________⑵a2-8a+16=_____________

⑶4x2+4x+1=_____________⑷4x2-4x+1=_____________

问题:对比以上两题,你有什么发现?

2、把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来就得到__________________和__________________,这两个等式就是因式分解中的完全平方公式。它们有什么特征?

若用△代表a,○代表b,两式可表示为△2+2△×○+○2=(△+○)2,△2-2△×○+○2=(△-○)2.

3、a2-4a-4符合公式左边的特征吗?为什么?

4、填空:a2+6a+9符合吗?______相当于a,______相当于b.

a2+6a+9=a2+2()()+()2=()2

a2-6a+9=a2-2()()+()2=()2

可以把形如a2+2ab+b2与a2-2ab+b2的多项式通过完全平方公式进行因式分解。

学习交流与问题研讨:

1、例题一(准备好,跟着老师一起做!)

把下列各式分解因式:⑴x2+10x+25⑵4a2-36ab+81b2

2、例题二(有困难,大家一起讨论吧!)

把下列各式分解因式:⑴16a4+8a2+1⑵(m+n)2-4(m+n)+4

3、变式训练:若把16a4+8a2+1变形为16a4-8a2+1会怎么样呢?

4、运用平方差公式、完全平方公式,把一个多项式分解因式的方法叫做运用公式法。分析:重点是指出什么相当于公式中的a、b,并适当的改写为公式的形式。

分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的'形式。

强调:分解因式必须分解到每一个因式都不能再分为止。

练习检测与拓展延伸:

1、巩固练习

⑴下列能直接用完全平方公式分解的是()

A、x2+2xy-y2B、-x2+2xy+y2C、x2+xy+y2D、x2-xy+y2

⑵分解因式:-a2+2ab-b2=_________,-a2-2ab-b2=_________.

⑶课本P75练一练1、2.

2、提升训练

⑴简便计算:20042-4008×20xx+20052

⑵已知a2-2a+b2+4b+5=0,求(a+b)20xx的值。

⑶若把a2+6a+9误写为a2+6a+9-1即a2+6a+8如何分解?

3、当堂测试

补充习题P42-431、2、3、4.

分析:许多情况下,不一定能直接使用公式,需要经过适当的组合,变形成公式的形式。

课后反思或经验总结:

1、本节课是在学生已经了解因式分解的意义,掌握了提公因式法、平方差公式的基础上进行教学的,是运用类比的方法,引导学生借助上一节课学习平方差公式分解因式的经验,探索因式分解的完全平方公式法,即先观察公式的特点,再直接根据公式因式分解。

《完全平方公式》教案 篇五

一、教学目标:

经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。

二、教学过程:

1.检查学生的“预习知识树”,导入课题:

师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。今天,我们继续学习、研究另一种“乘法公式”――完全平方公式。请拿出你的“预习知识树”,小组内互查并交流,在预习中有疑问的同学请询问。

(活动:老师巡视、检查学生的预习情况,并解答学生在预习中存在的问题)生:(互查、讨论“预习知识树”,有问题的询问问题。)师:(老师点评学生预习情况,并出示老师做的“知识树”,引出课题:完全平方公式。)说明:把预习提到课前,利用“知识树”引导学生自学,学生可以独立思考、自主学习,也可合作交流、讨论研究,这样预习会更充分,听讲时就能有准备、有选择;一上课,老师就检查“预习知识树”,了解学生新课学习情况,适当点拨,在课堂上留出更多的时间大量拓展、提高,发展学生的能力。

2.自学检测,制造通用工具:师:下面进行自学检测。计算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

(活动:投影显示练习题。)生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。)师:观察练习,公式中的a、b可代表什么?

生:可以表示一个数,也可以表示一个单项式、多项式。

说明:点评时,老师反复引导学生分清题目中哪部分相当于公式中的a,哪部分相当于公式中的b,就是让学生明确“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律,即制造通用工具。在前面学习平方差公式时,学生应该认识到这个道理,在这里再次强化。

师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。显然,刚做的练习题是由公式变化来的,若是变下去,能变多少道题?

生:无数道。师:最终是几道题?生:一道。说明:这就是老师的“暗线”语言,引导学生明白从公式出发,反映在a、b上只是取值不同,可以演变出无数道题,是“解压”的过程,最终还是利用公式解题,所有的题目只有“一道”,只是形式不同,这又是“压缩”的过程,把握了变化规律才能更好地解题。

师:你会变了吗?请各小组编题。(活动:四人小组先在组内讨论、交流,再推选完成最快的两个小组出示题目,其他小组同学练习。)说明:引导学生现场出题,一是激发学生兴趣、活跃气氛,二是验证变化规律。

师:下面思考,如何计算:(a+b+c)2生1:可根据多项式乘以多项式来计算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

师:不错。还有其他方法吗?生2:也可以把其中的(a+b)两项看成一项,变成[(a+b)+c]2的形式,就能直接运用完全平方公式了。

师:说得非常好。两种方法都可以,但哪种更简单呢?请你任选一种,完成练习。

生:(紧张地做题,同时找两个学生到黑板上板演。)师:这道题若是变为(a+b+c+d)2,你会做吗?

生:(齐答)会。师:怎么办?生1:把其中(a+b)看做一项,(c+d)看做一项,还是利用完全平方公式解题。

生2:还有其他分组方式,如把(a+c)看做一项,(b+d)看做一项,也能直接运用公式解题。

师:方法一样吗?生:一样的。师:还能变下去吗?这样可以变出多少道题?

生:无数道。师:最终是几道题?生:(齐答)一道题。师:现在,老师相信每个学生都会解这样的题了。课下,请同学们思考:如果把(a+b)2的指数变化一下,又可以变出多少道题,你能计算出来吗?

(活动:投影显示一组题目,如(a+b)3、(a+b)4……)说明:这就是老师进一步利用这个例子论证“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律。

3.通过大量的习题验证通用工具,学生并且自造通用工具。

师:通过前面的检测,看出同学们已经基本掌握了完全平方公式。下面进入达标检测。

(活动:投影显示达标检测题)1.填空:

①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③当x=5,y=2,则(x+y)(x-y)-(x-y)2=_________。

2.计算:

①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.计算:(x+2y+3)(x+2y-3)生:(积极、主动地在作业本上完成上面练习题。)师:(巡视,批阅完成快的学生的作业,最后集体点评,只讲不会的。)说明:第2①题,可先变形为[-(2m+n)]2,再按(a+b)2的公式展开,也可直接理解成-2m与n的差,按(a-b)2计算;第2②题将(2-3a2)变形为-(3a2-2),原式可转化为-(3a2-2)2,直接运用公式计算;第2④题把(n+3)看做a

、n看做b,逆用平方差公式也是一种解法,同时训练学生的'逆向思维;第3题是下节课训练内容,在这里可以提前,引导学生通过变形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3][(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,这里还是把(x+2y)看做a、3看做b,进一步验证了“通用工具”,即“解决某一类问题的一种思维方式或方法”。拓展提高还是在“变”上下功夫,要求学生能较熟练掌握,逐步达到脑算的层次,水到渠成,能力自然提高,学生就会自造“通用工具”了。

4.嫁接“知识树”,推荐作业。师:本节课你有什么收获?还有什么问题吗?

(活动:再次投影本节课“知识树”。)生:这节课我们学习、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是单项式也可以是多项式,能运用公式解题了,能力上又有新的提高。师:课下完成本节课的作业。[投影显示]思考题:计算(a+b+c)2、(a+b+c+d)2的结果,观察有什么规律,感兴趣的同学还可计算(a+b)3、(a+b)4的结果,你又能发现什么规律。预习指导:①课本第38-39页内容,重点研究例3两个题目的解题方法,能尝试独自解答课后随堂练习或习题,②设计下节课“知识树”,优化本单元“知识树”。说明:本环节是将本节课“知识树”

移植到乘法公式的单元“知识树”上,整体构建知识,同时更加强化了学生的“能力树”。作业是推荐性的作业,达标检测就是“堂堂清”,学生课下只须做好预习作业就行了,这样会有更多自由安排的时间,发展个性。

完全平方公式教案设计 篇六

一、内容简介

本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:

1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

二、学习者分析:

1、在学习本课之前应具备的基本知识和技能:

①同类项的定义。

②合并同类项法则

③多项式乘以多项式法则。

2、学习者对即将学习的内容已经具备的水平:

在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

三、教学/学习目标及其对应的课程标准:

(一)教学目标:

1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

2、会推导完全平方公式,并能运用公式进行简单的计算。

(二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

(四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

(五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

四、教育理念和教学方式:

1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

2、采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

3、教学评价方式:

(1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

(2) 通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

(3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

五、教学媒体:多媒体

六、教学和活动过程:

教学过程设计如下:

〈一〉、提出问题

[引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析问题

1、[学生回答] 分组交流、讨论

(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

(2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

(1)原式的特点。

(2)结果的项数特点。

(3)三项系数的特点(特别是符号的特点)。

(4)三项与原多项式中两个单项式的关系。

2、[学生回答] 总结完全平方公式的。语言描述:

两数和的平方,等于它们平方的和,加上它们乘积的两倍;

两数差的平方,等于它们平方的和,减去它们乘积的两倍。

3、[学生回答] 完全平方公式的数学表达式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、运用公式,解决问题

1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

(m+n)2=____________, (m-n)2=_______________,

(-m+n)2=____________, (-m-n)2=______________,

(a+3)2=______________, (-c+5)2=______________,

(-7-a)2=______________, (0.5-a)2=______________.

2、判断:

( )① (a-2b)2= a2-2ab+b2

( )② (2m+n)2= 2m2+4mn+n2

( )③ (-n-3m)2= n2-6mn+9m2

( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

( )⑥ (-a-2b)2=(a+2b)2

( )⑦ (2a-4b)2=(4a-2b)2

( )⑧ (-5m+n)2=(-n+5m)2

3、小试牛刀

① (x+y)2 =______________;② (-y-x)2 =_______________;

③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

〈四〉、[学生小结]

你认为完全平方公式在应用过程中,需要注意那些问题?

(1) 公式右边共有3项。

(2) 两个平方项符号永远为正。

(3)中间项的符号由等号左边的两项符号是否相同决定。

(4)中间项是等号左边两项乘积的2倍。

〈五〉、冒险岛:

(1)(-3a+2b)2=________________________________

(2)(-7-2m) 2 =__________________________________

(3)(-0.5m+2n) 2=_______________________________

(4)(3/5a-1/2b) 2=________________________________

(5)(mn+3) 2=__________________________________

(6)(a2b-0.2) 2=_________________________________

(7)(2xy2-3x2y) 2=_______________________________

(8)(2n3-3m3) 2=________________________________

〈六〉、学生自我评价

[小结] 通过本节课的学习,你有什么收获和感悟?

本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

〈七〉[作业] P34 随堂练习 P36 习题

七、课后反思

本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。

教学设计示例 篇七

一、教学目标

1.理解完全平方公式的意义,准确掌握两个公式的结构特征.

2.熟练运用公式进行计算.

3.通过推导公式训练学生发现问题、探索规律的能力.

4.培养学生用数形结合的方法解决问题的数学思想.

5.渗透数学公式的结构美、和谐美.

二、学法引导

1.教学方法:尝试指导法、讲练结合法.

2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

(1)切勿把此公式与公式 混淆,而随意写成 .

(2)切勿把“乘积项”2ab中的2丢掉.

(3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点·难点及解决办法

(一)重点

掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

(二)难点

综合运用平方差公式与完全平方公式进行计算.

(三)解决办法

加强对公式结构特征的深入理解,在反复练习中掌握公式的应用.

四、课时安排

一课时.

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.

3.举例分析如何正确使用完全平方公式,师生共练完成本课时重点内容.

4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

七、教学步骤

(一)明确目标

本节课重点学习完全平方公式及其应用.

(二)整体感知

掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

(三)教学过程

1.计算导入;求得公式

(1)叙述平方差公式的内容并用字母表示;

(2)用简便方法计算

 ①103×97

 ②103 × 103

(3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

学生活动:编题、解题,然后两至三个学生说出题目和结果.

要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

法公式”.

引例:计算 ,

学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

或合并为:

教师引导学生用文字概括公式.

方法:由学生概括,教师给予肯定、否定或更正,同时板书.

两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

【教法说明】

①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识方法,因此推导完全平方公式可以由计算直接得出.

2.结合图形,理解公式

根据图形完成下列问题:

如图:A、B两图均为正方形,

(1)图A中正方形的面积为____________,(用代数式表示)

图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

(2)图B中,正方形的面积为____________________,

Ⅲ的面积为______________,

Ⅰ、Ⅱ、Ⅳ的面积和为____________,

用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

分别得出结论:

学生活动:在教师引导下回答问题.

【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

3.探索新知,讲授新课

(1)引例:计算

教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用完全平方公式来计算,即

【教法说明】  引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

(2)例1  运用完全平方公式计算:

①   ②   ③

学生活动:学生独立在练习本上尝试解题,3个学生板演.

【教法说明】  让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

4.尝试反馈,巩固知识

练习一

运用完全平方公式计算:

(1)   (2)   (3)

(4)   (5)   (6)

(7)   (8)   (9)

(l0)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

练习二

运用完全平方公式计算:

(l)  (2)  (3)  (4)

学生活动:学生分组讨论,选代表解答.

练习三

(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

甲的计算过程是:原式

乙的计算过程是:原式

丙的计算过程是:原式

丁的计算过程是:原式

(2)想一想, 与 相等吗?为什么?

与 相等吗?为什么?

学生活动:观察、思考后,回答问题.

【教法说明】  练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题方法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

练习四

运用乘法公式计算:

(l)   (2)

(3)  (4)

学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

【教法说明】  这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

(四)总结、扩展

这节课我们学习了乘法公式中的完全平方公式.

引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

八、布置作业

P133  1,2.(3)(4).

参考答案

略.

《完全平方公式》教案 篇八

运用完全平方公式计算:

(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(l0)

学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

5.变式训练,培养能力

热门教案

学诗词

学名句