六年级分数除法说课稿(六年级数学分数乘除法计算题)

六年级分数除法说课稿5篇

六年级分数除法说课稿【篇1】

一、说教材

我教学的内容是小学数学第十一册第二单元分数除法应用题例1、例2。这部分内容是在学过分数除法的意义和计算法则、分数乘法应用题、用方程解已知一个数的几分之几是多少求这个数的文字题的基础上进行教学的。同求一个数的几分之几是多少的应用题一样,本小节教学的一个数的几分之几是多少求这个数的应用题,也是由于分数乘法意义的扩展,相应地除法意义的具体含义也有了扩展而产生的新的应用题。根据教材特点和学生实际我确定本节课的

教学目标是:

(1)会分析简单的分数除法应用题数量关系。

(2)能列方程正确解答简单的分数除法应用题。

(3)培养学生初步的逻辑思维能力。教学重点是:能用方程正确解答分数除法应用题。

教学难点是:

确定单位“1”、分析数量关系

二、说教法:

本节课我贯彻“以学生为主体,教师为主导,训练思维为主线”的原则

1、自主探究、寻求方法

让学生充分自主探究、寻求分数除法的解题方法。

2、设计教法体现主体

课堂设计以学生为主体,教师是领路人,注重学生间的合作与交流各抒已见、取长补短、共同提高。

3、分层练习、注重发展

练习有层次,由尝试练习到综合练习到发展练习,层层深入。

三、说教程:

一、导言:

以前我们学过了分数应用题,这节课我们继续研究分数应用题,(板书:分数应用题)。

二、复习:

1.说说下面各题中应该把哪个看作单位“1”,数量之间相等关系怎样?

①吃了一筐白菜的2/5。

②一本书的价格正好是一支钢笔价格的2/5。

③小明体内的水分占体重的4/5。

三、自主探究、解决问题

1、教学例1

①小明体内所含的水分是28千克,占体重的4/5,他的体重是多少千克?

仔细观察看一看有没有什么发现?

独立做,做完组内交流,组长分好工,做好记录,看看哪个小组方法多,你们小组准备由谁发言,用几句话表达自己小组的方法。

小结:老师也认为用方程解比较容易,因为它的解题思路与我们以前学的分数乘法应用题的思路是一致的,也是根据题中的叙述的条件明确把谁看作单位1,然后根据一个数乘分数的意义列出等量关系式,由于单位1是未知的,要设成x,列出方程进行解答。这也是我们本节课所要掌握的已知一个数的几分之几是多少求这个数的应用题用方程解的方法。

2、教学例2。

②小明买一条裤子是75元,是一件上衣的2/3,一件上衣是多少钱?

(看题)(独立完成后说说自己的想法)

3、比较例1、例2有什么不同。

师:例1、例2虽然存在着不同指出,但是解题方法是类似的。我们再做两道题看看是不是这样。(投影出示做一做1、2)。请两名同学在投影片上做,其他同学在本上做,做后请同学叙述怎样做的,为什么这样做。

小结:通过以上的学习,同学们觉得分数应用题在解答时的关键是什么?

四、练习

4、判断下列说法是否正确。

五、总结全课

师:好了,同学们,这节课我们学习了列方程来解已知一个数的几分之几是多少,求这个数的应用题,学好这部分知识对于提高我们解决问题的能力,发展我们的思维有着重要的作用,同学们表现得非常好,希望你们继续努力。

六年级分数除法说课稿【篇2】

一.说教材。

我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。

例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证,引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。

根据刚才对教材的理解,本节课的教学目标是:

1. 理解分数除法的意义与整数除法的意义相同。

2. 理解分数除以整数的计算原理,掌握计算方法,并能正确的进行计算。

3. 经历观察、猜测、实验、验证和归纳的过程,感受数形结合的思想方法,并从中发展抽象思维能力。

本课的重点是理解分数除法的意义和分数除以整数的计算方法;

本课的难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。

二.说教法、学法。

为了达成教学目标,本课的教学必须贯彻以学生为主体,坚持启发与发现法相结合的教学方法,引导学生大胆猜想,动手实践,在体验中、在交流中发现规律。

学习方法上强调以探究学习法为主。认知结构理论告诉我们,学习是学生积极主动的内化过程。只有通过主动参与获得的知识,才是有意义的。因此,在重难点的学习上,通过折纸实验与验证,数形结合,从而实现真正的理解。

三.说教学过程。

(一) 类比迁移,理解分数除法的意义。

1. 乘法意义对照。

(出示3盒标注100克的水果糖)问:共重多少千克?

这个问题的提法比教材中略有不同。教材中是先提问:共重多少克?借此引出整数乘法、整数除法算式,然后通过100克=1/10千克引出相应的分数乘除法。根据我以往教学的经验,这样的处理不少学生在类比迁移时有一定的障碍,并不容易实现。

而在问题中直接以千克为单位,首先因为问题更有挑战性而能更有效激发学生的兴趣,其次还能引出三种形式的算式:

○1整数形式:100×3=300(克)=0.3(千克)

○2小数形式:100克=0.1千克;0.1×3=0.3(千克)

○3分数形式: 100克=1/10千克;1/10×3=3/10(千克)

这样的处理不仅有利于学生系统建构整个乘法的意义,而且,还能促使学生自然而然的把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去的理解就显得水到渠成啦。

2.除法意义对照。

在改编成求‘每盒重多少千克’的问题情境下,引出相应的三个除法算式:

○1300÷3=100(克)=0.1(千克)

○20.3÷3=0.1(千克)

○33/10÷3=1/10(千克)

并进一步引导学生进行比较,从而理解分数除法的意义与整数、小数除法的意义相同。

3.练习:

12×17= 204 2.8×1.5= 4.2 2/3×4=8/3

204÷12=( ) 4.2÷1.5=( ) 8/3÷4=( )

204÷17=( ) 4.2÷2.8=( ) 8/3÷2/3=( )

在前两步理解意义的基础上,及时安排相应的巩固练习。分别是已知三种形式的乘法算式,不计算直接写出相应除法算式的商。如:2/3×4=8/3,8/3÷4=( ),8/3÷2/3=( )

(二)自主探究,掌握算法。

第一步:教学4/5÷2

1.创设问题情境:没有已知的乘法算式,你还会计算4/5÷2这道分数除法吗?

○1鼓励尝试计算;

○2组织全班交流;

(预设学生反馈):

方法A.因为2×2/5=4/5,所以4/5÷2=2/5

这是受刚才所学除法意义的影响,迁移而来;

方法B.4/5÷2= 4÷2/5=2/5

大部分是看到4与2的倍数关系,想当然的在计算;可能小部分能从数的组成进行解释。

方法C.4/5÷2=4/5×1/2=2/5

课前预习过;但能说清为什么的恐怕很少。

2. 引导理解方法B和C。

○1师:4/5里面有个()/(),÷2表示平均分成两份,每份有()个()/();

○2师:在长方形里折一折,涂一涂,再来解释两种方法。

○3师:还有不同的分法吗?

在先请学生进行解释的基础上,引导思考: 4/5里面有()个()/(),÷2表示平均分成两份,每份有()个()/();在部分学生有所感悟的基础上,引导学生进一步验证,根据课前提供的五等分的长方形纸片,要求学生折一折、涂一涂,再来进行解释。

由于已经将长方形纵向五等分,因此从直观上很容易理解方法B。再进一步启发:还有不同的折法吗?鼓励学生寻求不同方法,比如说横向折,沿对角线折等等;

通过这些折法的体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它的12,也就是说始终可以将÷2转化为乘以1/2。

第二步:教学4/5÷3

1.初步比较:你觉得哪种方法好?

2.尝试计算4/5÷3;

(要求先折一折,涂一涂,再计算) (课前提供五等分的长方形纸片)

反馈,追问:

○1平均分成3份,每份是( )的1/3? 求一个数的几分之几怎么计算?

○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?

首先请学生对两种方法进行初步比较:你觉得哪种方法好?这时并不急于统一思想,转而请学生计算4/5÷3。也要求根据课前提供的五等分长方形纸片先折一折,涂一涂,再计算。

然后进行反馈,并引导思考:

○1平均分成3份,每份是4/5的(1)/(3)? 求一个数的几分之几怎么计算?

○2为什么不选A或B这两种方法?从中说明方法C比A和B相比有什么优点?

此时通过对比和思考,应该说对方法C已经有了较为深刻的认识。

建构主义理论认为:学习不是学生被动接受老师授予的知识,也不是知识的简单积累,它是学习者认知结构的组织和重组,是学生主动建构知识意义的过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/5÷3的求解过程,使学生自觉的在心里进行了比较,也就是主动的开始建构认识,这时的理解是较为深刻的理解。

第三步:实验与验证

1.师:其它这样的分数除法的计算是不是也和刚才两题一样呢?

在理解例题的基础上,抛出一个疑问:其它这样的分数除以整数的计算是不是也能将除数转化为乘以它的倒数呢?从学生的思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证的动机。然后根据课前提供的空白长方形纸条组织学生开展研究,并组织开展同伴间的交流。

现代认知理论认为:感知只有经过一般化的检验,才能上升成为知识。开展实验与验证符合从特殊到一般的需要,而且还是学生主动的、内在的需要,这无论是对理解掌握算法、还是对培养良好的数学思维习惯,都有积极的意义。

2.反馈交流。

归纳:(一般化计算方法)用符号表示: A÷B=A×1/B

观察: (形式上看)什么变了,什么没变?

最后,组织进行反馈,得出最后结论,并引导学生将一般化的计算方法用符号化表示。这里不仅是为了培养学生的符号意识,包括之后的引导学生观察,(形式上看)什么变了,什么没变?其目的在于培养学生的概括能力,促进更好的理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识的客观性及其本质的更为深刻的理解,从而形成科学的态度和严谨的思维。

(三)练习巩固、拓展提高。

1.

这样的图式训练对正确掌握分数除法的`一般化算法是很有效的。因为小学生的思维毕竟还具有很大的直观性,图式的强化将促使学生在理解算法时有一个直观的支撑,这样的理解也就愈深刻。

形式训练。

7/15÷4=7/15×( )

5/16÷6=5/16 1/8

3/10÷5=( ) ( )

2.计算训练。(要求写出过程)

2/3÷4 5/6÷5 3/8÷6 4/9÷7

3.应用:

1将2/3米长的丝带剪成同样长的5段,每段有多长?

2小红3天看了一本书的1/5,照这样计算,看完这本书要多少天?

整个练习的设计突出分数除法计算方法的巩固,同时也安排了应用练习,尤其是第二题,还注意了学生逻辑推理能力的培养。

(四)课堂总结。

总之,本节课始终以‘落实学生主体地位、发挥教师主导作用’为指导思想,不断引导学生进行类比、比较、探究、实验和验证,从特殊到一般,由除法到乘法,促使学生积极主动的构建认识,发展思维,形成有效课堂。

六年级分数除法说课稿【篇3】

这节课内容是在学生学习了分数的意义、初步探索并解决求一个数是另一个数几分之几的实际问题的基础上学习的。理解分数与除法的关系,既是进一步理解分数意义的需要,也是学习把假分数化成整数或带分数以及学习分数与小数互化等知识的基础。

教学目标:

1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;

2.能列式解决求一个数是另一个数的几分之几的实际问题。

3.使学生在探索分数与除法的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

教学重点:理解分数与除法的关系。

教学难点:具体体会每一个商的由来和表示的含义。

教学过程:整个教学过程共安排4个环节完成。

一、复习铺垫。出示情境图:把8块饼平均分给4个小朋友 ,每人可以分得多少块?如何列式,为什么?

二、探索新知:分成以下6个层次完成。

第1层,分析问题,列出算式。我首先把刚才的情境图变为:把3块饼平均分4个小朋友,每个人分得多少块?学生很容易将复习题的解题方法迁移过来,列出算式3 4,老师适时板书出来。

第2层,动手操作,探究结果。引导学生观察算式,发现每人分到的饼不满1块时,可以用分数表示。这个分数是多少呢?接着让学生根据课前准备的圆形卡片,在小组内动手做一做。

第3层,组织交流分法,得出答案。可能会出现两种分法。一种是一块一块地分,每人每次分到1/4块,3个1/4块是3/4块。第2种分法,3块一起分,每人分得3块的1/4,即3/4块。老师根据学生的回答将两种分法用电脑动画逐个演示。并相机完成板书:3 4=3/4.

第4层,自主探究。在此基础上,我提出“把3块饼平均分给5个小朋友,每人分得多少块?"让学生自主探索。并让学生将探索的结果在小组内交流。并在组织交流时适时板书:3 5=3/5.

第5层,归纳总结。这时,我指着板书内容提出问题:观察黑板上的两个等式,你发现分数与除法有什么关系?同时板书课题:分数与除法的关系。在学生充分交流后老师小结:被除数相当于分子,除数相当于分母。然后板书:被除数 除数=被除数/除数。最后,让学生理解并掌握分数与除法关系的字母表达式,并让同学们讨论为什么分母不能为0,让其明白其中的道理,板书:a b=a/b.

第6层,尝试练习。先试做“试一试”的题目。反馈时让学生说说是怎么想的?

接着让学生独立做练一练的两组题。第一题要让学生比较一下每组的上下两题有什么不同,进一步理解分数与除法的关系,第二组继续让学生说说是怎么想的。

三、巩固新知。这一环节共安排5组习题。

1、做练习八的第一题。先让学生在小组里说说,再指名口答。

2、做练习八的第二题。独立填写,集体订正。

3、做练习八的第三题。让部分学生说说是怎么向的。

4、做练习八的第四题。要让学生说出题中的问题有什么不同。

5、做练习八的第五题。让学生联系分数的意义填空,再引导学生根据分数与除法的关系列出算式。

四、全课总结。这节课我们学习了哪些知识,你有什么收获和感想?先让学生说一说,老师在适时补充:这节课我们学习了分数与除法的关系,其实数学上很多知识之间都是有联系的,同学们不但要会做题,更要思考这些知识间的内在联系,这样你就会越来越聪明。

六年级分数除法说课稿【篇4】

一、说教材

我说课的教学内容是《分数与除法的关系》。

本课时内容是在学生学习了第七册分数的初步认识及上一单元数的整除等知识的基础上来学习的,为下面进一步学习分数与小数的互化、分数的大小比较、分数的基本性质及求一个数是另一个数的几分之几等知识打基础。本课时内容,教材安排了例1、例2两个例题,以引导学生发现、归纳出分数与除法的关系,然后安排了5道练习题(可说说各题意图),通过练习使学生能初步地应用这个关系进行相应的除法计算,以及解决简单的实际问题,巩固所学的新知识,并从中培养学生的探究能力。本课时内容是学生进行除法计算中,商从整数向分数拓展的转折点。(说教材的前后联系、地位作用)

本课时的教学目标,我从知识与技能、数学思考、情感态度方面确定了以下三点:

1、通过学生的合作探究活动,引导学生发现归纳出分数与除法的关系,理解并掌握这个关系。

2、能根据分数与除法的关系,进行基本的除法计算,以及解决一些简单的实际应用问题。

3、培养学生的发现归纳的探究能力以及认真仔细的学习习惯。

我认为本课时的教学重点是引导学生发现、掌握分数与除法的关系。

教学难点是理解分数与除法的关系教学准备:多媒体课件一套、学生课堂作业题纸。

二、说教学方法

新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。根据以上分析,我认为本课时的教学以分数的意义、分数单位、等分除法的意义为基点,以直观图(数形结合)为手段,在学生对两个例题的自主探究合作学习中,引导学生发现归纳出分数与除法的关系,然后通过有层次的练习,以及解决简单的实际问题的过程中,进一步巩固对这个关系的掌握,发展学生的计算技能,培养学生的探究能力。

三、说教学过程:

本节课的教学,我设计了以下三个环节。

(一)复习铺垫、引入新课。

可以出示分数,让学生结合生活中的事例说说这个分数表示的意义。这里复习分数的意义、分数单位,主要目的是为下面的探究分数与除法的关系作了知识上铺垫准备。数学学习要让学生利用已有的知识经验,通过自己的探究去学习。本环节的复习可以起到唤起记忆,思维定向的作用。

(二)自主探究、发现关系。

本环节的教学是本节课的重难点所在。课标指出有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本环节的教学

我设计了以下五步来完成。

第一步

设计了一个准备题“把6米长的铁丝平均截成3段,每段长多少米?”要求学生自己列式计算,并说出列式的依据——总米数÷段数=每段米数(总数÷份数=每份数,这个数量关系也是本课中两个例题的列式依据),搭起解题的框架,以实现解法迁移。

第二步

是教学例1(1),通过改题出示例1(1)“把1米长的铁丝平均截成3段,每段长多少米?”,要求学生尝试列式计算,并说出思考过程,引导学生比较上两题的异同,得出除法计算的结果在不能用整数表示的情况下,可以用分数来表示,通过画图使学生1米的3(1)就是3(1)米即1÷3=3(1)(米)。然后追问:如果把1米长的铁丝平均截成7段、10段,每段长多少米?这里使学生认识到1÷m=m(1),初步感受分数与除法的关系。

第三步

再改题出示例1⑵“把2米长的铁丝平均截成3段,每段长多少米?”要求学生尝试列式计算,请学生动手画一画,想一想你可以怎样来说明这个计算结果是正确的,并能让同学确信、理解。这里是本课学生理解上的一个难点。可以应

用数形结合的思想,充分借助线段图,画一画,移一移,比一比,使学生理解2米的3(1),有2个3(1)米,就是3(2)米,即2÷3=3(2)(米)

第四步

是教学例2“把3块蛋糕平均切成4份,每份是多少块?”,可以通过学具折剪,移拼展示,力求直观形象,使学生理解3块的4(1),有3个4(1)块,就是4(3)块,即3÷4=4(3)(块)。

第五步

是引导发现,得出关系。引导学生仔细观察板书,相一想刚才的学习内容,可以组织学生把自己的发现在四人小组内交流、讨论。从而得出并完善分数与除法的关系。

新课标强调有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。从以上设计,分数与除法的关系的得出,体现了学生是学习的主人,教师是数学学习的组织者、引导者与合作者的教学理念。前面两例的教学其实是为发现归纳分数与除法的关系积累表象,准备素材。所以前面两例的教学不要消耗过多的时间,要发挥教师的主导作用对学生的自主探究过程也要适当的调控。发现归纳分数与除法的关系是本节课的重点,可以组织学生讨论,体现多向互动学习的学习方式。

(三)巩固练习、应用拓展。

数学知识的掌握、数学能力素养的培养形成需要通过练习,通过对所学新知的应用,才能内化和掌握。巩固练习的设计要遵循准对性、层次性、开放性、趣味性、综合性等要求。本课的巩固练习我设计了以下三个层次的练习。

第一层次是让学生用分数表示一组除法算式的商。

第二层次是让学生填空。如除法中的被除数相当于分数中的,除数相当于分数中的(),除号相当于分数中的(),()不能为零。()÷()=。这里是直接巩固分数与除法的关系。

第三层次是让学生列式计算,解决简单的实际问题。可以出示例如:

①一个正方形的周长是3分米,它的边长是多少分米?(用分数表示)

②小华15分钟走2千米,他平均每分钟走多少千米?(用分数表示)

③把3米长的铁丝平均截成7段,每段长多少米?(用分数表示)

每段占全长的几分之几?

(要求:比较本题两问的区别,明确第一问是根据“总米数÷段数”得到每段数,即3÷7=7(3)米,所求结果表示一个具体的数量,是带单位名称的;第二问是把全长看作单位“1”,把单位“1”7等份中取1份,即1÷7=7(1),所求结果表示部分与总数的分数关系,是根据分数的意义来思考,结果不带单位名称。通过本题使学生辨析清楚分数表示具体数量、表示份数关系的两种意义。)

以怎样来说明这个计算结果是正确的,并能让同学确信、理解。这里是本课学生理解上的一个难点。可以应用数形结合的思想,充分借助线段图,画一画,移一移,比一比,使学生理解2米的3(1),有2个3(1)米,就是3(2)米,即2÷3=3(2)(米)

六年级分数除法说课稿【篇5】

一、教材分析

各位老师,你们好!今天我说课的内容是:人教版义务教育课程标准实验教科书,六年级上册的第三单元,分数除法的意义和分数除以整数。分数除法的意义及计算方法是本单元的重要内容。是在学生学习了分数乘法和求倒数的基础上进行教学的,是分数除法教学的起始课,为学生以后学习分数四则混合运算和分数除法应用题打下坚实的基础。

二、学情分析

六年级学生在二年级时已经知道了整数除法的意义,在本册知道了分数乘法的意义、计算方法和求一个数的倒数的方法,这些已有的知识为学生探索本课新知打下了坚实的基础。学生在学习分数乘法的过程中,通过折一折、涂一涂等活动探索出了分数乘法的意义和计算方法,学生可以运用同样的方法探索分数除以整数的计算方法。学生对于折纸活动很感兴趣,在“玩”的过程中能够感知分数除以整数的基本算理,可以归纳出分数除以整数的计算方法。

三、教学目标

根据新课标的要求和教材的特点,结合六年级学生的认知能力,本节课我确定如下的教学目标:

1、理解分数除以整数的意义,掌握分数除以整数的计算方法,并能正确计算。培养学生动手能力及发现问题、解决问题的能力。

2、通过富有启发性的问题情景和折一折、图一图等探索性的学习活动,引导学生主动参与,独立思考,合作交流,形成计算技能。

3、在教学中渗透转化的思想,让学生充分感受转化的美妙与魅力。体验其中的成就感,增强学生学习数学的自信心。

根据本节教学内容的特点,结合我班学生的实际情况。我把本节课的教学重点和难点确定为:

四、教学重、难点

重点是理解分数除法的意义和分数除以整数的计算方法;

难点是分数除法一般算法的理解。这是因为要将除以一个数转化为乘以它的倒数,在运算形式上由除法转化为乘法,变化较大,而学生往往由于思维的定势,一时不容易接受。所以本课的关键是如何引导学生在实验和验证中自主体验和感悟。

五、教学流程

为此,我设计了一下的教学环节,并采取了相应的教学方法、指导学生学习。

旧知铺垫—知识迁移—自主探究—巩固提高—完善总结。

六、教学准备

课件、5等份长方形白纸、直尺、彩色笔。

七、说教学流程

(一)旧知铺垫

复习时我安排了两道练习,引发学生记忆的再现,为学生选择原有知识中的有效的信息做好铺垫。

先复习倒数,由同桌两人互相出题,其中一人报数,另一个人说出它的倒数。再完成分数乘法两道题,3个1/4是多少?3/7的1/3是多少?让学生说一说意义和计算方法。

【设计意图】本节课的内容是以倒数和乘法计算为基础的。分数除以整数的计算方法与倒数紧密联系,因此,在引入新课之前,带领学生系统深入地复习倒数和分数乘法的相关知识是很有必要的。

(二)知识迁移

1、复习整数除法的意义

(出示3盒标注100克的水果糖)问:共重多少克?先请学生列出乘法算式,借此改编成两道整数除法应用题,并列出两个除法算式。这时引导学生观察两个除法算式与乘法算式的关系,学生发现除法是乘法的逆运算,同时得出整数除法的意义。已知两个因数的积和其中的一个因数,求另一个因数的运算。

2、引出分数除法的意义

如果以千克作单位又该怎样做呢?先请学生先独立思考,再试着写一写,接着汇报列式。

预设学生回答有两种形式的算式:

(1)整数形式:100×3=300(克)=0.3(千克)

(2)小数形式:100克=0.1千克;0.1×3=0.3(千克)

(3)分数形式:100克=1/10千克;1/10×3=3/10(千克)

【设计意图】这样的处理不仅有利于学生系统建构整个乘法的意义,而且,还能促使学生自然而然的把分数除法意义与整数除法、小数除法意义统一起来。这样一来,接下去的理解就显得水到渠成啦。

3、除法意义对照

进一步引导学生对这三种形式进行观察比较,请学生说一说他的发现,从而理解分数除法的意义与整数、小数除法的意义都相同。并试着用自己的语言小结分数除法的意义。同时板书课题。

4、进一步理解分数除法的意义

完成数学书第28一页的做一做和练习八的第一题。目的是更好的理解分数除法的意义,为后面的学习做好铺垫。

(三)自主探究

1、创设问题情境:没有已知的乘法算式,你还会计算(4/5)÷2这道分数除法吗?

学生两人一组,先独立思考,在互相交流,然后折一折、图一图,动手操作研究问题。

预设学生回答:

学生甲.因为2×(2/5)=4/5,所以(4/5)÷2=2/5

这是受刚才所学除法意义的影响,迁移而来;

学生乙.(4/5)÷2=4÷(2/5)=2/5

大部分学生是竖着对折,将4/5平均分成2份,其中一份是这张纸的2/5,看到4与2的倍数关系,想当然的在计算。

学生丙.(4/5)÷2=(4/5)×(1/2)=2/5

学生将长方形纸横着折,有部分学生能说出用(4/5)×(1/2),就是求4/5的1/2是多少。

2、接着引导学生理解、比较学生乙和学生丙的方法。

师:乙的方法:4/5里面有()个()/(),(4/5)÷2表示平均分成几份,每份有()个()/();(课件演示)丙的方法:把4/5平均分成几份,每份就是4/5的()/(),就是(4/5)×()/()。(课件演示)

【设计意图】通过这个折法的体验,使学生深刻认识到,不管怎么折,只要平均分成两份,每份始终是它的1/2,也就是说始终可以将÷2转化为乘以1/2,再利用课件动画演示,横着平均分,其中的一份占4/5的1/2,就是求出4/5的1/2是多少?根据一个数乘分数的意义就用4/5乘1/2,就可得其中的一份是这张纸的几分之几。然后在黑板上板书计算过程。

第二步:教学4/5÷3

结合上面几种算法,你认为分数除以整数的计算方法可能是怎样的?学生乙和学生丙这两种方法学生都可能选择。我们进一步往下研究。这时并不急于统一思想,转而问学生把一张纸的4/5平均分成3份,每份是这张纸的几分之几?要求先折一折,涂一涂,再计算

当再次折纸时,学生采用自己刚才的算法计算4/5÷3的商,有的学生可能会发现自己刚才的的算法不适合本题。他们就会倾向于感知“把一张长方形纸的4/5平均分成3份,图出其中的一份,就是图出4/5的1/3”。当学生确定了这种观点后,离分数除以整数的计算方法就又进了一步。

然后进行反馈,并引导思考:

(1)平均分成3份,每份是4/5的1/3?求一个数的几分之几又应该怎么计算呢?

(2)为什么不选学生甲或学生乙这两种方法?通过验证说明丙比甲和乙方法更实用。

此时通过对比和思考,应该说对学生丙的方法已经有了较为深刻的认识。

【设计意图】苏霍姆林斯基曾说过:“引导学生能借助已有的经验去获取知识,这是最高的教学技巧之所在。”学习不是学生被动接受老师授予的知识,也不是知识的简单积累,它是学习者认知结构的组织和重组,是学生主动建构知识意义的过程。一开始初步比较哪种方法好,学生此时并没有什么感觉;而体验4/5÷3的求解过程,使学生自觉的在心里进行了比较,也就是主动的开始建构认识,这时加深了学生对分数除以整数意义的理解。

第三步:实验与验证

1.这时问学生,其它这样的分数除法的计算是不是也和刚才两题一样呢?请学生用4/5分别除以4或5等几个整数,来进一步实验和验证分数除以整数的计算方法。然后统一看法后,一起来总结分数除以整数的计算方法

【设计意图】在理解例题的基础上,抛出一个疑问:其它这样的分数除以整数的计算是不是也能将除数转化为乘以它的倒数呢?从学生的思维历程看,这真是一波刚平,一波又起。促使学生积极思考,并产生要进行实验和验证的动机。

2.反馈交流。

归纳:一般化计算方法用符号表示:A÷B=A×(1/B)(B不为0)

引导学生观察:形式上看什么变了,什么没变?

【设计意图】这里不仅是为了培养学生的符号意识,目的在于培养学生的概括能力,促进更好的理解。现代教学论认为:数学课在经历了感性交流和实践探索以后,应该在数学层面上形成对知识的客观性及其本质的更为深刻的理解,从而形成科学的态度和严谨的思维。

(四)巩固提高

1、形式训练

(7/15)÷4=(7/15)×()

(5/16)÷6=(5/16)(1/6)

(3/10)÷5=()()

这样的图式训练对正确掌握分数除法的一般化算法是很有效的。因为小学生的思维毕竟还具有很大的直观性,图式的强化将促使学生在理解算法时有一个直观的支撑,这样的理解也就愈深刻。

2、计算训练。(要求写出过程)

(2/3)÷4(5/6)÷5(3/8)÷6(4/9)÷7

3、应用:

(1)将2/3米长的丝带剪成同样长的5段,每段有多长?

(2)小红3天看了一本书的1/5,照这样计算,看完这本书要多少天?

整个练习的设计突出分数除法计算方法的巩固,同时也安排了应用练习,尤其是第二题,还注意了学生逻辑推理能力的培养。

(五)完善总结

总之,本节课始终以‘落实学生主体地位、发挥教师主导作用’为指导思想,不断引导学生进行类比、比较、探究、实验和验证,从特殊到一般,由除法到乘法,促使学生积极主动的构建认识,发展思维,形成有效课堂。

以上教学程序的设计遵循学生的认知规律和年龄特点,对计算进行探究式教学,学生是学习的主人,让学生自主探究,交流,让学生体验成功的喜悦。学生在教师的引导中操作、思考、验证解决问题,从而使学生获得了知识,发展了智力,培养了积极的学习情感,使课堂焕发了活力。

板书设计

我设计的板书,目的是突出教学的重点和难点,让学生对新知识的生成一目了然,加深印象。

分数除法的意义和分数除以整数

例1每盒水果糖重100g,3盒重多少g?(kg)?

100×3=300(g)0。1× 3=0。3(kg)(1/10)×3=3/10(kg)

300÷3=100(g)0。3÷ 3=0。1(kg)(3/10)÷3=1/10(kg)

300÷100=3(盒)0。3 ÷0。1=3(盒)(3/10)÷(1/10)=3(盒)

分数除法的意义与整数除法和小数除法的意义相同:都是已知两个因数的积与其中的一个因数,求另一个因数的运算。

例2把一张纸的4/5平均分成2份,每份是这张纸的几分之几?

方法A。2×2/5=4/5,所以(4/5)÷2=2/5

方法B.(4/5)÷2= 4÷(2/5)= 2/5

方法C.(4/5)÷2=(4/5)×(1/2)= 2/5

分数除以整数(0除外),等于分数乘这个整数的倒数。

热门教案

学诗词

学名句