初中数学数据的波动优秀教案(初中数学数据的波动程度流程图)

这次小编在这里给大家整理了初中数学数据的波动优秀教案(共含16篇),供大家阅读参考。

篇1:初中数学数据的波动优秀教案

初中数学数据的波动优秀教案

●教学目标

(一)教学知识点

1.掌握极差、方差、标准差的概念.

2.明白极差、方差、标准差是反映一组数据稳定性大小的.

3.用计算器(或计算机)计算一 组数据的标准差与方差.

(二)能力训练要求

1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力.

2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力.

(三)情感与价值观要求

1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界.

2.通过小组活动,培养学生的合作意识和能力.

●教学重点

1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量.

2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .

●教学难点

理解方差、标准差的概念,会求一组数据的方差、标准差.

●教学方法

启发引导法

●教学过程

Ⅰ.创设现实问题情景,引入新课

[师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的信息作出恰当的选择与判断.

当我们为加入“WTO”而欣喜若狂的时刻,为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口 一批规格为75 g的鸡腿.现有2个厂家提供货源.

[生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的平均质量分别为75 g.

(2)设甲、乙两厂被抽取的鸡腿的平均质量 甲, 乙,根据给出的数据,得

甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

(3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).

(4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的`鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小.

[师]很好.在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况.

从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小.

这节课我们就来学习关于数据的离散程度的几个量.

Ⅱ.讲授新课

[师]在上面几个问题中,你认为哪一个数值是反映数据的离散程度的一个量呢?

[生]我认为最大值与最小值的差是反映数据离 散程度的一个量.

[师]很正确.我们把一组数据中最大数据与 最小数据的差叫极差.而极差是刻画数据离散程度的一个统计量.

[生](1)丙厂这20只鸡腿质量的平均数:

丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

极差为:79-72=7(g)

[生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距.

甲厂20只鸡 腿的质量与相应的平均数的差距为:

(75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

丙厂20只鸡腿的质量与相应的平均数的差距为:

(75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小.

数学上,数据的离散程度还可以用方差或标准差来刻画.

其中方差是各个数据与平均数之差的平方的平均数,即

s2= [(x1- )2+(x2- )2+…+(xn- )2]

其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根.

[生]为什么方差概念中要除以数据个数呢?

[师]是为了消除数据个数的印象.

由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.

[生]极差还比较容易算出.而方差、标准差算起来就麻烦多了.

[师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差.

同学们可在自己的计算器上探 索计算标准差的具体操作

计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差.

[生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

因为s甲2<s丙2.

所以根据计算的结果,我认为甲厂的产品更符合要求.

Ⅲ.随堂练习

Ⅳ.课时小结

这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别.

Ⅴ.课后作业

Ⅵ.活动与探究

甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:

(1)请你填上表中乙学生的相关数据;

(2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平.

篇2:初中数学说课稿《数据的波动》

初中数学说课稿《数据的波动》

各位评委、各位老师、大家上午好!

今天我说课的内容是人教版八年级下册第五章第4节《数据的波动》(第一课时),现在我就教材、教法、学法、教学流序、板书五个方面进行说明。还恳请在座的各位专家、同仁批评、指正。

一、说教材:

1.本节课的重要内容:探究数据的分离程度及了解“极差”“方差”“尺度差”三个量度及其现实意义。重要是运用详细的生存情境,让门生感觉到当两组数据的 “均匀程度”相近时,而现实题目中详细意义却千差万别,因而必须研究数据的颠簸状态,阐发数据的差别,渐渐抽象出描画数据分离程度的“极差”“方差”“尺度差”的三个量度,并掌握使用盘算器求方差和尺度差。

2.职位地方作用:纵观本章的课本摆设体系,以数据“网络—表现—处置处罚—评判”的次序睁开。数据的颠簸是对一组数据变革的趋向举行评判,通过效果评判形成决议筹划的讲授,是数据处明白决现真相景题目必不行少的重要关键,是本章学习的终纵目标和落脚点。通过本节的学习为处置处罚种种较为庞大的现真相境的数据题目打下底子。

3.教学目标:依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:(1)知识目标:a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。b、会动手和利用计算器计算“方差”“标准差”。

(2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。

(3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。

4.重点与难点:重点:理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。

难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

二、说教法:

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:

1.引导发现法,

数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。

2.比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的'刻画一组数据的离散程度,从而引入新的量度。

3.练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。

4.选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。

三、说学法:

教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:

(1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。(4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。

四、说教学程序:

1.创设情境,导入新课:<1>、展示情景(链接奥运会中韩运动员设计的情景)。<2>、学生观察阅读分析(描述运动员射箭的平均水平)。<3>、分析思考寻求解决方案(观察表格数据求平均数)。<4>、通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出课题——数据的波动)

篇3:初中数学优质说课稿:《数据的波动》

初中数学优质说课稿:《数据的波动》

各位评委、各位老师大家好!今天我说课的课题是八年级下册第五章第4节《数据的波动》(第一课时)。现我就教材、教法、学法、教学流序、板书五个方面进行说明。(恳请在座的各位专家、同仁批评指正。)

一、说教材:

1、本节课的主要内容:

探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差和标准差。

2、地位作用:

纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的和落脚点。通过本节的'学习为处理各种较为复杂的现实情境的数据问题打下基础。

3、教学目标:

依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:

(1)知识目标:

a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。

b、会动手和利用计算器计算“方差”“标准差”。

(2)过程与方法目标:

a、经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。

b、通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)

c、突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。

d、在具体实例中体会样本估计总体的思想。

(3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。

4、重点与难点:重点:

理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。

难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:

1、引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。

2、比较法。在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。

3、练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。

4、选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。

三、说学法:

教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:

(1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。

(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。

(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。

(4)引导自学法:学生自学掌握计数器计算方差和标准差的操作功能。

四、说教学程序:

1、创设情境,导入新课:

<1>、展示情景(链接奥运会中韩运动员设计的情景)。

<2>、学生观察阅读分析(描述运动员射箭的平均水平)。

<3>、分析思考寻求解决方案(观察表格数据求平均数)。

<4>、通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出本课课题——数据的波动)

2、新课:

(由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)

<1>、概念介绍:

a、数据的离散程度(是相对于平均水平的偏离情况);

b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);

c、练习巩固计算极差;

<2>、展示丙运动员加入的情景,让学生在乙丙两人中挑选,计算中发现平均数极差相同,让学生产生新的困惑。引入本节的第二个知识点——方差和标准差。

<3>、引进概念

a、给出“标准差”的概念(方差的算术平方根)。

b、学生相互交流学习操作计算器计算方差和标准差。

<4>、引导学生理解一组数据的极差、方差、标准差越小,这组数据就越稳定的内涵(通过数据与图比较说明,使抽象概念具体化)。

<5>、计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。

3、巩固练习:

<1>、样本4、7、5、2、3、8、5、6的平均数是______,众数是_____,极差是____,方差是________,标准差是______。(通过这组练习强化概念和计算方法的运用)

<2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)

4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。

5、布置作业:P—199(1)(2)(3—选作题):

五、说板书设计

板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于比较和记忆,有利于提高教学效果。

篇4:八年级数学《数据的波动》教学反思

本学期在滕老师的带领下,我参加了数学生活情境化教学的教研工作,在学习了相关的理论知识之后,本人精心组织了八下第五章《数据的波动》一节的教学活动,现就本节教学活动做如下反思:

所谓数学生活情境教学法就是教师以教材及生活中的数学素材为基本内容,通过计算机的辅助作用,为学生创建或模拟一个探索数学知识的“情境”,使学生的学习过程成为“数学家从已知到未知的探索过程”.让学生主动地去探索数学知识,从而激发学生探索数学奥秘的情趣,培养探索能力和探索方法,主动、全面地获得数学知识的方法。要求学习内容生活化,教学过程情境化。针对本节课的特点,我采用了“创设问题情境——启发引导学生对比观察讨论—发现问题—总结归纳——知识应用”为主线的教学模式,观察、分析、讨论、启发引导相结合的方式展开教学。充分借助于教材中三个厂家的统计图,组织引导学生通过观察、分析、讨论、交流获得知识信息,在反馈与交流中感受到知识的不够用,从而使学生的思维始终处于积极的、主动探究的状态。

本节课在充分利用了教材给定的内容之外,我还根据学生的兴趣和实际,引入了本次期中检测成绩来引导学生理解一组数据方差的意义和方差的算法。班上在前十名中正好有总分相同的两学生的成绩,我便让学生思考,这两个学生的总分相同,那么他的学习状况是不是就一定是一样的呢?电脑排名总有个先后顺序,那电脑又是根据什么来排名的呢?我们又有什么办法来区别这两名同学成绩的异同呢?从而激发学生的求知欲。紧接着便引导学生分别计算出这两名同学成绩的方差来,发现他们的成绩相对平均分的波动状况不同,其中一位同学成绩相对均衡一些。这样既让学生加深了对方差含意的理解,同时也掌握了一组数据方差的算法。在这里我还有意识的强调了学生要对各门功课都要有相同的重视程度,力求全面发展,尽量不要偏科,学生通过自己的探索也深知全面发展的重要性了。

本节课在各环节的把握和时间的撑控方面比较成功,但在学生动手操作探索计算方面还有很大的提升空间,在计算两同学成绩方差的时候应该更加充分的放手让学生去算,还可以让计算能力较强的同学演板就更好了。

篇5:八年级数学《数据的波动》教学反思

1)首先应使学生知道为什么要学习方差和方差公式,目的不明确学生很难对本节课内容产生兴趣和求知欲望,教师在授课过程中可以多举几个生活中的小例子,不如选择仪仗队队员、选择运动员、选择质量稳定的电器等。学生从中可以体会到生活中为了更好的做出选择判断经常要去了解一组数据的波动程度,仅仅知道平均数是不够的。

2)波动性可以通过什么方式表现出来?第一环节中点明了为什么去了解数据的波动性,第二环节则主要使学生知道描述数据,波动性的方法。可以画折线图方法来反映这种波动大小,可是当波动大小区别不大时,仅用画折线图方法去描述恐怕不会准确,这自然希望可以出现一种数量来描述数据波动大小,这就引出方差产生的必要性。

3)直接对方差公式作分析和解释,波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。所以方差公式是能够反映一组数据的波动大小的一个统计量,教师也可以根据学生程度和课堂时间决定是否介绍平均差等可以反映数据波动大小的其他统计量。

篇6:八年级数学《数据的波动》教学反思

《初中数学课程标准》中提出,学生的数学学习应当是一个生动、活泼,富有个性的过程。明确指出学生的数学学习内容应当是有意义的、富有挑战性的,要有利于学生主动地进行观察、实验、猜想、验证、推理与交流等数学活动。倡导动手实践、自主探索、与合作交流等学习数学的重要方式。

1.教材背景:本节课,教材一开始结合温差及女子排球比赛中两队参赛选手年龄波动情况的问题引入的。创设了一个很好的问题情境和统计知识的背景.当学生通过讨论发现用已有的数学知识无法很好解决这个问题时,就会思考该如何从其他角度入手解决问题,这对培养学生的创新意识是十分有好处的.

2.学生背景分析:学生已经学习了描述一组数据的集中趋势的特征数(平均数、众数、中位数),已经会求平均数、众数、中位数,对它们可以表示数据的集中趋势有所体会。对统计含义有了一定了解。极差和方差是描述数据离散程度的特征数,也就是数据的波动大小。研究一组数据,通常研究它的集中趋势和离散程度。

二.教学实施过程:

本节课先是从实际问题出发——产生极差、方差的必要性——方差公式的探索和推导——方差公式的使用——解决实际问题——巩固练习——总结反思,这样的主线设计的。在探索方差概念之前,创设问题情境,回忆相关概念,明确新的学习方向,提出方差产生的必要性。在探索过程中,辅以学生小组活动、探索实践等活动,始终以学生的学习过程为主体,在学生独立思考和合作交流的基础上有针对性地引导,使学生在学习活动中发现、获得知识,体会数学知识在实际生活中的广泛应用.

在解决引例问题时,通过对数据的分析,发现以前学过的.统计知识不能解决新问题,引出矛盾。这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花。本节课的重点是方差公式的推导。当平均水平相同时,就要分析数据的稳定性。而画折线图是学生比较熟悉的能直观的反映数据波动大小的方法,因此在这个环节设计了让学生动手画图实践,锻炼了学生画图的能力,从中体会画折线图是描述数据波动大小的一种方法,进而引出如何用数值表示一组数据的波动。层层设疑,步步推进,教师和学生一起解决问题,确定知识点,使学生在一次次的解决问题中体会方差概念的发生发展形成过程。

三.课后体会:

在教学处理中层层设疑,步步推进的设置问题。引导学生探索知识的形成过程比较成功,给学生搭建了比较广阔的思维平台。在推导方差公式时,将问题细化,设置了两个问题:

1.用数值怎样表示一次成绩偏离平均数的程度?

2.怎样表示10次成绩偏离平均数的程度?

使学生的思维活动得到了充分的展示。另外利用多媒体解决大量的计算问题,为推导公式,解决重点赢得了时间,感觉效果也不错。在引例选配上采用的是课本上的例子,不太贴合学生实际。

《数据的波动》是一堂以情景探究为主线展开的合作探究课,通过这节课的教学,让我深刻的体会到只要我们充分相信学生,给学生以最大的自主探索空间,让学生经历数学知识的探究过程,这样既能让学生自主获取数学知识与技能,而且还能让学生达到对知识的深层次理解,更主要的是能让学生在探究过程中学习科学研究的方法,备课前我通读本章教材,再来看本课时的内容,对本章有个大体的把握。我发现本节课情境活泼,数据不复杂,关键就看如何处理情境,抓住学生的认知冲突,让学生乐于参与课堂的活动。于是我对情景做了处理,不像书上那种直接呈现所有问题,而是突出新旧知识的联系,激发学生的学习热情。事实证明,这一处理是成功的,课堂上学生更集中思考问题了,有学生提出了比较有见解的想法。

当然,具体操作中因本课内容较多,还是要注意控制好活动的时间,否则活动时间会比较仓促,还有,在课后还是要落实不用计算器求方差。

教学中为了照顾全体学生,缩小两极差异,采用分步提问的方法,给所有的学生提供发展的机会,让不同层次的学生在学习中都得到不同程度的发展。从而增强学生的学习积极性,培养学生的探索精神和创新思维。

篇7:初中数学优秀教案精选

初中数学正弦和余弦教案设计

一、素质教育目标

(一)知识教学点

使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.

(二)能力训练点

逐步培养学生会观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.

二、教学重点、难点

1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.

2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.

三、教学步骤

(一)明确目标

1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?

2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?

3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?

4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?

前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.

通过四个例子引出课题.

(二)整体感知

1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.

学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.

2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?

这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.

(三)重点、难点的学习与目标完成过程

1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.

2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:

若一组直角三角形有一个锐角相等,可以把其

顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的对边、邻边与斜边的比值,是一个固定值.

通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.

而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.

练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.

(四)总结与扩展

1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.

教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.

2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.

四、布置作业

本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.

初中数学优秀有理数的乘法教案

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

教学设计示例

(第一课时)

教学目标

1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

2.通过运算,培养学生的运算能力;

3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

教学重点和难点

重点:依据法则,熟练进行运算;

难点:有理数乘法法则的理解.

课堂教学过程 设计

一、从学生原有认知结构提出问题

1.计算(-2)+(-2)+(-2).

2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

二、师生共同研究有理数乘法法则

问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

解:3×2=6(厘米) ①

答:上升了6厘米.

问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

解:-3×2=-6(厘米) ②

答:上升-6厘米(即下降6厘米).

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数.

这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)

把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

此外,(-3)×0=0.

综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0.

四、小结

今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”.

五、作业

初中数学角平分线的性质教案范文

(一)创设情境 导入新课

不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?

如果前面活动中的纸片换成木板、钢板等没法折的角,又该怎么办呢?

设计目的:能聚拢学生的思维为新课的开展创造了良好的教学氛围。

(二)合作交流 探究新知

(活动一)探究角平分仪的原理。具体过程如下:

播放奥巴马访问我国的录像资料------引出雨伞-----观察它的截面图,使学生认清其 中的边角关系-----引出角平分线;并且运用几何画板对伞的开合进行动态演示,让学生直观感受伞面形成的角与主杆的关系-----让学生设计制作角平分仪;并利用以前所学的知识寻找理论上的依据,说明这个仪器的制作原理。

设计目的:用生活中的实例感知。以最近大事作引入点,以最常见的事物为载体,让学生感受到生活中处处都有数学,认识到数学的价值。其中设计制作角平分仪,可培养学生的创造力和成就感以及学习数学的兴趣。使学生很轻松的完成活动二。

(活动二)通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.

分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性。

讨论结果展示: 教师根据学生的叙述,利用多媒体课件演示作已知角的平分线的方法:

已知:∠AO B.

求作:∠AOB的平分线.

作法:

(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.

(2)分别以M、N为圆心,大于1/2MN的长为半径作弧.两弧在∠AOB内部交于点C.

(3)作射线OC,射线OC即为所求.

设计目的:使学生能更直观地理解画法,提高学习数学的兴趣。

议一议:

1.在上面作法的第二步中,去掉“大于 MN的长”这个条件行吗?

2.第二步中所作的两弧交点一定在∠AOB的内部吗?

设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯。

学生讨论结果总结:

1.去掉“大于 MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.

2.若分别以M、N为圆心,大于 MN的长为半径画两弧,两弧的交点可能在∠AOB的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.

3.角的平分线是一条射线.它不是线段,也不是直线,所以第二步中的两个限制缺一不可.

4.这种作法的可行性可以通过全等三角形来证明.

(活动三)探究角平分线的性质

思考:已知一角及其角平分线添加辅助线构成全等三角形;构成全等的直角三角形。这样的三角形有多少对?

这样设计的目的是加深对全等的认识。

篇8:初中数学优秀教案

2.7有理数的加减混合运算

一、教材内容及设置依据

【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

二、教材的地位和作用

本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,

特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了

类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

三、对重点、难点的处理

【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型 2、实际应用型 3、方法多变型 4、知识拓展型等。

【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

四、关于教学方法的选用

根据本节课的内容和学生的实际水平,本节课可采用的方法:

1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的.情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

五、关于学法的指导

“授人以鱼,不如授人以渔”,在教o学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

六、课时安排:1课时

教学程序:

一、复习铺垫:

首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

1、45+(-23) 2、9-(-5)

3、-28-(-37)4、(-13 )+0

5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

从四排学生中个推选一名学生代表板演6、7、8、题。

通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

二、新知探索:

1、出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作

上升4.5千米 +4.5千米

下降3.2千米 -3.2千米

上升1.1千米 +1.1千米

下降1.4千米 -1.4千米

此时飞机比起飞点高了多少米?

让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

=1.3+1.1+(-1.4) =1.3+1.1-1.4

=2.4+(-1.4) =2.4-1.4

=1千米 =1千米

教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学

篇9:初中数学优秀教案

《平移》教学设计说明

湖南广益实验中学李智敏

一、教学内容

义务教育课程标准实验教科书教科书(人教版)七年级下册第五章相交线与平行线,

5.4平移

二、教学目标

知识与技能目标:

掌握平移的概念,发现并归纳平移的性质,学会利用平移绘制某些特殊的图案.

过程与方法目标:

经历操作、探究、归纳和总结平移性质的过程,感受数学知识的发生和发展,培养学生的抽象概括能力;体会从数学的角度理解问题,提高综合运用所学知识和技能解决问题的水平.

情感、态度与价值观目标:

通过丰富多彩的活动,让学生感受数学充满了探索性与创造性,激发学生的探究热情,并培养学生良好的团队合作意识和创新精神.

三、教学重点、难点

重点:学习习近平移的有关定义及平移的性质.

难点:1、对平移的两要素的理解;2、如何运用平移的性质解决问题.

四、学情分析

对于理解掌握平移的概念及性质,学生要对生活中的平移现象有一些感性的认识,同时必须具有线段相等及平行线的判定等知识储备.七年级的孩子正处于思维活跃,模仿能力强,对新知事物满怀探求欲望的阶段,同时他们也具备了一定的学习能力,在老师的指导下,能针对某一问题展开讨论并归纳总结.

五、教学过程设计:

一、创设情景 感知平移

活动一 观看:李老师的生活片段(视频)

片段一 开窗户

片段二 开抽屉

片段三 开车

片段四 乘坐电梯

看完后,我将引导学生仔细分析从中抽象出的平面图形的变换,提出问题:“在刚才的过程中,图形是怎么移动的呢?”

通过教师的引导,学生不难得出:“图形是沿着一条直线移动的”.

【设计意图】

1.以老师的生活片段作为引入,可以在最短时间内激发学生的兴趣,引起学生的高度注意力,进入情景,感受生活中的平移.

2. 渗透将实际问题转化为数学问题的思想.

二、动手操作 探究平移

活动二 观看下列美丽的图案,并回答问题.

(1)这些图形有什么共同特点?

(2)能否根据其中一部分绘制整个图案?

在老师用动画演示的启发下,经过同学们的热烈讨论,大家将达成共识:

“可以将其中的一部分沿一条直线移动,得出若干个形状、大小完全相同的图形,组合成图案”.

活动三 指导学生用平移的方法绘制图案

请大家试试看!在一张白纸上划一条直线,将手中的硬纸板图形沿着这条直线移动,并把每一次移动后的图形画下来!

我先在黑板上演示,然后学生动手作图,完成后用实物投影仪展示部分同学的作品,并告诉学生:“我们刚才做的就是将图形进行平移”.

【设计意图】

让学生感受到通过平移可以创造生活中的美,并进一步加深对平移的印象:

“一个图形的整体沿一条直线移动”.

三、合作交流 学习习近平移

1.平移的定义: 将一个图形沿某一直线方向移动一定的距离,图形的这种移动叫做平移变换,简称平移

.

接着我将引导学生关注定义中包含平移的两要素:方向和距离.

对应点的定义:

新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.

在教师的引导下,通过观察多媒体再一次演示平移,学生很容易得出平移的第一条性质:

(1)平移不改变图形的形状和大小,只改变图形的位置.

接着,我要求学生观察课本P28图中A、B、C点与它们的对应点的连线,并提问:“这些线段有怎样的数量关系和位置关系呢?”

在本节课之前,学生已经掌握了对线段大小的比较和平行线的判定的方法.在这里他们可以使用刻度尺、量角器、圆规等工具,通过度量线段、画截线和比较角的大小等方法,探究出平移的第二条性质:

(2)连接对应点的线段平行且相等.

【设计意图】

在了解平移定义的基础上,通过观察猜想、动手操作、合作交流,让学生自主探讨出平移的性质,既培养了学生的探索精神和协作意识,又有利于学生对新知识的理解和掌握.

四、师生互动 应用平移

1、请大家举出生活中平移的现象

【设计意图】

让学生在寻找身边的平移的过程中,进一步认识到“数学来源于生活”,激发他们学好数学,将来更好地让“数学服务于生活”.

2、例题1.

(1)平移改变的是图形的( )

B

A.位置B.大小 C.形状 D.位置、大小和形状

(2)在平移变换中,连接对应点的线段( )

A .平行不相等 B. 相等不平C.平行且相等 D. 既不平行,又不相等

(3)经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是( )

A. 不同的点移动的距离不同 B. 既可能相同也可能不同

C. 不同的点移动的距离相同 D. 无法确定

【设计意图】

为了学生加深对平移性质的理解,突破了重、难点.

例题2.下列变换中可能属于平移的有哪些?

C A B

【设计意图】 D E

强调平移“是图形沿一条直线运动”,让学生意识到“不符合平移性质的不是平移”,突出了重点,突破了难点.

3、练习:

(1)下图中,每个方格的边长为一个单位长度,左边的小船是右边的小船向平移 单位长度后得到的;

(2)请找出A、B、C的对应点A′、B′、C′;

(3)请找出与线段AA′相等且平行的两条线段,它们的长度是多少?

【设计意图】

练习题的设计,是为了巩固对平移两要素与性质的理解和掌握,实现重、难点的落实,

并为下一步“平移作图和用坐标表示平移”的学习作好铺垫.

五、小结拓展回味平移

1. 欣赏与回味(一)

用同样的基本图形绘制的图案,其效果为什么会有这么大的差异呢?”

【设计意图】

通过对图形欣赏和对比,让学生体会到:用同样一个基本图形,如果平移的方向不同或平移的距离不一样,将会产生出不同的视觉效果,从而加深对平移的两要素的理解.

欣赏与回味(二)

【设计意图】

通过观察多媒体绘制这幅图片的过程,让学生感受到用一个基本图形通过不同的平移可以构造出生活中的美,激发学生运用平移设计图案的兴趣.

2. 请大家谈谈这节课的收获!

――平移的定义―平移的两要素

――平移的性质

篇10:初中数学优秀教案

教学目标

(一)教学知识点

1.利用方程解决实际问题.

2.训练用配方法解题的技能.

(二)能力训练要求

1.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型,增强学生的数学应用意识和能力.

2.能根据具体问题的实际意义检验结果的合理性.

3.进一步训练利用配方法解题的技能.

通过学生创设解决问题的方案,来培养其数学的应用意识和能力,进而拓宽他们的思维空间,来激发其学习的主动积极性.

教学重点

利用方程解决实际问题

教学难点

对于开放性问题的解决,即如何设计方案

教学方法

分组讨论法

教具准备

投影片二张

第一张:练习(记作投影片2.2.3 A)

第二张:实际问题(记作投影片2.2.3 B)

教学过程

Ⅰ.巧设情景问题,引入新课

[师]通过上两节课的研究,我们会用配方法来解数字系数的一元二次方程.下面我们通过练习来复习巩固一元二次方程的解法.(出示投影片2.2.3 A)

用配方法解下列一元二次方程:

(1)x2+6x+8=0;

(2)x2-8x+15=0;

(3)x2-3x-7=0;

(4)3x2-8x+4=0;

(5)6x2-11x-10=0;

(6)2x2+21x-11=0.

[师]我们分组来做,第一、三、五组的同学做方程(1)、(3)、(5),第二、四、六组的同学做方程(2)、

(4)、(6).

[师]各组做完了没有?

[生齐声]做完了.

[师]好,我们来交叉改一下,看看哪位同学批改得仔细,哪位同学的方程解得全对.

[生甲]我改的是××同学的,他做的是方程(1)、(3)、(5),方程(1)解对了,答案是x1=-2,x2=-4.解方程(3)时,在配方的时候,他配错了,即

x-3x=7,

x2-3x+32=7+32 应为(-23

2)2.

[师]很好,这里一次项-3x的系数-3是奇数,所以应在方程两边各加上(-3)的一半的平方,那方程(3)的正确答案是多少呢?

[生乙]方程(3)的解为x1=

[师]好,继续. 3?237,x2?3?237.

[生丙]方程(5)的二次项系数不为1,所以首先应把方程化为二次项系数是1的形式,然后再应用配方进行求解.××同学解的对,其解为x1=52,x2=-32.

[生丁]××同学做的是方程(2)、(4)、(6).他解的完全正确,即

方程(2)的解:x1=5,x2=3,

方程(4)的解:x1=2,x2=

方程(6)的解:xl=32, 12,x2=-11.

[师]利用配方法求解方程时,一定要注意:

①方程的二次项系数不为1时,首先应把它化为二次项系数是1的形式,这是利用配方法求解方程的前提.

②配方法中方程的两边都加上一次项系数一半的平方的前提是方程的二次项系数为1.

另外,大家在利用配方法求解方程时,要有一定的技能.这就需要大家不仅要多练,而且还要动脑.尤其是在解决实际问题中.

这节课我们就来解决一个实际问题.

Ⅱ.讲授新课

[师]看大屏幕.(出示投影片2.2.3B)在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半,你能给出设计方案吗?

[师]大家仔细看题,弄清题意后,分组进行讨论,设计具体方案,并说说你的想法.

[生甲]我们组

的设计方案如右图

所示,其中花园四

周是小路,它们的

宽度都相等.

这样设计既美观又大方,通过列方程、解方程,可以得到小路的宽度为2 m或12 m.

[师]噢,同学们来想一想,甲组的设计符合要求吗?如果符合,请说明是如何列方程,又如何求解方程的;如果不符合,请说明理由.

[生乙]甲组的设计符合要求.

我们可以假设小路的宽度为x m,则根据题意,可得方程 (16-2x)(12-2x)= 1

2×16×12,

也就是x2-14x-24=0.

然后利用配方法来求解这个方程,即

x-14x=-24,

x2-14x+72=-24+72,

(x-7)=25,

x-7=±5,

即x-7=5,x-7=-5.

∴x1=12.x2=2.

因此,小路的宽度为2 m或12 m.

由以上所述知:甲组的设计方案符合要求.

[生丙]不对,因为荒地的宽度是12 m,所以小路的宽度绝对不能为12 m.因此甲组设计的方案不太准确,应更正为:花园四周的小路的宽度只能是2 m.

[师]大家来作判断,谁说的合乎实际?

[生齐声]丙同学说得有理.

[师]好,一般地来说:在解一元一次方程时,只要题目、方程及解法正确,那么得出的根便是所列方程的根,一般也就是所解应用题的解,而一元二次方程有两个根,这些根虽然满足所列的一元二次方程,但未必符合实际问题.因此,解完一元二次方程之后,不要急于下结论,而要按题意来检验这些根是不是实际问题的解.这一点,丙同学做得很好,大家要学习他从多方面考虑问题.接下来,我们来看其他组设计的方案.

[生丁]我们组

的设计方案如右图.

我们是以矩形

的四个顶点为圆心,以约5.5 m长为半径画了四个相同的扇形,则矩形除四个相同的扇形以外的地方就可作为花园的场地.

因为四个相同的扇形拼凑在一起正好是一个圆,即四个相同扇形的面积之和恰为一个圆的面积,假设其半径为x m,根据题意,可得

πx2=22

1

2×12×16.

解得x=±96

?≈±5.5.

因为半径为正数,所以x=-5.5应舍去.因此,由以上所述可知,我们组设计的方案符合要求.

[生戊]由丁同

学组的启发,我又

设计了一个方案,

如右图.

以矩形的对角

线的交点为圆心,以5.5 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地.

[生己]老师,我也设计了一个方案,图形与戊同学的一样,他是把圆作为花园的场地,而我是把圆以外的荒地作为花园的场地,圆内以备盖房子.

[师]同学们设计的方案都很好,并能触类旁通,真棒.其他组怎么样?

[生庚]我们组

设计的方案如右图.

顺次连结矩形

各边的中点,所

得到的四边形即

是作为花园的场

地.

因为矩形的四个顶点处的直角三角形都全等,每个直角三角形的面积是24 m2(即1

2×6×8),所以四

个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半.因此这个设计方案也符合要求.

[生辛]我们组设计的方案如下图.

图中的阴影部分可作为建花园的场所.

因为阴影部分的面积为96 m,正好是矩形面积的一半,所以这个设计也符合要求.

[生丑]我们组

设计的方案如右图.

图中的阴影部

分可作为建花园的

场地.

经计算,它符合要求.

[生癸]我们组的设计方案如下图.

2

图中的阴影部分是作为建花园的场地.

[师]噢,同学们能帮癸组求出图中的x吗?

[生]能,根据题意,可得方程

2×1

2 (16-x)(12-x)

=1

2

2×16×12, 即x-28x+96=0,

x2-28x=-96,

x2-28x+142=-96+142,

(x-14)2=100,

x-14=±10.

∴x1=24,x2=4.

因为矩形的长为16 m,所以x1=24不符合题意.因此图中的x只能为4 m.

[师]同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案.

接下来,我们再来看一个设计方案.

Ⅲ.课堂练习

(一)课本P55随堂练习1

1.小颖的设计方案如图所示,你能帮助她求出图中的x吗

?

解:根据题意,得 (16-x)(12-x)=

212×16×12, 即x-28x+96=0.

解这个方程,得

x1=4,x2=24(舍去).

所以x=4.

(二)看课本P53~P54,然后小结.

Ⅳ.课时小结

本节课我们通过列方程解决实际问题,进一步了解了一元二次方程是刻画现实世界中数量关系的一个有效数学模型,并且知道在解决实际问题时,要根据具体问题的实际意义检验结果的合理性. 另外,还应注意用配方法解题的技能.

Ⅴ.课后作业

(一)课本P55习题2.5 1、2

(二)1.预习内容:P56~P57

2.预习提纲

如何推导一元二次方程的求根公式.

Ⅵ.活动与探究

汽车在行驶中,由于惯性作用,刹车后还要向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故的一个重要因素,在一个限速40千米/时以内的弯道上,甲、乙两车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场测得甲车的刹车距离为12米,乙车的刹车距离超过10米,但小于12米,查有关资料知,甲种车的刹车距离S甲(米)与车速x(千米/时)之间有下列关系:S甲=0.1x+0.01x2;乙种车的刹车距离S乙(米)与车速x(千米/时)的关系如下图所示.

篇11:初中数学优秀教案

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1:菱形的四条边都相等;

性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2四边都相等的四边形是菱形.

五、例习题分析

例1(教材P109的例3)略

例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵四边形ABCD是平行四边形,

∴AE∥FC.

∴∠1=∠2.

又∠AOE=∠COF,AO=CO,

∴△AOE≌△COF.

∴EO=FO.

∴四边形AFCE是平行四边形.

又EF⊥AC,

∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是

(A)两条对角线相等(B)两条对角线互相垂直

(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分

2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

篇12:初中数学优秀教案

一、教学目标:

1.知识目标:

①能准确理解绝对值的'几何意义和代数意义。

②能准确熟练地求一个有理数的绝对值。

③使学生知道绝对值是一个非负数,能更深刻地理解相反数的概念。

2.能力目标:

①初步培养学生观察、分析、归纳和概括的思维能力。

②初步培养学生由抽象到具体再到抽象的思维能力。

3.情感目标:

①通过向学生渗透数形结合思想和分类讨论的思想,让学生领略到数学的奥妙,从而激起他们的好奇心和求知欲望。

②通过课堂上生动、活泼和愉快、轻松地学习,使学生感受到学习数学的快乐,从而增强他们的自信心。

二、教学重点和难点

教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。

教学难点:绝对值定义的得出、意义的理解及求一个负数的绝对值。

三、教学方法

启发引导式、讨论式和谈话法

四、教学过程

(一)复习提问

问题:相反数6与-6在数轴上与原点的距离各是多少?两个相反数在数轴上的点有什么特征?

(二)新授

1.引入

结合教材P63图2-11和复习问题,讲解6与-6的绝对值的意义。

2.数a的绝对值的意义

①几何意义

一个数a的绝对值就是数轴上表示数a的点到原点的距离。数a的绝对值记作|a|.

举例说明数a的绝对值的几何意义。(按教材P63的倒数第二段进行讲解。)

强调:表示0的点与原点的距离是0,所以|0|=0.

指出:表示“距离”的数是非负数,所以绝对值是一个非负数。

②代数意义

把有理数分成正数、零、负数,根据绝对值的几何意义可以得出绝对值的代数意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.

用字母a表示数,则绝对值的代数意义可以表示为:

指出:绝对值的代数定义可以作为求一个数的绝对值的方法。

3.例题精讲

例1.求8,-8的绝对值。

按教材方法讲解。

例2.计算:|2.5|+|-3|-|-3|.

解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

例3.已知一个数的绝对值等于2,求这个数。

解:∵|2|=2,|-2|=2

∴这个数是2或-2.

五、巩固练习

练习一:教材P641、2,P66习题2.4A组1、2.

练习二:

1.绝对值小于4的整数是____.

2.绝对值最小的数是____.

3.已知|2x-1|+|y-2|=0,求代数式3x2y的值。

六、归纳小结

本节课从几何与代数两个方面说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数。绝对值的代数意义可以作为求一个数的绝对值的方法。

七、布置作业

教材P66习题2.4A组3、4、5.

篇13:初中数学优秀教案

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

篇14:初中数学优秀教案

相似三角形

教学建议

知识结构

本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理

重难点分析

相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误.

教法建议

1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念

2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念

3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识

4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解

5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解

6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握

教学设计示例

一、教学目标

1.使学生理解并掌握相似三角形的概念,理解相似比的概念.

2.使学生掌握预备定理,并了解它的承上启下的作用.

3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.

4.通过学习,培养由特殊到一般的唯物辩证法观点.

二、教学设计

类比学习、探索发现.

三、重点、难点

1.教学重点:是相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.

2.教学难点:是相似比的概念及找对应边.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

【复习提问】

1.什么叫做全等三角形?它在形状上、大小上有何特征?

2.两个全等三角形的对应也和对应角有什么关系?

【讲解新课】

1.相似三角形

相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.

定义:对应角相等,对应边成比例的三角形,叫做相似三角形

符号“∽”,读作:“相似于”,记作:

,如图所示.

反之亦然.即相似三角形对应角相等,对应边成比例(性质).

, ∴

另外,相似三角形具有传递性(性质).

注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.

思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?

(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?

2.相似比的概念

相似三角形对应边的比K,叫做相似比(或相似系数).

注:①两个相似三角形的相似比具有顺序性.

如果

的相似比是K,那么

的相似比是

.

②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.

3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

,如图所示.

教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:

(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.

(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截

两边所得,其中

,本质上与右图是一致的.

(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现

的错误,如出现错误,教师要及时予以纠正.

(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有相似三角形.

【小结】

1.本节学习了相似三角形的概念.

2.正确理解相似比的概念,为以后学习相似三角形的性质打下基础.

3.重点学习了预备定理及注意的问题.

七、布置作业

教材P238中2,3.

八、板书设计

篇15:初中数学优秀教案

教学目的知识技能 使学生会用列一元二次方程的方法解决有关面积、体积方面和经济方面的问题.

数学思考提高将实际问题转化为数学问题的能力以及用数学的意识,渗透转化的思想、方程的思想及数形结合的思想.

解决问题 通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关面积、体积方面和经济方面的问题.

情感态度通过探究性学习,抓住问题的关键,揭示它的规律性,展示解题的简洁性的数学美.

教学难点审题,从文字语言中挖掘有价值的信息.

知识重点会用列一元二次方程的方法解有关面积、体积方面和经济方面的问题.

教学过程 设计意图

教学过程

问题一:列方程解应用题的一般步骤?

师生共同回忆

列方程解应用题的步骤:

(1)审题;(2)设未知数;

(3)列方程;(4)求解;

(5)检验; (6)答.

问题二:矩形的周长和面积?长方体的体积?

问题三:如图,某小区内有一块长、宽比为1:2的矩形空地,计划在该空地上修筑两条宽均为2m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312m2,请求出原来大矩形空地的长和宽.

教师活动:引导学生读题,找到题目中的关键语句.

学生活动:在关键语句中找到反映相等关系的语句,探究解决办法.

教师活动:用多媒体演示分析,解题方法.

做一做

如图,有一块长80cm,宽60cm的硬纸片,在四个角各剪去一个同样的小正方形,用剩余部分做成一个底面积为1500cm2的无盖的长方体盒子.求剪去的小正方形的边长.

课堂练习:将一个长方形的长缩短5cm,宽增长3cm,正好得到一个正方形.已知原长方形的面积是正方形面积的 ,求这个正方形的边长.

问题四:某商场销售一种服装,平均每天可售出20件,每件赢利40元.经市场调查发现:如果每件服装降价1元,平均每天能多售出2件.在国庆节期间,商场决定采取降价促销的措施,以达到减少库存、扩大销售量的目的.如果销售这种服装每天赢利1200元,那么每件服装应降价多少元?

学生活动:在众多的文字中,找到关键语句,分析相等关系.

教师活动:用多媒体帮助学生分析试题.提示学生检验解的合理性.

课堂练习:1.经销商以每双21元的价格从厂家购进一批运动鞋,如果每双鞋售价为a元,那么可以卖出这种运动鞋(350-10a)双.物价局限定每双鞋的售价不得超过进价的120%.如果商店要赚400元,每双鞋的售价应定为多少元?需要卖出多少双鞋?

2.某商店从厂家以每件18元的价格购进一批商品,该商店可以自行定价.据市场调查,该商品的售价与销售量的关系是:若每件售价a元,则可卖出(320-10a)件,但物价部门限定每件商品加价不能超过进货价25 %的.如果商店计划要获利400元,则每件商品的售价应定为多少元?需要卖出这种商品多少件?(每件商品的利润=售价进货价)

复习列方程解应用题的一般步骤.

本题为后面解决有关面积、体积方面问题做铺垫.

提高学生的审题能力.使学生会解决有关面积的问题.

解决体积问题的问题

培养学生用数学的意识以及渗透转化和方程的思想方法.

强调对方程的解进行双重检验.

小结与作业

课堂

小结 利用一元二次方程解决实际问题时,要注意通过实际要求检验根的合理性,要注意审题能力的培养.

本课

作业 课本第43页习题2

课后随笔(课堂设计理念,实际教学效果及改进设想)

篇16:初中数学优秀教案

一、教材内容及设置依据

【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

二、教材的地位和作用

本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,

特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了

类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

三、对重点、难点的处理

【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型 2、实际应用型 3、方法多变型 4、知识拓展型等。

【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

四、关于教学方法的选用

根据本节课的内容和学生的实际水平,本节课可采用的方法:

1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

五、关于学法的指导

“授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

六、课时安排:1课时

教学程序:

一、复习铺垫:

首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

1、45+(-23) 2、9-(-5)

3、-28-(-37)4、(-13 )+0

5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

从四排学生中个推选一名学生代表板演6、7、8、题。

通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

二、新知探索:

1、出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作

上升4.5千米 +4.5千米

下降3.2千米 -3.2千米

上升1.1千米 +1.1千米

下降1.4千米 -1.4千米

此时飞机比起飞点高了多少米?

让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

=1.3+1.1+(-1.4) =1.3+1.1-1.4

=2.4+(-1.4) =2.4-1.4

=1千米 =1千米

教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学

热门教案

学诗词

学名句