十一册《圆的认识》练习课(最新7篇)

大部分同学在学过新知识之后,都觉得自己对这部分知识没有问题了,但是一做题就遇到很多问题,为了避免这种现象,下面是小编辛苦为同学们带来的十一册《圆的认识》练习课(最新7篇),您的肯定与分享是对我们最大的鼓励。

册《圆的认识》练习课 篇一

“圆的认识”教学设计

张齐华 (南京市北京东路小学 )

【教学目标】

1.引导学生在观察、画圆、测量等活动中感受并发现圆的有关特点,知道什么是圆心、半径和直径,能用圆规画指定大小的圆。

2.在活动中,感受圆与其它图形的区别,沟通它们的联系,获得对数学美的丰富体验,提升学生对数学文化的认同。

【教学线索】

(一)在活动中整体感知

1.思考:如何从各种平面图形中摸出圆?

2.操作并体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。

(二)在操作中丰富感受

1.交流:圆规的构造。

2.操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。

3.体会(学生第二次画圆):如果方法正确,为什么用圆规画不出直线图形或是其它的曲线图形?

4.引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。

(三)在交流中建构认识

1.引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。

2.思考:半径有多少条、长度怎样,你是怎么发现的?

3.概括:介绍古代数学家的相关发现,并与学生的发现作比较。

4.类比:先介绍直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

5.沟通:圆的内部特征与外部特征之间具有怎样的有机联系?

(四)在比较中深化认识

1.比较:正三角形、正方形、正五边形……中类似等长的“径”各有多少条?圆的半径又有多少条?

2.沟通:这些正多边形与圆这一曲线图形之间又有着怎样的内在联系?

(五)在练习中形成结构

1.寻找:给定的圆中没有标出圆心,半径是多少厘米?

2.想像:半径不同,圆的大小会怎样?圆的大小与什么有关?

3.猜测:不用圆规,还可能怎样画出一个圆?在交流中进一步丰富学生对半径、直径之间关系的认识。

4.沟通:用圆规如何画出指定大小的圆?

(六)在拓展中深化体验

1.渗透:在与直线图形的对比中,揭示圆的旋转不变性。

2.介绍:呈现直线图形旋转后的情形,再一次引导学生感受圆与直线图形的联系,体会圆与旋转的内在关联,丰富对圆这一曲线图形内在美感的认识。

册《圆的认识》练习课 篇二

昨天在城一小执教了公开课《圆的认识》,这次公开课的主题是“学会学习”。说实话,对于学会学习,我不是很清楚具体的要求,所以在设计的时候我还是沿用了我一贯的设计分格。由于是借班上课,不熟悉孩子的上课习惯,所以课后的感觉只能算是基本实现了我最初的设想。

在这节课中,我主要表达以下一些想法:

1.开放。可能是在实验小学近20年的教学经历,遇到的孩子整体水平较高,所以我的设计比较开放,不拘泥于教材的条条框框以及对应的练习,而是把相关的东西都糅合、重组,再以我熟悉的表达方式加以呈现。学生的前置作业,没有标准答案;各素材的学习,不同的人可以达到不同的学习目标。特别是在不同的画圆方法中,各有侧重地介绍了圆的特征,加强了数学表象与本质的联系,在开放中走向深刻。

2.联系。我习惯把一个具体的教学目标放到整个大的知识框架中,用联系的方法去认识,在比较中既准确把握本课的教学内容,又巧妙地巩固了旧知,这样的学习效果比较科学,有利于学生真正的掌握。

3.严谨。数学是一门严谨的学科,特别是在一些术语的描述方面。尽管学生对于“圆”不陌生,但用数学化的词语来描述时,往往会词不达意的,对此,我是很重视的,所以利用时机有意识地引导学生准确表达。另一方面,我注重透过现象研究本质,追求思维的深刻性。比如用圆规画圆有什么困难?要注意什么?然后再层层剖析。这样的例子还有几处。努力实现数学的严谨性。

4.美观。自认为我的课件很美。在教学过程中,我力求使素材的原型贴近学生熟悉的事物,这样可以使学生更轻松地明白其所以然;力求使素材的形象美观,这样对学生的视觉有一定的冲击力,有利于他的记忆与保持。同时,可以使课堂呈现一种和谐、愉悦的效果。

5.化的利用素材。一般老师都会在黑板上示范画圆,而我这节课用的是一个剪下来的圆。这样做的好处是既可以清楚地在圆上找到半径、直径、圆心以及特征;又可以反过来后继续学习折的方法;甚至在后面讲到车轮的时候,又起到了一个实物演示的作用。可谓是用心良苦。还有用电脑画圆,里面也涉及到了多个知识点,得到了充分的利用,节约了时间,在有效的前提下争取高效。

王婆卖瓜,汗颜!突然又想到了“别针现象”,哈哈,不舍得舍就不舍了。

课后,再结合“学会学习”看这节课,个人感觉还是较好地实现了其初衷的。

“学会学习”的前提应该是让学生学会知识。如果说,形式很花哨了,但学生什么都没学到,或是没有完全完成学习的任务时,“学会学习”就成为了一句空话。我想,至少这节课在教学目标的达成度上做得还是可以的。

学会学习应关注的非智力心理因素,虽然由于借班上课,缺少默契,但从学生的表现来看,他们还是蛮舒服地上完了这节课。教学的事不能立竿见影,但至少这节课应该能给他们留下比平常课更多的影响。

至于有老师提出“盖子不一定要圆”一说,我当时没有说明,其实这曾经是微软公司一道很的面试题。我们数学教师应该教的更多是数学的普遍现象,而不应钻进死角。

至于有老师提出的“下要保底”一说,我更是放心,至少我教的班级差生不会比别人多吧。

当然,这节课确实是有缺憾的地方。用上课时感受来讲,我还是缺少让课堂“飞扬”的魅力。可能投入得还不够多,在学生面前应更自信甚至是张扬些,学生才能更放得开些。我设想如果是我以前的学生,这样的一节课应该是更有童趣,更活泼,更富有想象力与思维深度。所以,在今后的日子里,我一方面要继续认真钻研教学设计,另一方面要提高煽动课堂气氛的能力,让自己的课堂日益成熟。

册《圆的认识》练习课 篇三

【教学内容】义务教育课程标准北师大版试验教材六年级上册第一单元第6,7页"圆的认识二".

【教学目标】

1,通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2,进一步理解轴对称图形的特征,体会圆的特征。

3,在折纸找圆心,验证圆是轴对称图形等活动中,发展空间观念。

【教学重,难点】

1,圆的特征。

2,同一个圆里半径与直径的关系。

【教具,学具准备】

1,三角尺,直尺,圆规。

2,教学课件。

【教学设计】

教 学 过 程

教 学 过 程 说 明

一,实践操作。

1,折一折。

每人准备一个圆,请同学们想办法找出圆心。

2,小组活动:剪几个圆,折一折,你发现了什么

小组交流。

3,汇报:沿着任意一条直径对折,都能完全重合。

4,小结:圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r r=d/2.

二,尝试练习。

1,说一说学过的图形中哪些是轴对称图形 分别有几条对称轴

正方形:4条

长方形:2条

等腰三角形:1条

等边三角形:3条

圆:无数条

2,要求学生剪出书本第7页"做一做"的三幅图,沿中心点a转动,同学们发现了什么

三,巩固练习。

1,练一练第一题。

学生在书上填写,集体交流。

2,练一练第二题。

学生在书上填写,集体交流。

3,练一练第三题。

学生画出对称轴,集体交流。

4,练一练第四题。

学生实际测量,集体交流。

5,练一练第五题。

学生在书上填写,集体交流。

使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。

引导学生整理已学过的轴对称图形。

让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。

通过练习,进一步巩固所学知识。

四,全课小结。

【教学反思】

学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。

存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!

册《圆的认识》练习课 篇四

课题 圆的认识(一) 课型 练习

内容 义务教育课程标准实验教科书(北师大版)第十一册第4-5页

教学目标

1、体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

2、进一步理解圆的特征,同时通过操作活动,发展空间观念。

重点 根据圆的知识来解释生活中的简单现象

难点 在解释并体会圆的特征

教学设计

一、说一说在生活哪些地方用到圆?圆有什么作用?

二、讨论:车轮为什么都做成圆的?

1、先说说自己的想法

2、用硬纸板分别做成圆形、正方形、椭圆形,试将它们当成车轮滚动,会是什么样的效果?你能想办法将它们滚动过程中a点留下的痕迹画出来吗?(教师要进行一定指导)

3、根据三种图形滚动的痕迹来进行比较,说明车轮必须做成圆形的原由。

4、说一说:书上第5页的想一想。

5、想一想;你还发现哪些类似的例子?

三、练习

1、做书上第5页练一练1、2

2、想一想,试一试:书上第5页练一练3

册《圆的认识》练习课 篇五

教学目标:

1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。

2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。 教学重点和难点

由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。

教学过程:

一、复习准备

在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?

(产生疑问,引起争议,激发起学生的学习兴趣。)

这节课我们就来学习“圆的认识”。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)

二、学习新课

1.认识圆心、半径、直径。

同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)

(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。

老师刚才画圆时,中间的点怎么样?(中间的点不动。)

我们把这个不动的点叫定点。(板书:定点)

粉笔画出的线为什么能首尾相接呢?

应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)

如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?

(出示圆规)这是我们画圆的工具——圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)

你们会用圆规画圆吗?

请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)

画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?

(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)

“定点”,用数学语言说叫“圆心”。(板书:圆心)

什么叫圆心?(指名回答)

哪儿是“定长”?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫“半径”。(板书:半径)

谁说说什么叫半径?(指名回答)

(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?

像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)

谁再说说什么叫直径?(指名回答)

我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?

(学生补充:圆心用字母“O”表示,半径用字母“r”表示,直径用字母“d”表示。)

(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)

老师想看看同学们是不是真正掌握了这些概念。

练一练

(1)判断这几条线段中哪一条是半径?

(2)判断哪条线段画的是直径?

(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断) 同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?

2.研究圆的特征。

用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?

(学生分小组讨论。)

(老师再在幻灯上演示一遍,提问讨论结果。)

(板书)无数条相等

刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示) 甲圆的半径和乙圆半径相等吗?

甲圆直径是乙圆直径的2倍吗?

那么圆在什么情况下才存在这些特征?(板书:同一圆里)

练一练(正确画“√”,错误画“×”。)

(1)在同一圆里,所有的半径都相等,所有的直径都相等。

(3)在同一圆里,半径是4厘米,直径一定是2厘米。

(4)圆心在圆上。

同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题

同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)

请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。

刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?

(板书)位置大小

圆心决定圆的位置,画圆时要先点圆心。

(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?

如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?

(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)

三、课堂总结

今天你学会了哪些知识?

你能用我们刚学的圆的知识来解答刚上课时提出的问题“为什么世界上的车轮子都是圆的”吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)

课堂教学设计说明

本节课的教学设计分两个层次。

第一层次,认识圆心、半径、直径。通过演示用绳子在黑板上画圆,使学生体会到:画一个圆必须要有定点、定长。“定点”用数学语言说叫圆心,“定长”就叫半径。并引出直径的概念。通过判断半径、直径的练习,巩固其概念。

第二层次,研究圆的特征。每四人一组,每组有一个学具,学具是在一个硬纸板的正面和反面,分别钉1个用透明胶片剪成的活动的圆,在A面的活动圆上画着半径,B面的活动圆上画着直径。学生分小组转动A面的活动圆,发现在同一个圆中有无数条半径;转动B面发现在同

出圆心决定圆的位置,半径决定圆的大小。

册《圆的认识》练习课 篇六

教学目标

知识与技能:

(1)认识圆,知道圆的各部分名称。

(2)使学生掌握圆的特征,理解和掌握在同一个圆里,半径和直径的关系,能在同一个圆里,找出任意的半径和直径并且会自主完成已知半径求直径或已知直径求半径的题目。

(3)使学生初步学会用圆规画圆。能用圆规画出已知半径大小的圆或已知直径大小的圆。

过程与方法:

(1)经历动手操作的活动过程,培养学生作图能力。

(2)通过分组学习,动手操作,主动探索等活动培养学生的创新意识,及抽象概括等能力,进一步发展学生的空间观念。

(3)在学习过程中,培养学生能与人合作、交流思维过程和结果的能力。

情感、态度与价值观:

通过对圆的认识,感受到美源于生活,体验圆与日常生活密切相关,感悟数学知识的魅力。

教学重点:圆的基本特征及半径与直径的相互关系。

解决措施:通过让学生折一折、画一画、量一量、猜一猜、比一比等活动让学生理解圆的基本特征及半径与直径的相互关系。

教学难点:如何让学生理解用圆规画圆的原理。

解决措施:通过展示学生用圆规画出来的圆,引导学生进行小组讨论:画得不好看和画得好看的圆里面的线段究竟分别有什么特征,然后师生共同验证,让学生充分理解利用圆规画圆的原理。

教学设计思路

一、复习旧知,导入新课

1、猜图形游戏。

2、对比椭圆和圆。

二、突出主题,探究新知

(一)认识圆的各部分名称及特征

1、认识圆的各部分名称及半径和直径的关系

2、练习1、2

(二)小组学习用圆规画圆

1、介绍用圆规画圆并认识圆规

2、根据要求学习用圆规画圆

(1)解释画圆的原理。

(2)归纳画圆的步骤

三、应用特征,解决问题

(一)判断题

(二)拓展延伸

四、总结评价

五、作业

依据的理论

新课程标准指出:“教师应激发学生的学习积极性,为学生搭建自主探索,合作交流的平台,给学生提供充分从事数学活动的机会,帮助他们真正理解和掌握基本的数学知识与技能、数学思想和方法这是广大教师共同追求的目标。”基于这样的认识,本节课的教学设计主要突出体现以下两个特点:

1、有机整合教学资源,体现教学设计的实效性。在组织教学过程中,主要通过自学,小组交流等学习方式,促进学生有效地学习圆的基本特征及用圆规画圆的方法。

2、能在不断的设问中,引起学生思维的碰撞,激发学生的学习兴趣。

课后反思:

圆的周长

【教学目标】

1.通过小组合作探究,实际测量计算理解圆周率的意义。

2.通过对比分析掌握圆周长的计算公式。

3.能用圆的周长的计算公式解决一些简单的数学问题。

4.通过对圆周率的计算,渗透爱国主义的思想。

【教学重、难点】

重点:推导圆的周长的计算公式,准确计算圆的周长。

难点:理解圆周率的意义。

【教学过程】

一、情景引入

出示一块钟表

问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

学生猜想。

教师演示小秒针的运动过程,证实学生的猜想是否正确。

问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

二、动手量一量

学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

物品名称

周长

直径

1号圆

2号圆

3号圆

4号圆

教师评价学生小组合作的情况。

(设计目的:强调学生的小组合作意识)

师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

学生展示小组的成果。

(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

三、对比分析

师:观察一下我们得到的几组数据,你发现什么规律了吗?

学生自由谈。

学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

课件展示圆的周长的测量方法。

(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

学生自由谈。

我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

(设计目的:通过学生讲故事渗透爱国主义思想)

小结2:你能通过分析表格得到圆的周长的计算公式了吗?

学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

圆的周长(用字母c表示)计算公式:c=πd或c=2πr

四、动手做一做

下面我们来看看怎样应用圆的周长计算公式来解决问题。

1.计算圆的周长

实物投影展示学生的解题过程

(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

2.一个圆形喷水池的半径是5m,它的周长是多少米?

(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

小组交流错误原因。(可让其他学生避免同样的错误)

(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

五。你能说说在这一节课中你有什么收获吗?

可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

六、课外合作:

小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

课后反思:

圆的面积

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.cai课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

预设:

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

请大家看屏幕(利用课件演示),老师先给大家一点提示。

师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?

师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示) 跟圆形有什么关系呢?

预设:

引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

预设:

学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

3.探究联系。

师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

预设:

分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。

师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。

师:谁来告诉大家,它们的面积有没有改变?

师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。

4.推导公式。

师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

预设:

根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。

师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

预设:

教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。

师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

预设:

老师根据学生的回答进行相关的板书。

师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。

二、运用公式,解决问题

1.教学例1。

师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

预设:

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2.完成做一做。

师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。

订正。

3.教学例2。

师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

师:找到解决问题的方法了吗?

师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

交流,订正。

三、课堂作业。

教材第70页第 2、3、4题。

四、课堂小结

师:同学们,通过这节课的学习,你有什么收获?

圆面积的综合应用

教学目标:

1.结合具体情境认识与圆相关的组合图形的特征,掌握计算此类图形面积的方法,并能准确计算。

2.在解决实际问题的过程中,通过独立思考、合作探究、讨论交流等活动,培养学生分析问题和解决问题的能力。

3.结合例题渗透传统文化的教育,通过体验图形和生活的联系感受数学的价值,提升学习的兴趣。

教学重点:掌握计算组合图形面积的方法,并能准确计算。

教学难点:对组合图形进行分析。

教学准备:课件、学具、作业纸。

教学过程:

一、创设情景,谈话引入

1.师:古时候,由于人们的活动范围狭小,往往凭自己的直觉认识世界,看到眼前的地面是平的,以为整个大地是平的,并且把天空看作是倒扣着的一口巨大的锅。我国古代有“天圆如张盖,地方如棋局”的说法。(结合课件出示)虽然这种说法是错误的,却产生了深远的影响,尤其体现在建筑设计上。

2.课件展示:鸟巢和水立方等建筑,精美的雕窗。

二、探究新知,解决问题

1.实践操作(课件出示教材例3中的雕窗插图)

师:谁能说说这两种设计有什么联系和区别?

预设1:左边的雕窗外面是方的里面是圆的;右边的雕窗外面是圆的里面是方的。

师:我们可以将上述特征分别概括地称为外方内圆、外圆内方。

预设2:都是由圆和正方形这两个图形组成的。

师:也就是我们以前学过的什么图形?(组合图形)你能用学具组合出这两个图形吗?

学生操作,作品展示。

2.解决问题

(1)阅读与理解

师:怎样计算正方形和圆之间部分的面积?需要什么条件?先想一想,再同桌交流。

预设1:正方形的面积减去圆的面积;圆的面积减去正方形的面积。

预设2:需要知道正方形的边长和圆的半径。

师:只告诉你这两个圆的半径都是1米,你能计算出这两部分的面积吗?

学生思考,尝试练习。

(2)分析与解答

师:谁来说说你是怎么计算左图中正方形和圆之间部分的面积的?

预设:正方形的面积是2×2=4(m2),减去圆的面积(3.14 m2),等于0.86 m2。

师:你是怎么知道正方形的边长的?

根据学生回答课件展示:正方形的边长=圆的直径。

师:在右图中你能得出正方形的边长吗?(不能)该如何计算正方形的面积呢?

预设1:可以把右图中的正方形看成两个三角形。

追问:三角形的底和高分别是多少?相当于什么?(底是2 m,高是1 m,相当于圆的直径和半径。)

结合学生回答课件展示。

预设2:也可以看成四个三角形。

师:这样一来,每个三角形的底和高各是多少呢?相当于什么?(底和高都是1 m,相当于圆的半径。)

师:那么,圆与正方形之间部分的面积可以怎样计算?(学生练习,分析订正。)

三、回顾反思,理解算法

师:如果两个圆的半径都是 ,结果又是怎样的?结合左图我们一起来算一算。

左图: 。

师:像这样,你能计算出右图中正方形和圆之间部分的面积吗?

学生练习,反馈讲评。

右图: 。

师:我们可以把题目中的条件 =1 m代入上述的两个结果算一算,有什么发现?

预设:和之前计算的结果完全一致。

四、课堂练习,强化认识

1.基础练习

(1)有一块长20米,宽15米的长方形草坪,在它的中间安装了一个射程为5米的自动旋转喷灌装置,它不能喷灌到的草坪面积是多少?

师:求不能喷灌到的草坪面积,就是求什么?

(2)一件古代铜钱的模型(如图),已知外圆的直径是20cm,中间正方形的边长为6cm。这个模型的面积是多少?

师:可以用怎样的方法验证结果是否正确?

2.拓展练习

在每个正方形中分别作一个最大的圆,并完成下表。

采用四人小组合作的方式完成,小组汇报展示。

师:你发现了什么?如果正方形的边长为 ,你能得出怎样的结论?

正方形面积为 ,圆的面积为 ,面积之比为 。

师:如果是在圆内作一个最大的正方形,又会有怎样的关系呢?这个问题就作为今天的课外作业。

五、全课总结,畅谈收获

通过本节课的学习,你有什么收获?谁来说一说。

课后反思:

扇形

教学目标 :1圆心角以及他们间的对应关系,并能准确判断圆心角和扇形。

2、 理解扇形概念知道扇形有一条对称轴以及圆心角的大小决定扇形面积。

一、导入:

请将手中的两个圆一个平均分成4份剪下其中的一份,另一个平均分成2份剪下其中的一份,观察手中的图形,他们像什么?(像扇子)

今天我们就一起认识扇形。(板书课题:认识扇形)

二、新授:

1、认识弧:出示一个圆,在上面任意点两个点a、b

(1)a、b两点在什么位置?(圆上)

(2)师:圆上a、b两点间的部分叫弧。课件演示

(3)追问:圆上a、b两点间的部分叫什么?什么叫弧?

(板书:弧:圆上a、b两点间的部分)

读作:弧ab

(4)请在圆上用彩笔画一条弧。你是怎样画的?(边用手指描弧边说弧ab)

2、认识圆心角:课件演示连接oa和ob

(1)线段oa 、ob是圆的什么?(半径)

半径oa 、ob所夹的部分叫什么?(角)

这个角的顶点在圆的什么位置?(圆心)

师:顶点在圆心的角叫圆心角。什么叫圆心角?

(板书    圆心角:顶点在圆心的角)

(2)请学生在圆上标出圆心角。谁是圆心角?(∠a ob是圆心角)

(3)练习题 (略)下图中,哪些角是圆心角?说明理由

3、认识扇形:

(1)用鼠标指扇形一圈,我们把围成的图形叫扇形,什么叫扇形?交流

由圆心角的两条半径和圆心角所对的弧围成的图形叫扇形。(板书;扇形)

(2)同学之间用手描一下自己手中的圆,互说哪一部分是扇形。

(3)二次用剪好的扇形,观察桌上你刚才剪好的图形,请你选择其中的一个图形说一说,它是扇形吗,为什么?

(4)师课件演示:黄色部分是什么图形?(扇形)为什么?

4、说一说:

(1)演示:活动的扇形。圆心角一条半径不动,另一条半径不断转动,呈现不同的扇形。当两条半径重合时,形成一个圆。

通过观察,你发现了什么?(扇形是圆的一部分)

(2)在生活中,你见到哪些物体的外形是扇形?

(如:扇子外形、贝壳外形、树叶外形等)

(3)老师也搜集了一些扇形的图片,请大家欣赏一下

三、拓展应用

练习十六2题

四、总   结

今天有什么收获?还有什么疑问?

作业设计 练习十六3、4题

板书设计

册《圆的认识》练习课 篇七

教学内容:

教科书第12页,圆的认识及圆各部分的名称。

教学提示:

本节课要求学生进一步认识圆、了解圆的特征、掌握用圆规画圆。渗透了曲线图形和直线图形的关系。通过对圆的认识,不仅能加深对周围事物的了解,提高解决实际问题的能力,也为今后学习圆的周长、面积、圆柱、圆锥等知识打好基础。

单元主题图呈现的学生所熟悉的校园及周边环境的情景图,目的是为了让学生从熟悉的生活环境中感受到圆、圆的周长、圆的面积在实际生活中的应用。

一方面要激发学生学习圆的有关知识的*,另一方面要让学生体会到本单元知识与现实生活的密切联系。

例1呈现有圆的物体,根据它们的共同特征抽象出圆的平面图形。通过圆规的自我介绍,让学生掌握画圆的方法,并归纳出“圆是由曲线围成的一种平面图形”。

例2通过操作活动让学生认识圆各部分的名称和特征。

发现圆的直径和半径都有无数条,在同一圆里,所有的半径和直径的长度都相等,直径的长度是半径的2倍,圆是轴对称图形等特征。

在低年级的学习中,学生已经对圆有了初步的认识。可以在众多所画图形中较为准确地辨认出圆。有一定的研究图形特点的方法积累(如:对长方形和正方形的研究)。这些方法可以为课堂中学生研究圆的特点有一定启发。同时,学生能够体会到圆广泛的存在于我们的生活之中,并能举出生活中圆的例子。但不能很准确地对于生活中圆的例子进行准确性描述。举例说出生活中见到过的圆,学生回答:笔筒、胶条……不能正确认识到这个物体上的某个面是圆形的。但对于让学生做到真正深入认识圆是由之上的若干个点连接而成,以及在学生头脑中充分体会到圆的各点分布均匀性和广泛的对称性还是比较困难的。

同时,六年级的学生对圆规都有一定的了解(平时买作图工具时都是成套的,包含圆规),一般都有画圆的经验。

教学目标:

1.知识与技能:使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助物品或圆规画圆,会应用圆的知识解释一些日常生活现象。

2.过程能力与方法:使学生经历从猜想到验证的过程,在活动中进一步积累认识图形的学习经验,增强空间观念、合作意识,培养学生观察、动手操作、抽象概括、与他人合作交流等各方面的能力,进一步发展数学思考。

3.情感态度与价值观:使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。

教学重点:

感知并了解圆的基本特征,认识圆的各部分名称。

教学难点:

理解直径与半径的关系,熟练掌握画圆的方法。

教具准备:

多媒体课件,为学生准备两张白纸、一个圆片。

学具准备:

圆规、圆形物体、直尺。

教学过程:

一、新课导入

(欣赏单元主题图,激趣引入。)

1.观察主题图。

提问:同学们,在我们美丽的学校内有一个水池,你们观察过吗?池内的鱼儿美丽,水面平静。请同学们想象一下:如果我们在平静的水面上投进一块石子后,水面荡开的波纹,应该是一个近似的什么形状?请用动作说明。

圆在生活中太常见了!许多物体表面的形状与圆有关。根据你们的经验,能举个例子吗?

2.揭题:看来同学们对圆已经有了一些认识,今天这节课就学习“圆”。

3.在以前的学习中,已经认识了哪些平面图形?其实圆也和学过的这些图形一样也是一个平面图形,但是和这些图形又有不同之处,你发现了吗?(圆是由曲线围成的一种平面图形) (注意:①学生自带的圆形物体可以让学生用手指一指;②在指物体时,要明确指的是哪一个面;③不能把球误认为圆。)

【设计意图:一方面让学生感知圆来源于生活,与生活实际紧密相连,体验数学与生活的联系;另一方面通过观察、比较,让学生感受圆和以前学过的平面图形的不同。】

二、探究新知

1.圆规画圆。

(投影展示例1图中圆形物品)

教师:同学们观察图中的物品,它们是什么形状?

预设:(生:圆形。)

教师:古希腊哲学家、数学家毕达哥拉斯认为“一切平面图形中最完美的是圆!”。你能用手中的工具画一个标准的圆吗?(指向明确用工具画圆,并请学生尝试画圆)

学生独立用画圆,教师巡视指导。

投影展示学生画的圆。(由于是第一次画圆,学生画的可能不规范)

教师可以提问,请你介绍一下你用的是什么工具,是怎么画圆的?

学生回答用圆规画圆。

此时教师可演示怎样使用圆规正确的画圆。(强调不能用手握住圆规的两脚来画圆)

然后跟着要求同学们用圆规再画一个标准的圆。

学生独立画完之后,投影展示学生画的圆,指明学生说画法。

预设:我用圆规画圆,我把圆规的一个脚固定在一个点上,另一个脚绕这个点旋转1圈,就画出了一个圆。

【设计意图:让学生尝试用圆规画圆,体会用圆规画圆的步骤,明白到圆的大小与圆规两脚间的距离有关,用圆规画圆很方便。】

2.认识圆。

(1)提问:观察对比上面所画的两个圆,是不是一样的?(预设:不一样)

哪些地方不一样?(预设:大小、位置)

请同学们思考为什么不一样呢?

圆的位置不一样,是因为固定点的位置不同,其实,我们把在圆中心的这一固定点叫做圆心。画圆时,固定的点叫做圆心,圆心一般用字母O表示。

圆心到圆上任一点的线段是半径,一般用字母r表示。

通过圆心并且两端都在与圆上的线段是直径,一般用字母d表示。

【设计意图:结合学生圆规画圆的体会,介绍圆心、半径,明确画圆时圆规两脚间的距离就是圆的半径。这样学生初步感知圆心、半径和直径的含义。】

(2)强化认识半径。

教师:刚才同学们画的圆都比较好,我们还认识了半径?那现在大家就在你刚才画的圆中画出这个圆的半径来,画得越多越好。

教师可以提问:想一想,圆有多少条半径? 能画完吗?

预设:在圆内有无数条半径,画不完。

提问:你是怎样观察得出在一个圆内有无数条半径的?

预设:因为半径是连接圆心到圆上任意一点的线段,这样的线段有无数条。

教师:那么半径是一条怎样的线段呀?是连接圆心到圆上任意一点的线段。(展示动画从圆心到圆上的一条线段,齐读)   由于圆周上有无数个点,所以半径就有无数条。

教师:现在就请同学们画出这无数条半径的代表,你认为画几条合适。(预设:1条,因为所有半径都相等。)

质疑,请学生说理由:直尺量;或用圆纸对折。

说明半径的特征并板书:在同一圆内,半径有无数条,并且长度都相等。

【设计意图:让学生掌握通过动手折一折、量一量、比一比、画一画,及在小组里相互交流、讨论,获得圆的特征之一。不仅使学生的认识由感性上升到理性,而且使学生学到了解决数学问题的一些基本方法。】

(3)强化认识圆的直径。

①除了半径以外,在圆中还有没有像这样比较特殊的线段能决定圆的大小。(预设:直径)

教师:指明学生到黑板上画出来,并提问画时要注意什么?(预设:过圆心,两端在圆上)其实直径就是通过圆心并且两端都在圆上的线段。

②请学生在自己画的圆内画出直径的代表。画得越多越好。

③揭示直径的特征:在同一圆内,直径有无数条,并且长度都相等。

④引出半径和直径的关系,或动手验证;直尺量;或用圆纸对折。

通过对折等活动,得出:圆是轴对称图形,每条直径所在的直线都是圆的对称轴。

【设计意图:让学生掌握通过动手折一折、量一量、比一比、画一画,及在小组里相互交流、讨论,获得圆的特征之一。不仅使学生的认识由感性上升到理性,而且使学生学到了解决数学问题的一些基本方法。】

(4)揭示半径和直径的关系。

d=2r, r=1

/

2d。这个关系的前提是什么?(预设:同一圆内)

为什么要加这个前提,不要行吗?

学生讨论后汇报。

师生共同小结:在同圆或等圆里,所有的半径都相等,所有的直径也都相等;直径等于半径的2倍。

三、巩固新知

1.练习三第1题:用彩色笔标出下面各圆的半径和直径,并量出长度。

2.完成第13页课堂活动第1题。

第1题(1):画几个圆心在同一点而半径不相等的圆;画几个圆心不在同一点而半径相等的圆。

画完第一问之后,教师可提问:圆心在同一点上,为什么有的圆大,有的圆小?

(预设:因为半径不一样,半径越大,圆就越大)由此得出:圆的大小是由半径决定的。

第2问画完后,教师可以提问:这几个圆的大小是一样的,为什么有的圆在这里,有的圆在那里呢?(预设:因为圆心的位置不一样)由此得出:圆的位置是由圆心决定的。

第1题(2):学生独立画半径为2.5厘米的圆,用字母标出圆心、半径和直径,小组内交流。

3.独立完成教材13页课堂活动第2题,小组内交流。

【设计意图:通过本环节,让学生对圆的特征进一步理解,对于圆的特征更加熟悉,对所学知识掌握地更加牢固。】

四、达标反馈

1.说一说圆中什么样的线段是半径、什么样的线段是直径?

2.判断题。

(1)所有的半径都相等,所有的直径也都相等。 ( )

(2)从圆心到圆上的任意一点的距离都相等。 ( )

(3)画一个直径为4厘米的圆,圆规两脚间的距离应是4厘米。 ( )

(4)直径是3厘米的圆比半径是2厘米的圆大。 ( )

3.填一填。

(1)一个边长8厘米的正方形里,画一个的圆,这个圆的直径是( )厘米,半径是( )厘米。

(2)在一个长6分米、宽4分米的长方形里,画一个的圆,这个圆的半径是( )分米。

4.盒子里刚好放下三个罐头,每个罐头的半径为3厘米,盒子的长和宽各是多少?

五、课堂小结

教师:通过这节课的学习,你对圆有哪些认识?你有什么收获?

学生谈自己的收获,畅所欲言。

教师:想一想生活中的一些物品为什么要设计成圆形?车轮为什么要设计成圆形?下节课我们一起来交流。

【设计意图:通过回顾总结,对知识进行梳理,有助于学生逐步形成数学学习方法和经验;同时把“圆”再次回归生活,将数学与生活紧密结合,让学生体会到数学学习的价值,深化学生对圆的特征的认识,增强数学学习的兴趣。不仅拓宽了学生的知识面,强调数学与生活有密不可分的联系。更是把学生的数学思维引向生活。】

热门教案

学诗词

学名句