下面是小编为大家整理的14篇勾股定理教学反思,欢迎阅读与收藏。
星期三上午第一节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,让出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度生活习题的练习,拓宽学生知识面,提高学生的发散思维能力。
总之,课堂设计要做到一个“狠”字,该删除的就删,教学目标不可贪多。我们围绕授课重点做相应探究,练习,次重点可放在下个课时重点讲解,探究时间要预留充足,相应练习宁精勿多,注重双基才是根本。
这节课重在导入,引起学生的兴趣,现谈谈本节课的反思:
1、从生活出发的教学让学生感受到学习的快乐。
在“勾股定理”这节课中,一开始引入情景:
平平湖水清可鉴,荷花半尺出水面。
忽来一阵狂风急,吹倒荷花水中偃。
湖面之上不复见,入秋渔翁始发现。
花离根二尺远,试问水深尺若干。
知识回味:复习勾股定理及它的公式变形,然后是几组简单的计算。
2、走进生活:以装修房子为主线,设计木板能否通过门框,梯子底端滑出多少,求蚂蚁爬的最短距离,这些都是勾股定理应用的典型例题。
3、在教学应用勾股定理时,老是运用公式计算,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:即折竹抵地问题。并且将问题用动画的形式展现出来,不仅将问题形象化,又提高了学生的学习兴趣。同时将实际的问题转化为数学问题的过程用直观的图形表示,在降低难度的同时又鼓励了学生能够看到身边的数学,从而做到学以致用。最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生之间的合作。
4、最后介绍了勾股定理的历史,并且推荐了一些网站,让学生下课之后进行查阅、了解。这是为了方便学生到更广阔的知识海洋中去寻找知识宝藏,利用网络检索相关信息,充实、丰富、拓展课堂学习资源,提供各种学习方式,让学生学会选择、整理、重组、再用这些更广泛的资源。这种对网络资源的重新组织,使学生对知识的需求由窄到宽,有力的促进了自主学习。这样学生不仅能在课堂上学习到知识,还让他们有了怎样学习知识的方法。这就达到了新课标新理念的预定目标。
通过本节课的教学,学生在勾股定理的学习中能感受“数形结合”和“转化”的数学思想,体会数学的应用价值和渗透数学思想给解题带来的便利;感受人类文明的力量,了解勾股定理的重要性。真正做到了先激发兴趣,再合作交流,最后展示成果的自主学习。这堂课将信息技术融入课堂,有利于创设教学环境,教学模式将从以教师讲授为主转为以学生动脑动手自主研究、小组学习讨论交流为主,把数学课堂转为 “数学实验室”,学生通过自己的活动得出结论、使创新精神与实践能力得到了发展。不足之处:学生合作意识不强,讨论气氛不够活跃;计算不熟练,书写不规范。
星期四下午讲了《勾股定理逆定理》第一课时,现对本节课反思如下:
(1)这节课的.设计思路比较合理:着重体现“探究”这一主题,从“古埃及人得到直角三角形的方法”到学生用木棒模仿操作,再到画图自己证明等一系列活动,得出“勾股定理逆定理”,而对互逆命题,原命题,逆命题等概念的讲解只是作为新课引入的命题点化了一下,没有详细讲解、把这节课的重点放在了如何让学生通过三角形三边关系判断是否是直角三角形?在经过课堂练习及课堂检测来强化学生对勾股定理逆定理的理解,分别从三角形的边和角这方面来引导学生。
(2)本课PPT的使用是想凸显“特征让学生观察,思路让学生探索,方法让学生思考,意义让学生概括,结论让学生验证,难点让学生突破,以学生为主体”的教学思路,每个环节都是紧密相接的。
(3)课堂教学环节和教学效果我感觉很满意,学生在对问题的回答很积极,在突破难点的过程中,学生通过小组合作实验交流,自己总结归纳勾股定理逆定理,及证明中我给与学生充分的思考时间让学生自己完成。整个过程中体现了以学生为主,老师为主导的作用,课堂气氛活跃,效果挺好。
本节课的不足之处及改进方法:
1、本节课我没有及时发现学生的错误。在学生上黑板做题时出现的错误没能及时发现及改正。
2、课堂检测做完后应让学生自己讲解,但时间不够导致这一环节没能让学生完成,而是在投影对了答案。
在以后教学中,我会不断地更新教育理念,结合学生的认知规律、生活经验对数教材进行再创造,选取密切联系学生现实生活和生动有趣的数学素材,为学生提供充分的数学活动和交流的空间,真正把创造还给学生,让学生动起来,让课堂焕发新的活力。
通过本节课的教学,我采用了合作探究、操作体验的教学方式。在课堂教学中,首先创设情境,提出问题;再让学生通过做一做、测量、判断、找规律,猜想出一般性的结论;然后由学生想、做、量一量、猜一猜、去验证结论……使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣。这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气。
要想真正搞好以探究活动,小组合作为主的课堂教学,必须不断更新教学观念,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民
作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者。因此,课堂教学过程的设计,也必须体现出学生的主体性。
通过复习让学生充分回忆前面学习的有关三角形的内容,使学生加深对知识的理解,从而为本节课的学习打下良好的基础。同时,学生回忆的过程也是一个思考的过程,特别是面积法来验证勾股定理,是本章教学的难点,对此学生应该先形成一个印象、概念,然后才能学习掌握好。
已知直角三角形中的两条直角边求斜边,这是上节课学习的内容。在上节课学习过程中,学生已经练习过。但为什么本节课中仍然有部分学生出错呢?究其原因,是因为上节课学习的内容太多,方法也较多、较灵活,因而学生对每一个内容与方法都仍是一种感性的认识,而仍没达到理解掌握的程度。因此,当让学生自己独立完成问题时,往往就产生了思维上存在的缺点,从而出现各种错误。另一方面,教学中我们往往会采用一种“一问齐答”的问答形式,这样会容易掩盖学生的真实想法。其实,在解答此问题时,教师很容易就走进了这样的问答方式,原因在于我们认为这样的问题太简单了,上节课学生也似学会了,于是便产生了一种忽视的教学。可现实却往往不是这样的,我们认为简单的知识对于学生(特别是基础较弱的学生)来说,往往是不简单的。因此,教学中应尽量少用“一问齐答”的欺骗教师的问答方式,让学生充分发表自己的意见,同时引导学生分析错误,养成反思的意识,只有这样,才能真正使学生学有所获。
同一个问题的不同变式,可以让学生自我检查对知识与方法是否能真正达到理解、掌握与运用,从而提高学生学习的自信心。解答这个问题的方法其实就是验证勾股定理所用到的方法——面积法。在课堂教学之初始让学生回忆上一堂课的方法,有了一个初步的印象,在这里再提出来时学生就不会感到突然和陌生,达到承上启下的作用。另一方面,教师在讲解问题的解答时,并不是把问题的解答方法与过程全部一下子出来,而是引导学生经过一步步的思考,让学生自己在思考与感悟中得到问题的解答,这样可以培养学生思考问题的方法,提高学生的思维能力。如果此时能对已经解答出来的同学大力表扬,并让学生引导学生来解答余下的问题,那么效果会更好。
数学问题生活化,用数学知识解决生活中的实际问题,是课程改革后数学课堂教学必须实施的内容。在解答实际生活中的问题时,关键在于把生活问题转化为数学问题,让生活问题数学化,然后才能得以解决。在这个过程中,很多时候需要教师帮助学生去理解、转化,而更多时候需要的是学生自己探索、尝试,并在失败中寻找成功的途径。本题教学中,如果能让学生自己反思答案与方法的合理性,那么效果会更好了。课前预设与课堂生成,
这是课程改革以来出现的最多问题之一。课堂教学任务要完成,而课堂又要还给学生,充分发挥学生的自主性,那么如何处理好这个问题呢?在本课最后的这个环节里,如果能引导学生归纳本课学生的方法,特别是面积法,然后再给一个简单的问题来巩固,那么效果肯定会比这样匆匆结束课堂要好。但是,这部分知识内容又什么时候来解决呢?不解决行不行呢?这是课后困扰我的问题。“课堂教学应基于自身班级学生的具体情况,不论是课前预设(备课)还是课堂教学过程,都应以使绝大部分学生能真正学习掌握好为基础。”经过本节课的教学后,我自己对有效的课堂产生了一个这样的认识。在以“知识为中心”还是以“学生学习为中心”的这个问题上,我想应以学生为中心,同时兼顾教学内容的完成,如果发生矛盾时,那么我想是不是仍应以学生为中心呢?这样教学任务完成不了怎么办呢?影响教学进度又怎么办呢?考试又怎么办呢?……。其实,归根到底是:考试了怎么办呢?课程改革已走到了第七个年头,考试始终是一根有形无形的指挥棒在影响着我们每堂课的教学,在影响着我们的教学观念与教学方法,甚至于影响我们的教学理想。其实我们都很清楚,这样匆匆的进行课堂教学,虽然表面上看是完成了教学内容,但实际上学生并没有掌握好,考试时真的出现时学生仍是无法解答,那么,这样的教学岂不是也是无效的吗?无效的教学是不是在浪费学生的精力与时间呢?这样是不是有点自欺欺人了呢?想到这,我越感不安了
因此,如果有机会再上这节课,就算前面能提高一点效率,节省一点时间,我也会省去后面的那部分内容,增加一些有趣味的生活问题,总结与反思本课的方法,从而使学生对本课学习掌握得更好,对自身的数学学习更有自信。
义务教育课程标准实验教材八年级数学(下)《勾股定理》的第一课时,教材的重点是让学生经历勾股定理的探索和证明过程,了解勾股定理的背景知识,在学习知识的同时,感受勾股定理的丰富文化内涵,激发学生的学习兴趣,对学生进行思想品德教育。
在讲课时,由于没有认真准备,也没有让学生准备学具,所以在上课时,只是让学生利用书中的图形来进行探究。对于勾股定理的证明,只是用了四个全等的直角三角形拼了拼,运用同一图形的不同表示法得出了结论。一节课,将课堂重点放到了对勾股定理结论的记忆和运用上,淡化了教材对勾股定理的探索和证明过程,结果只有班内少数同学学到了探索和证明方法,教学效果不佳。
这节课讲过没多久,由于要参加优质课比赛,我又认真对这节课进行了准备。针对教材的任务要求,我对本节课的教学过程是这样设计的:
1、欣赏图片,激发兴趣
通过欣赏在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,引入课题。
接下来,让学生欣赏传说故事:相传25前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
2、分析探究,得出猜想
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
3、拼图证明,得出定理
先了解赵爽的证明思路,然后让学生利用学具自己剪拼,并利用图形进行证明。
由于难度比较大,组织学生开展小组合作学习。教师要巡回辅导,给予学生必要的帮助。
4、反思归纳,总结升华
一是让学生自己回顾总结本节的收获。(当然多数为具体的知识和方法)。二是教师要引导学生学习科学家敏锐的观察力和勤于思考的作风,不断提高自己的数学素养,适时对大家进行思想教育。
5、练习巩固
主要练习勾股定理的其它证明方法。
6、作业设计
请你利用网络资源,收集有关勾股定理的证明方法来进行学习。写出有关勾股定理知识的小论文,以便用来参加全市“小小科学家”创新大赛。一个月过去了,我已忘记了这一项特殊的作业,但部分学生却写出了出乎意料的小论文。
在优质课上,对教材中的探究内容,不但制作了多媒体课件,还让每个学生都准备了探究图形和拼图纸板。在课堂上,学生通过自己尝试探究、小组交流合作、集中成果展示等多种形式参与课堂活动,虽然已是讲过的知识,但在试讲(本班学生)和比赛中(借外校学生上课),由于这次是让学生来探究获取知识,学生普遍参与,学习兴趣深厚,参与活动的积极性很高,小组分工合作任务明确,课堂效果很好。学生在掌握了知识的同时,由于真正经历了探究的整个过程,对科学家敏锐的观察力和勤于思考的作风理解颇深,并学到了一些新的探究方法,在思想上也受到了教育和启迪。课堂教学目标顺利完成,整个课堂丝毫没有那种“熟课”学生不想上的痕迹。
通过这节课的两种不同的上法,以及学生的不同表现与收获,让我更深刻地认识到:
(1)新课改理念只有全面渗透到教育教学工作中,与平时工作紧密结合,才能够促进学生的全面发展;
(2)教师要充分利用课堂内容为整体课程目标服务,不要仅限于本节课的知识目标与要求,就知识“教”知识,而要通过知识的学习获得学习这些知识的方法,同时,还要充分利用课堂对学生进行情感态度价值观的教育,真正让教材成为教育学生的素材,而不是学科教学的全部;
(3)要相信学生的能力,为学生创造自我学习和创造的机会(如布置开放性的学习任务:数学实践活动、研究学习、写小论文等)。我相信:只要坚持不懈地这样去做,不但能很好地实施新课改,实现教育的本来目标,而且也一定能让学生“考出”好的成绩;不过,这样教师一定不会轻松。
勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位。
八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法 。 但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生。
基于以上原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识。从而教给学生探求知识的方法,教会学生获取知识的本领。并确立了如下的教学目标:
1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。
2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。
3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。
本节课根据学生的认知结构采用“观察——猜想——归纳——验证——应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想.另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+ b2= c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。
除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.
通过这节课,备课、上课后,我个人还有一些困惑,
一是问题情境的创设(放片子),原本的意图是激发学生的学习兴趣,可是感觉学生反映平平。创设什么样的问题情景更合适?
二是:探究问题的设计(放片子),本节课是一节典型的探究课,如何设计探究问题,才能使学生在探究过程中数学学习能力得到提高,教学任务顺利完成并达到预期效果?
新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中,将知识的获取与能力的培养置身于学生形式各异的探索经历中,关注学生探索过程中的情感体验,并发展实践能力及创新意识,为学生的终身学习及可持续发展奠定坚实的基础。
首先讲解勾股定理的重要性,让学生明白勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位,从而激发学生的求知欲。
一、精心编制数学教学目标知识与技能:1.让学生在经历探索定理的过程中,理解并掌握勾股定理的内容;2.掌握勾股定理的证明及介绍相关史料;3.学生能对勾股定理进行简单计算。
过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,发展合情推理能力,并体会数形结合和特殊到一般的思想方法。
情感态度与价值观:体会数学文化的价值,通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,激发学生发奋学习。
二、优化数学教学内容的呈现方式(一)创设问题情境,引导学生思考,激发学习兴趣。
1.2002年国际数学家大会在北京举行的意义。
2.电脑显示:ICM20xx会标。
3. 会标设计与赵爽弦图。
4. 赵爽弦图与《周髀算经》中的“商高问题”。
(二)通过学生动手操作,观察分析,实践猜想,合作交流,人人参与活动,体验并感悟“图形”和“数量”之间的相互联系。
1.观察网格上的图形:分别以直角三角形的三边向外作正方形,三个正方形的面积关系。再利用几何画板演示,引导学生去观察,大胆的猜测。
2.引导学生将正方形的面积与三角形的边长联系起来,让学生进行分析、归纳,鼓励学生用用语言表达自己的发现。采取“个人思考——小组活动——全班交流”的形式。
3.让学生自己任画一个直角三角形,再次验证自己的发现,在此基础上得到直角三角形三边的关系。
4.电脑演示:锐角三角形、钝角三角形三边的平方关系,从而进一步认识直角三角形三边的关系。
5.通过几个练习,了解直角三角形三边关系的作用。
(三)继续动手操作实践,思考探究,拼图验证猜想。
1.学生动手用准备好的四个直角三角形拼弦图。
2.利用弦图来验证勾股定理。采取“个人思考——小组活动——全班交流”的形式。
(四)拓展延伸,发挥作为千古第一定理的文化价值。
1.简单介绍勾股定理的文化价值。
2.阅读:勾股定理成为地球人与“外星人”联系的“使者”。
3.电脑演示:欣赏勾股树。
4.推荐进一步课外学习的网址。
5.与课头的“ICM20xx”在中国举行的意义首尾呼应,进一步激发学生追求远大目标,奋发学习。
勾股定理是我们这学期教学中一个非常重要的定理,它揭示了直角三角形的三边之间的数量关系,是典型的数形结合思想的运用,拿着我们初二数学备课组全体老师的精心设计的讲学稿,上完课后,反思不少。本节课的设计主要是根据学生的认知结构,“以画一画、量一量、算一算、证一证、用一用”为主线轴展开教学的,着实体现了知识的发生、形成和发展的过程,真正地让学生体会到观察、归纳、验证的思想和数形结合的思想,探究出勾股定理的内容,并能做到简单地应用,主要成功的地方有:
一、导入新课,设疑巧激趣。
引入20xx年在北京召开的国际数学家大会会标,展示“弦图”并设疑,迅速集中了学生的注意力,把学生的思绪带进了特定的学习环境中,激发了全班同学的浓厚兴趣和强烈的求知欲,为本节课的成功创造了有利条件。
二、引导量量、猜猜、证证,有条不紊,思路清晰。
让学生动手画直角三角形,观察、分析,引导学生自己得出结论,再对结论进行科学的论证,用所得的结论解决数学问题。在课堂上,探索目标明确,体现了教学的重点和难点,充分发挥了学生的主体作用,调动了学生的积极性,培养了学生动手操作的能力,体现了以学生为主体的意识,各环节衔接紧密,学生课堂反应好。
三、注重学生的情感目标,实现加强爱国主义教育。
本节课在教学探讨的过程中,还渗透着勾股定理的历史方化背景,激发学生的民族自豪感,促使探索新知识的热情,整个课堂师生和谐,气氛好;师生共同探讨并验证定理,鼓励学生再用其他方法来验证所得的勾股定理结论。
四、课堂上充分体现学生的主体地位,教师是组织者,引导者。
例:在引入拼图验证定理时,学生以前从未接触过,故在教学中我就多给学生适当指导和鼓励,尽量做学生的组织者、合作者。
通过这节课,备课、上课之后,感悟点点滴滴,确实还存在着一些遗憾。
①感觉今天这堂课没有平时上课的气氛那么浓,部分同学认为是录像课,不敢抛头露面,甚至连回答问题的声音都小了很多,故主动提问的人较少。
②讲学稿编设的内容较多,有点欲速则不达的感觉。
本节课根据学生的认知结构采用“观察--猜想--归纳--验证--应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。另外,我在探索的过程中补充了一个倒水实验,(放片子)我个人觉得效果很好,它让学生深刻的体会到了,不是所有三角形三边都有a2+ b2= c2的关系,只有直角三角形三边才存在这种关系,并且实验很具有直观性,便于学生理解,而且是在学生的学习疲劳期出现,达到了再次点燃学生学习热情的目的,一举多得。
除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神。
练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用。
让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面。给学生自由的空间,鼓励学生多说。这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力。
作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野。
通过这节课,备课、上课后,我个人还有一些困惑,一是问题情境的创设(放片子),原本的意图是激发学生的学习兴趣,可是感觉学生反映平平。创设什么样的问题情景更合适?
二是:探究问题的设计(放片子),本节课是一节典型的探究课,如何设计探究问题,才能使学生在探究过程中数学学习能力得到提高,教学任务顺利完成并达到预期效果?
本节课的数学设计主要是从面对全体学生,针对学生知识水平、生活环境、思维特点、认知风格的差异等方面进行编写讲学稿的;它的主要目的是让学生应用所学的勾定理解决现实生活中的实际问题。由于学生才刚刚掌握勾股定理,根据教材,单刀直入,要求学生运用其定理解决生活中的实际问题,对部分学生来说还存在着一定的困难。故我们初二级组全体数学老师,对教材知识内容进行了有效的整合,从中提炼教学资源,把本章的教学内容进行了重建组合,使之符合我们的学生的认知特点,心理特点级学习特点,让学生学起来轻松,运用起来灵活。本节课主要是围绕“设置问题情境――建立教学模型――解释――应用及拓展”这一主线展开教学工作的。其闪光点主要有:
一、创设问题情境,引导学生积极思考,激发其探究欲望。
激发学生探究问题、解决问题,首先要激发其探究的兴趣,欲想要学生感兴趣,首先教师必须先创设与学习内容紧密相关的'问题情境,能引导学生进行“数学思考”。本节课一开始,教师拿来一块木板表演从一间小小的门框穿过,横着进不了,竖着也过不了,问学生怎么办?瞬间,木板过门框问题成了大家讨论的焦点;同时引导学生,建立数学模型,突破将形转化为数这一思想转变难点。
二、能调动全体学生参与教学活动。
课堂教学活动形式多样化,有个人思考,有小组活动,有全班交流,让学生进行分析归纳,教师鼓励学生尽量用自己的语言表达自己的发现。感悟“图形”与“数量”之间的相互关系,将教学内容生活化,动态化,使学生更真切地感受到勾股定理的使用性,整节课师生之间均处与主动状态。
三、讲学稿的设计,不拘泥于教材,吃透教材,敢于创新。
讲学稿中所设计的例题或习题,富于生活气息。例、木板过门框、折断的树,电视机的大少等,都与现实生活有关。其实是告诉学生数学是为生活服务的,同时,数学也是来自于生活。
四、教学目标明确,能突破教学重点、难点,教学程序有条不紊,思路清晰,或活而不乱。教师具有一定的调控能力,能轻松驾御课堂,应付自如。学生在课堂内能正确完成预设的练习。
五、注重知识的前后连贯性,练习具有一定的层次性,使全体学生学有所用,课后拓展题,拓宽了学生的思路,培养了学生的审题能力,挖掘学生的潜能。
上完一节课下来,总感到有点遗憾。不足之处说出来与大家共同探讨。例题的解答板书教师应在黑板上一步一步示范,尽量少用多媒体示范,因为幻灯片一会儿就换了,不利于学困生学习;讲学稿的编设内容过于简单基础化,不适合优生的培养,课堂中集体回答问题较多,学生单独思考、答题、独立完成作业的机会不多;课后作业与堂上练习拓展不够深,有待改善。但愿我们能互相学习,取长补短,共同进取。
勾股定理教学反思
新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。
为此我在教学设计中注重了以下几点:
一、让学生主动想学
上这节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,激励他们奋发向上。同时培养学生的自学能力及归类总结能力。
二、在课堂教学中,始终注重学生的自主探究
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的'发展。
对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。
三、教会学生思维,培养学生多种能力
课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力……
四、注重了数学应用意识的培养
数学来源于实践,而又应用于实践。因此从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。
整节课都是在生生互动、师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。但本节课拼图验证的方法以前学生没接触过,稍嫌吃力。另在举勾股定理在生活中的例子时,学生思路不够开阔。以后要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。
勾股定理教学反思
本学期我们学习了人教版第十八章《勾股定理》这一章节,现在总结如下:
一、变学生被动学为主动学
节课前一个星期教师布置给学生任务:查有关勾股定理的资料(可上网查,也可查阅报刊、书籍)。提前两三天由几位学生汇总(教师可适当指导)。这样可使学生在上这节课前就对勾股定理历史背景有全面的理解,从而使学生认识到勾股定理的重要性,学习勾股定理是非常必要的,激发学生的学习兴趣,对学生也是一次爱国主义教育,培养民族自豪感,特别是“赵爽弦图”激励他们奋发向上。同时培养学生的自学能力及归类总结能力。
二、注重学生自主探究学习模式
首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。对于拼图验证,学生还没有接触过,所以在教学中教师给予学生适当指导与鼓励。充分体现了教师是学生数学学习的组织者、引导者、合作者。
三、培养学生多种能力,教会学生多种思维
课前查资料,培养学生的自学能力及归类总结能力;课上的探究培养学生的动手动脑的能力、观察能力、猜想归纳总结的能力、合作交流的能力。课后加强学生自学能力,总结的能力。
四、培养数学应用意识
数学来源于生活,而又应用于生活。因此必须从实例引入,最后通过定理解决引例中的问题,并在定理的应用中,让学生举生活中的例子,充分体现了数学的应用价值。整节课都是在生生互动、师生互动的和谐气氛中进行的,在教师的鼓励、引导下学生进行了自主学习。学生上讲台表达自己的思路、解法,体验了数形结合的数学思想方法,培养了细心观察、认真思考的态度。
五、不足之处:
本节课拼图验证的方法以前学生没接触过,稍嫌吃力。举勾股定理在生活中的例子时,学生思路不够开阔。实际问题中,学生难将实际问题转化为数学问题来解决,使得学过的'知识和实际问题有点脱离,所以在后面的教学过程中要多培养学生实验操作能力及应用拓展能力,使学生思路更开阔。
新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中;将知识的获取与能力的培养置身于学生形式各异的探索经历中;关注学生探索过程中的情感体验,并发展实践能力及创新意识。为学生的终身学习及可持续发展奠定坚实的基础。总之教学中要多思考,多反思,真真切切让我们的学生学好数学,将数学学好。
导入新课,是课堂教学的重要一环。“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对这堂课教学的成败与否起着至关重要的作用。运用多媒体展示这一有意义的图案,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。
本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.并确立了如下的教学目标:
1、学生经历从数到形再由形到数的转化过程,经历探求三个正方形面积间的关系转化为三边数量关系的过程。并从过程中让学生体会数形结合思想,发展将未知转化为已知,由特殊推测一般的合情推理能力。
2、让学生经历图形分割实验、计算面积的过程,尝试从不同的角度寻求解决问题的方法,并能有效地解决问题,积累解决问题的经验,在过程中养成独立思考、合作交流的学习习惯;通过解决问题增强自信心,激发学习数学的兴趣。
3、通过老师的介绍,体会一种新的证明的方法——面积证法。并在老师的介绍中感受勾股定理的丰富文化内涵,激发生的热爱祖国悠久文化的思想感情,培养他们的民族自豪感。
除了探究出勾股定理的内容以外,本节课还适时地向学生展现勾股定理的历史,特别是通过介绍我国古代在勾股定理研究和运用方面的成就,激发学生爱国热情,培养学生的民族自豪感和探索创新的精神.练习反馈中既有勾股定理的基本应用,还有贴近学生生活的实例,既让学生感受到学习知识应用于生活的成就感,又使学生深刻了解勾股定理的广泛应用.让学生总结本堂课的收获,从内容,到数学思想方法,到获取知识的途径等方面.给学生自由的空间,鼓励学生多说.这样引导学生从多角度对本节课归纳总结,感悟点滴,使学生将知识系统化,提高学生素质,锻炼学生的综合及表达能力.作业为了达到提高巩固的目的,期望学生能主动地探求对勾股定理更深入的认识、拓展学生的视野.