下面是小编整理的20篇六年级数学上册《分数乘法》教学反思,希望能帮助到大家!
《分数乘法》六年级数学上册教学反思
一、以学生的数学基础为根本,创设情景,激发兴趣。
在这之前很多学生都看书了,已经有许多学生知道了分数乘整数的计算方法。开头依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设置复习题,为教学重点服务,使学生顺利掌握分数乘整数的意义与整数乘法意义相同。同时复习相同分数加法,为推导计算方法进行铺垫。
二、关注学生的思维,给学生较大的学习空间。
每个学生都有各自的生活经验和知识基础,面对需要解决的问题,他们都是从自己特有的数学现实出发来构建知识的,这就决定了不同的孩子在解决同一问题时会有不同的视角。在本节课中,我放手让学生用自己思维方式进行自由的、多角度的思考,学生自主地构建知识,充分体现了不同的人学习不同的数学的理念。由此我深深地体会到,包括教师在内的任何人,都不能要求学生按照我们成人的或者教材编写者的意图去思考和解决问题,那些单一的'、刻板的要求只会阻碍学生的思维发展。
三、反思不足,提炼经验。
本节课的重点是得出分数乘整数的计算方法,约分时,只能将分母与整数约分。我还没有完全放手让学生自己总结出计算方法,没时间多练。对学生还是不放心,老师讲得太多,强调的主题太多,一些注意事项没有变成学生的语言,让学生去发现,去解决,从而记忆不是很深刻。我觉得各种题型的练习还不够,没有让学生充分掌握好,跑得太快。只顾及到了成绩好的学生,从这一点,我深深体会到什么是备教材,备学生。课前要把知识点吃透把握住重点、难点,哪些要补充,哪些地方要创造性使用教材。学生以一个什么样的方式更容易接受,老师哪些地方该讲不该讲,都需要我们深思熟虑。
六年级数学上册《分数乘法》教学反思
由“搅乱”引起的反思。
今天象往常一样,在学生理解了一个数乘分数的意义之后,我想继续引导学生,通过画图去探究发现一个数乘分数计算法则的时候。一些同学嚷嚷开了“老师我会!”“老师我知道!”,“是用分子相乘的积作分子,用分母相乘的积作分母”“理由是……”……
在教学中,我们经常会发生这样的现象:老师刚刚开了一个头,一些学生就会把后面的`知识讲出来,结果一下子把老师事先设计的思路被学生给“搅乱”了。曾经我有过这样的烦恼和无奈:心理总是责备学生的“插嘴”,觉得这样以来使大多数学生缺少了自主探究克服困难的成功体验,也使我的教学没了层次,讲课缺乏激情。
对此,我也冷静的思考过,分析其原因:一方面,自己已经习惯做好充分的准备去面对毫无准备的学生,居高临下地将学生的思维牵进预设的圈内,而一旦放手让学生自主探究开了,教师就很难面对自己无法预测的学生众多的想法,缺乏教学的机智。更重要的方面,是教学理念上的差距。其实当他们把自己所掌握的知识告诉其他同学与老师的时候,他们是在享受学习给自己带来的骄傲。并且都是以极大的热情,把自己掌握知识的来龙去脉尽其所能告诉老师与同学。这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。那么我们教师还有什么理由责备学生、压抑学生呢?
现在的学生头脑灵活,有思想,现有的知识起点也是比较高的,这样对教师自身的素质提出了更高要求。因此,我们老教师应该适应新时代的发展,真正把自己主导下的课堂学习建设成为可供学生交流学习心得,整合学习资源,形成学习能力的促进平台。
回顾本节教学,我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
1、充分重视了学生的兴趣,在整节课中我营造了一种民主、和谐、宽松、自由的教学氛围,既为新知的学习营造良好的氛围,也让学生在不知不觉间做好情感上的准备。例题的选择、练习的设计都和生活实际相关,学生自始至终保持浓厚的兴趣,也体现了课堂教学整体结构的美。
2、本节课的教学中特别强调了线段图的作用,线段图的教学从三年级就开始了,但在平时的解题过程中学生没有利用线段图帮助分析理解题意的意识和习惯,究其原因是学生没有体会到线段图的作用,认为这是可有可无的东西,本节课这么强调线段图就是想让学生明白线段图能让你更清楚地找到数量之间的等量关系,能帮你找到与众不同的解法,能让你更准确地把握住数量之间的对应关系等等,只有让学生真正的明白其作用,才能有用的意识,从而形成用的习惯。
不足之处:
1、本节课,花了较多的时间让学生说不同的思考方法、思考过程,对于哪些学困生来说是不是有必要,因为他们只能听懂其中的某一些解法,在别人“说”的时候,他们在一定的时间段里成了“观众”和“听众”,如何更好地面向每一位学生是以后努力的方向。
2、反馈形式比较单调,缺乏激励性的语言和形式,某种程度上影响了学生学习的积极性,应采取多种形式如让学生间搞个小竞赛等来活跃课堂气氛,激发学生学习的兴趣。
面对今年的班级,作业批改是个问题,一直来,我喜欢面批,特别是对学困生,我觉得面批他们的作业对他们会有更大的帮助,因为学困生形成的原因总体来说有以下几个。
首先是接受能力差,他们往往反应慢,比同龄同学慢半拍甚至更多;其次,学习不用心,注意力集中不了,总是分神,如果课堂上趣味性的东西多,他又会“跑出”课堂更加收不拢心;再则,确实由于他对学习提不起精神,就是对读书“感冒”,再怎么弄都是心神疲惫;最后,还有可能是教师本身的素质,不能让学生对学习感兴趣,从而导致学习每况愈下。当然,最后一种的原因对小学生来说,发生的比例不大,毕竟儿童还是单纯的。针对学困生多的现状,我觉得我有必要对每一个学生的作业进行面批,我想,近几年自己的数学教学效果还说得过去的原因可能要归结在这上面。
进入六年级了,开学至今已近一个月,分数乘法应用题的教学也已经结束。但这块内容让我上得头疼,心烦。在课堂上,我很明确得按照分数应用题的解答方法:找准标准量——找出关键句——写出对应分率——用对应量=标准量×对应分率来解答。可是学生就是找不准分率,特别是当“求一个数的几分之几是多少”和“求比一个数多或少几分之几的数是多少”同时出现时,他们就弄不明白分率究竟是多少。我也知道分数应用题是个难点,一方面整数过度到分数,受整数的影响,学生适应度不够;其次,分数乘法、分数除法的计算刚开始,学生对把分数计算的结果化成最简的把握还是难点,不易掌握。
一种似懂非懂的状态从他们的表情上马上可以读出。在高质量的教学任务的要求下,我觉得对知识的强化训练还是必须的,而且一定要到位,所以这块知识点我是在有限的时间里,题量不多,要求以质量为主,我边巡视边指导,然后学生做完我及时面批,这样的反复训练学生有了很大程度的提高。再则大纲也要求,分数应用题是小学数学教学中的一大难点,在小学数学教学中占有相当重要的地位。除了引导学生正确分析、解答分数应用题,对于巩固和提高学生的数学基础知识,发展学生的思维能力,提高学生观察问题、分析问题和解决问题的技巧和能力都有积极的意义上,我也有跨度地做分数乘、除法应用题的对比性练习,因为分数乘法应用题是分数除法应用题的基础,分数除法应用题是由分数乘法应用题演变而来的,两者紧密联系易于混淆。而在教学时适当地进行对比训练,使学生在对比中求新、求异、求同、求实;这样学生在多变中思辨、纠错、探讨、沟通,以达到既长知识,又长智慧,收到事半功倍的良效。另外,在对学困生的辅导中,用直观的线段图进行分析,通过多变沟通联系,如补条件,补问题等的形式进行补充,这样也能提高学生解题的熟练程度。分数乘法应用题及分数除法应用题是这学期的难点,“温过而知新”,相信反复地进行有针对性的进行“磨练”,学生还是能进步的。
稍复杂的分数乘法实际问题是在教学简单分数实际问题的基础上教学的。回顾本节教学,我感到既有成功的喜悦也有不足,具体体现在以下几个方面:
一是充分重视学生说的训练。在以前应用题的教学中,对说的训练重视的不够,表现为学生只会做题不会说,这个片断,我不仅关心学生是否会解答问题,更关注解决问题是采用了什么方法,以及方法是怎样想出来的。引导学生把思考过程有条理的说出来,为了深化学生的思维,避免死记硬背、机械是模仿,解题后要求说出算式的依据,要说中及时得到反馈,进行矫正、补充,这种说的训练,不仅能帮助学生正确分析数量关系,提高分析、解决问题的能力,还能促进语言与思维的协调发展。
二是很好地解决了大部分学生会,怎么教的问题。因为学生已经掌握了一个数乘分数的意义,在此基础上学生本节内容并不难,为此我引导学生主动探索,培养他们学习应用题的兴趣。在以往的教学中,往往要求学生死记数量关系,找出谁是单位1,谁是分率,知道要求是分率对应的题用乘法计算等,学生只会用一种方法,长此以往,对灵活解题是不利的,在这个片断中,问题开放,采用四人小组合作,引导学生探索、相互研究,大胆发表不同的见解,让学生在说中学到知识,增长本领。
“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的一一对应关系。并根据关键句说出数量关系。
⑶帮助学生理解“一个数的几分之几”与“一个数占另一个数”的几分之几的不同。
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系。
今天象往常一样,在学生理解了一个数乘分数的意义之后,我想继续引导学生,通过画图去探究发现一个数乘分数计算法则的时候。一些同学嚷嚷开了“老师我会!”“老师我知道!”“是用分子相乘的积作分子,用分母相乘的积作分母。”
在教学中,我们经常会发生这样的现象:老师刚刚开了一个头,一些学生就会把后面的知识讲出来,结果一下子把老师事先设计的思路被学生给“搅乱”了。曾经我有过这样的烦恼和无奈:心理总是责备学生的“插嘴”,觉得这样以来使大多数学生缺少了自主探究克服困难的成功体验,也使我的教学没了层次,讲课缺乏激情。
对此,我也冷静的思考过,分析其原因:一方面,自己已经习惯做好充分的准备去面对毫无准备的学生,居高临下地将学生的思维牵进预设的圈内,而一旦放手让学生自主探究开了,教师就很难面对自己无法预测的学生众多的想法,缺乏教学的机智。更重要的方面,是教学理念上的差距。其实当他们把自己所掌握的知识告诉其他同学与老师的时候,他们是在享受学习给自己带来的骄傲。并且都是以极大的热情,把自己掌握知识的来龙去脉尽其所能告诉老师与同学。这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。那么我们教师还有什么理由责备学生、压抑学生呢?
现在的学生头脑灵活,有思想,现有的知识起点也是比较高的,这样对教师自身的素质提出了更高要求。因此,我们老教师应该适应新时代的发展,真正把自己主导下的课堂学习建设成为可供学生交流学习心得,整合学习资源,形成学习能力的促进平台。
分数乘法应用题大致可分为两部分:一部分应用题中的已知数是分数,但数量关系和解答方法与整数应用题相同;另一部分应用题是由于分数乘法意义的扩展而新出现的。本节课教学就属于“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用,它是分数应用题中最基本的。不仅分数乘法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。教学本课后的感受是:
1、开始结合复习题让学生回忆一个数乘分数的意义。对分数的意义进一步加深认识。
2、复习求一个数的几分之几是多少的文字题,为学习相应的分数应用题做准备。
3、在教学中我只注重了根据分数意义来分析题意,而忽视了对单位“1”的理解,重点应放在在应用题中找单位“1”的量以及怎样找的,为以后应用题教学做好铺垫。
4、以后在教学前我还要深钻教材,把握好课本的度,向其他老师请教,取长补短。特别是多向同年级的老师学习,提高自己的教学水平。
5、在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习。
本节课呈现了世界文化遗产北京颐和园图片。图中包含的主要信息是:北京颐和园由昆明湖和万寿山组成,其中昆明湖占地219公顷,万寿山占地面积仅是颐和园的1/4。借助问题“颐和园的占地面积是多少公顷”引入对列方程解决稍复杂的分数问的学习。这节课主要解决整体与部分的关系。教学时,从游览世界文化遗产的话题引入文字信息,激发学生学习的兴趣,然后引导学生根据数据信息提出与本节学习有关问题,展开学习活动。
本节课是在简单分数应用题的基础上进行教学,学生已有了一定基础,因此首先设计三道找单位“1”的复习题,为学生学习新知识做好辅垫。因为学生有了学习简单分数应用题的经验,因此在理解题意之后我放手让学生画线段图分析、解答试做,做完后让学生在小组内交流自己的解题思路讨论,讨论完成请学生上台展示方法。在学习过程中学生充分参与了课堂学习,成为学习的主人,同时培养了学生的口头表达、分析和与人合作的能力。
学生展示时是突出重点突破难点的一个重要环节,我围绕重点难点精心设计提问,并充分利用线段图引导学生理清题中数的关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:反馈形式比较单调,缺乏激励性的语言和形式,学生明白但表述不清楚,个别学生表述单位“1”加几分之几,表示什么意思时,发现还很有点模糊。因此,我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。
今天教学分数乘法应用题,在昨天的预备教学时,我便让学生做了预备题,即写出一句话,让学生先找出单位“1”,再让学生写出数量关系式,通过几题的训练,我觉得学生已经掌握了这种题型的数量关系,开始教学学生例题,学生学得也不错,然后让学生口述练一练的单位“1”与数量关系式,最后让学生解答,学生也顺利解答出来,但在中午所做的家庭作业中不少学生还出现了明显的错误。
中午做学生对19页的练习三第五题有大约二十个同学分不清单位一或数量关系而出错;下午做补充习题时也有学生在填单位“1”时出错,从这儿可以看出,我班学生对单位“1”的确定及数量关系式的确定还存在一定的缺陷,需要加强这方面的练习。如何准确定位单位“1”是一个关键问题,同时,现在还仅仅学习分数乘法应用题,学生还不会混淆、出大错,因此,应在这时让学生进行强化训练,力争使每一个学生都能准确找出单位“1”,定位数量关系式,这样,等到学生学习分数除法应用题与稍复杂的分数应用题时才不会出错。
我想,教学之余,还是多让学生找一些题目中的单位“1”,确定出数量关系式。这样,对学生以后学习分数应用题会有很大的帮助。
在教学较复杂的分数乘法应用题时,我是这样设计本节课教学过程的:
1、复习时我设计了找单位“1”和写数量相等关系式的练习,是为了学习新课做准备。
2、出示新课,让学生找单位“1”,画线段图分析。引到学生想:画图时,先画什么,再画什么?怎样画?
3、根据线段图,写关系式。
4、根据关系式列算式,并解答。
学生根据自己的想法,列出了两种不同的数量关系式,根据不同的关系式,列出了两种不同的算式。但是,在讲解算式的每一步算的是什么时,有一部分人对第二种算法中括号部分算的是什么,有点模糊,不能清楚地表述出来。在教学后,我真正感觉到,要让学生理解一个分率表示什么量的重要性,虽然在教学中也注意到了这点,但因为单位1加几分之几这样的分率是学生第一次接触到,因此要更为重视与注意引导学生理解它们的含义。
本课通过教学设计与实践操作,并反思教学过程,颇有收获。在以后的教学中,我要更深入地研究理解教材,把握其重难点,更深入地研究理解学生,考虑他们的学习方式,理解不同的教学设计对学生成长的利弊,力求使教学设计得更有利于他们去体验、去理解,注重对学生学习方法、学习情感的培养,从而真正促进学生的发展,培养他们良好的学习与思维品质。
一、为什么分子相成、分母相乘。
应该说,让学生结合图形理解为什么分母相乘是直观的,从课堂的1/5来看,学生现有5份中的1份,现在1/5的1/2就是把这一份平均分成2份取其中的1 份,那么要平均分成相等的几份,就相当于是把每一份都分成2份,5×2就是10,5×4就是20。那么为什么是分子相乘呢?在自己再次修改之后进行教学的时候,发现2/5×2/3为什么分子是2×2,其实第一个2表示是有2竖,第二个2表示是有2行,2×2就是2/5×2/3涂出的部分。
二、如何从分数乘整数到分数乘分数。
分数乘整数有几个数的几分之几和几个几分之几相加两种意义,到底哪一种意义可以迁移到分数成分当中来呢?1/5的1/2,感觉好像是一个数的几分之几?那么是否可以从这里入手,那么时候可以从3的1/2迁移到1/5的1/2呢?感觉不是非常的好,不利于分数图形的理解。那么情景图中的1/5×3理解成3个1/5,那么1/5×1/2就可以理解成1/2个1/5。比较之后,最终我选择了1/5的3倍来理解,1/5的1/2。进行迁移。
三、给学生一个自主的机会。
练一练在第2小题完成之后,安排了这样一个环节:分数相乘的积一定小于每一个乘数吗?在教学中,两个班,一个班一带而过,一个班花大力气让学生思考,让学生先思考,再从这道题目当中找出有哪几道题是小于的,那几道题目不是的?再让学生观察为什么有的是,有的不是?不是的原因是什么?观察发现当乘大于1的数的时候,就是大于另一个乘数了。这时候引导学生以前有没有这样的结论,小数当中也是如此,让学生把新知建构到旧知当中。
比较两次不同的教学过程,关于时间与效率两者之间的矛盾,该如何有效地进行处理,的确是一个值得去探究的问题。
在教学伊始,我直接出示“1棵树图占整张纸的1/5,3个这样的图形就占整张纸的几分之几?”问题情境,让学生带着问题去思考,并寻找解决问题的策略。有的学生会通过具体图形语言来数一数;有的学生会直接用算式来计算。在黑板上,呈现所有学生的方法,并引导学生找出之间的联系。紧接着,让学生回忆在整数乘法意义,在此基础上来学习分数乘法意义,便于学生更好地学习,培养知识迁移能力。在探索分数乘整数的计算方法时,学生运用自己的语言来说明计算结果。接着,学生在结合问题、图形进一步体会分数乘整数的计算方法。
这是一节计算课,看似很简单。可是,从学生的作业反馈情况来看,并不理想。学生的计算过程虽能正确地写出来,但是在结果上会出现没约分化简。这可能跟自己,在帮助学生理解那两种约分方法所存在的问题。在对比两种约分方法,我是先让学生试着说一说,两种约分方法的不同之处,学生也能说出来。我也做了一个小结:一种是在结果上约分;另一种是在过程上约分。但是,我却忘了让学生体会在过程上约分的优越性与简便性。所以,从学生第一次交上来的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。
一、让学生在探索的过程中理解:
在本单元的教学目标中,“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算” 。这是由数学目标中“数学过程”“问题解决”两个维度决定的;同时“探索”的过程也是达成“情感、态度和价值观”目标的重要途径。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到是活动有效的目的。例如在本单元的分数乘法(1)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。而在分数乘法(3)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略就比较妥当了。具体的讲就是:教师通过简单的具体事例进行集体引导,这便是“扶一扶”。再通过具体的探索要求帮助学生尝试着探索比较复杂的实例,这便是“放一放”。
二、回顾学生所做作业,出现问题集中表现在以下几点:
1、分数乘法的计算中,学生的约分错误较高,尤其是有公因数13、17、19的,好多学生都不能发现。
2、在教学中我注重了对单位“1”的理解、根据分数意义来分析题意,重视单位化聚的计算方法的复习,以及两步计算的求一个数的几分之几是多少的应用题的重点评讲,但是部分学困生对于一个数是另一个数的几分之几与一个数比另一个数多几分之几理解还是不透。
三、采取应对措施:
1、分数的约分进行强化训练。
2、复习分数乘法应用题时,根据分数乘法的数学模型,说出问题也就是求什么,写出题目中的数量关系。教学中要注意用线段图表示题目的条件和问题,强化分率与数量的一一对应关系,这有利于学生弄清以谁为标准,以及分率和数量之间的关系。
问题可以引发思考,思考促进改变方法,得法扭转教学局面。说明教师教学不怕有问题,有了问题想办法解决就会使教学损失减少到最小。在课堂上多激发学生的兴趣,课后多与学生沟通,了解他们的学习动态,根据实际情况来教学,提高教学质量。当然,教学前的准备细致周到,教学失误的可能性就会更小。
本节课是一节复习课,回顾本单元的教学,我认为“探索”是一个关键词——“结合具体的情境,在操作活动中,探索并理解分数乘法的意义”、“探索并掌握分数乘法的计算方法,并能正确计算”是本单元的重点及难点。
在教学过程中,组织学生进行对数学知识的探索活动,要根据不同的材料和背景采用不同的策略才能达到活动的目的。例如在本单元的分数乘法(一)中,由于学生有比较坚实的整数乘法意义的基础,所以对于探索分数乘整数的意义和计算法则的探索完全可以让学生独立进行。
而在分数乘法(三)中,由于学生刚刚认识“求一个数的几分之几是多少”的分数乘法意义,并且用图形表征分数乘分数的计算过程比较复杂,因此采用“扶一扶,放一放”的策略。具体的讲就是:通过简单的具体事例进行集体引导,再通过具体的探索要求帮助学生尝试着探索比较复杂的实例。
小学数学第一单元的新课已经结束了,接下来的几节课都是练习课,到昨天为止已经上了三节。整理和反思这三节课,对在新课程背景下的数学训练有了一些新的认识:
1.在新课程背景,我们还要不要进行数学训练。当前无论是创优课竞赛、各级的研究课,还是论坛、博客,大家都在热衷的讨论一些教材中的新增内容,或是探究、合作的教学方法,大家似乎都不很在意数学训练,有的教师甚至一提到“训练”马上就“色变”,认为将回到传统教育的老路上去了。我们冷静下来思考一下就会发现:我们现在所热衷的“组织学生探索数学知识,使他们经历数学知识的形成过程”实际上就是以学生“已有的知识经验”为基础的。如果学生对已有的数学知识理解掌握的不深刻、应用的不灵活,那么又如何能够进行新的认识活动呢?因此数学探索和数学训练往往是相互作用、互为基础的。
2.在新课程背景下,我们需要什么样的数学训练。
数学训练不等于“机械、重复”,应该体现对数学基础知识的应用性的训练。
(1)说理性训练。学生对一个数学知识掌握总是要经历一个由“具体——抽象——具体”的认识过程,其中数学基础知识的形成过程(具体——抽象),可以说是一个抽象概括(数学建模)的过程,而数学基础知识应用的过程(抽象——具体),可以说是一个演绎推理(对模型的解释与应用)的过程。在从具体到抽象的过程中学生认识的是数学基础知识的本质属性,在抽象到具体的过程中学生将认识到数学基础知识的应用范围(概念的外延),这是将起到深化理解概念和灵活应用概念的作用。在此过程中,学生将把数学基础知识的成立条件与具体问题中的条件进行比对,进行一系列的思维活动,由于小学生的思维处于发展的阶段,他们的内部言语并不发达,是片断的、条理性不强的,所以用学生的外部语言表述来促进其内部言语的整合与条理,这就是重视“说理训练”的意义所在。
(2)图形表征的训练。数与形是数学研究的两大对象,他们相互作用,互为表里。每一个形中多蕴含着一定的数量关系,而每一个数又都能通过图形直观的描述和反映。教学实践是我们有了这样一个认识:学生对数学知识的获得或是应用数学知识解决具体的问题,往往都是完成对数学语言、数学符合、数学图形的翻译过程。因此,有意识的训练学生用图形表征已学的数学知识,将有利于学生深刻的理解和掌握,并能为学生进一步学习积累数学活动的经验。
(3)计算技能的训练。当一个数学问题的解答思路确定之后,接下来的就是通过计算得到正确答案的过程。无论解决问题的思路多么的完美,如果不能准确、熟烂的计算,那么学生将不会完美的解决一个问题。再有对于比较复杂的问题,如果能通过口算或估算出没一个关键的数值,往往对解决问题有着至关重要的促进作用。因此,我们在教学中应该重视对学生基础口算的训练,加强估算能力的培养。
3.新课程背景下,数学训练的地形式
数学训练的内容应该突出基础性和应用性。数学训练的形式不应该是单一的、枯燥的,应该结合训练的内容和学生的具体情况突出趣味性、灵活性、竞争性、多样性。
根据以上的思考自己在这三节课的教学是这样安排的:
第一节:1.通过计算训练整合分数乘法法则。2.口算训练(直接写得数),通过观察发现分数乘法的因数与积之间的关系,在通过图形表征,应用分数乘法意义理解这种关系,深化对分数乘法意义的认识。3.单位转化,初步应用分数乘法意义解决实际问题。
第二节:1.解决具体问题(求一个数得几分之几是多少),感知分数乘法意义的应用。2.集体交流,剖析解题的思路。3.专项训练,理解分数条件(图形表征、语言叙述)。4.巩固练习,渗透对应思想。
第三节:综合练习
《分数乘法(一)》是分数乘法这一单元的第一课时,主要是结合具体情境,学生在具体操作活动中,探索并理解分数乘整数的意义,《分数乘法(一)》教学反思。同时,探索并掌握分数乘整数的计算方法,能进行正确计算,进而能解决简单的分数乘整数的实际问题,体会数学与生活的密切联系。
在教学伊始,我直接出示“1棵树图占整张纸的1/5,3个这样的图形就占整张纸的几分之几?”问题情境,让学生带着问题去思考,并寻找解决问题的策略,教学反思《分数乘法(一)》教学反思》。有的学生会通过具体图形语言来数一数;有的学生会直接用算式来计算。在黑板上,呈现所有学生的方法,并引导学生找出之间的联系。紧接着,让学生回忆在整数乘法意义,在此基础上来学习分数乘法意义,便于学生更好地学习,培养知识迁移能力。在探索分数乘整数的计算方法时,学生运用自己的语言来说明计算结果。接着,学生在结合问题、图形进一步体会分数乘整数的计算方法。
这是一节计算课,看似很简单。可是,从学生的作业反馈情况来看,并不理想。学生的计算过程虽能正确地写出来,但是在结果上会出现没约分化简。这可能跟自己,在帮助学生理解那两种约分方法所存在的问题。在对比两种约分方法,我是先让学生试着说一说,两种约分方法的不同之处,学生也能说出来。我也做了一个小结:一种是在结果上约分;另一种是在过程上约分。但是,我却忘了让学生体会在过程上约分的优越性与简便性。所以,从学生第一次交上来的作业来看,大部分学生都是在结果上约分,这样就导致部分学生没约到最简、或没约分。
《分数乘法(三)》的重点是理解分数乘法的意义,难点是推导分数乘分数的计算法则。分数乘分数的意义是分数乘整数意义的扩展,在学生学习了分数乘整数和求一个数的几分之几是多少后,教材先以古代名题引入,引导学生初步感受。接着开展“折一折”的活动,借助图形语言,体会“分数乘分数”的意义,初步探索分数乘分数的算法和算理。教学本节课后,我觉得以下几个方面值得反思:
1.关注学生的学习状态。教学中让学生真正主动地投入地参与到探究活动中,既兼顾知识本身的特点,有兼顾学生的认知特点和学生的已有水平,寻找合适的切入口,让学生感受到眼前问题的挑战性和可探索性,让学生经历折纸操作等过程,使学生发现并掌握分数乘分数的计算法则。由于在这个过程中讨论的素材都来源于学生,他们讨论自己的学习材料,热情高涨,兴趣浓厚,都想通过自己的努力,寻找发现。
2.关注学生的学习过程。让学生亲自经历学习过程:即让学生在动手操作——探究算法——举例验证——交流评价——归纳法则等一系列活动中经历“分数乘分数”计算法则的形成过程。这里关注了让学生自己去做、去感悟、去经历、去体验、去创造,同时也关注了学生解题策略的自主选择,关注了合作意识的培养。
3.关注学生的学习方法。在引导学生经过不断地思考去获得规律的过程中,着眼点不能只在规律的本身,更重要的是一种“发现”的体验,在这种体验中感受数学的思维方法,体会科学的学习方法。本课时从教学的整体设计上是由特殊去引发学生的猜想,再来举例验证,然后归纳概括,力图让学生体会从特殊到一般的不完全归纳思想。这其间渗透了科学的学习方法和实事求是的科学精神。
另外要注意避免过于繁琐的计算,不过适量的练习还是必要的,通过练习逐步提高学生的计算技能。
教材分析
本单元是在学生掌握了整数乘法,分数的意义和基本性质,以及分数加减法以及约分等知识的基础上进行教学的。本单元所学内容属于分数中的基本知识和技能,这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法、比、分数四则混合运算以及百分数的重要基础。所以在教学这部分内容时,应切实让学生理解一个数和分数相乘的意义,掌握一个数和分数相乘的计算方法,并能解决求一个数的几分之几是多少的实际问题,为后续学习打好基础。
学情分析
六年级共有24名学生,部分学生还没有养成良好的学习习惯,计算能力也还有待加强;大多数学生对新鲜事物比较敏感,喜欢动手操作,但思想不易长时间集中;有30%的同学基础相对薄弱,对数学学习的兴趣不高。
教学目标
1、使学生能理解分数乘整数的意义,经历探索分数乘整数的计算方法的过程。
2、能根据分数乘整数的意义推导分数乘整数的计算法则,并能正确地进行计算。
3、培养学生独立运用知识解决问题的能力,体验成功的快乐和学数学的价值。培养学生的迁移类推能力和自主探索的精神。
教学重点和难点
教学重点:让学生体验分数乘分数、分数乘整数的简便计算方法(先约分后相乘)。
教学难点:分数乘分数或分数乘整数先约分再相乘的书写格式。
新世纪小学数学五年级下册第一单元是《分数乘法》,本单元学习的主要内容有:分数乘整数、分数乘分数以及解决有关简单的实际问题。其中分数乘法(一)的主要内容是求几个相同分数的和,将分数乘法与整数乘法沟通,并探索分数乘整数的计算方法;分数乘法(二)的主要内容是求一个数的几分之几,将分数乘整数的意义加以扩展;分数乘法(三)的主要内容是分数乘分数的意义及计算方法。在教学如何引导学生理解分数乘法的意义时,我进行了一些思考。
一、分数乘法的教学中,在书写顺序中应该不区分被乘数与乘数。
小学数学第一学段学习乘法的认识时就取消了乘数和被乘数的区别,3×5既可以解释为3个5,也可以解释为5个3,学生借助具体情境认识到乘法是几个相同加数的和的简便运算。
本册教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?
教学时,通过沟通不同解决方法之间的联系(图解、加法解、乘法解),将整数乘法迁移到分数乘整数,理解题目的意思就是求3个1/5的和是多少?),让学生列式可以是1/5×3也可以是3×1/5。然后运用分数乘整数的意义解释计算的过程,使学生理解计算的道理,初步感知挖掘数学概念本身方法的重要性。
又如:教材第5页:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?
教学时,通过直观图引导学生理解题目的意思后(6个苹果的1/2是3个苹果),要有意引导“求淘气有多少苹果,就是求6的1/2是多少?”再通过另一种解决问题的方法:把每个苹果都平均分成2份,淘气是6个1/2,也就是6×1/2或1/2×6,从而用6×1/2或1/2×6两种列式方法解决了问题。最后,再引导学生比较两种不同的理解,从而拓宽了分数乘法的意义。也让学生初步体会到求6的1/2是多少?可以用6×1/2解决也可以用1/2×6解决。
二、注意让学生在具体的情境中理解分数乘法中隐藏的数学意义。
书写顺序中不区分被乘数与乘数,更要求我们在教学中一定要注意让学生在具体的情境中,理解情境描述中隐藏的数学意义!因此,通过具体情境,来呈现对分数乘法意义的多种解释,帮助学生理解分数乘法的意义则显得重要。如:上面所讲教材第2页第1题:一个图片占一张彩纸的1/5,3个图片占这张彩纸的几分之几?教学时,一定要让学生明白是求3个1/5的和是多少?,虽然,学生列出1/5×3或3×1/5解决了问题,但一定要让学生联系本题情境理解算式所表示的意义。
又如:刚才所举的例子:小红有6个苹果,淘气的苹果数是小红的1/2,淘气有多少苹果?当学生用6×1/2或1/2×6解决了问题后,一定要有意让学生明白:本题情境可以理解为求6的1/2是多少?从而让学生体验到求一个数的几分之几是多少可以用乘法计算。
三、要让学生从多角度理解分数乘法的意义
在避开具体的情境下,要让学生从多角度理解分数乘法的意义。如:1/5×3(3×1/5)表示的意义可以是求3个1/5的和是多少?求1/5的3倍是多少?或者把3缩小到原来的1/5实际上就是求3的1/5是多少?等。
又如:求3的1/5是多少?列式解答可以是1/5×3也可以是3×1/5。
关于分数乘法的以上解释,并不是哪一种解释是正确的,重要的是对于一个数学概念,我们应该尽可能多地让学生认识到不同的解释,这对于发展学生的数学概念是非常有益的。