二元一次不等式(组)表示平面区域教学设计(二元一次不等式组30道及答案过程)

今天小编在这给大家整理了二元一次不等式(组)表示平面区域教学设计(共含18篇),我们一起来阅读吧!

篇1:二元一次不等式(组)表示平面区域教学设计

二元一次不等式域教学设计

二元一次不等式(组)表示平面区域教学设反思

这节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,经历探索求二元一次不等式(组)表示平面区域,并培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,从而使他们能①准确表示二元一次不等式的区域的方法;②能正确地找出二元一次不等式组的公共部分。

在教学过程中,我复习一元一次不等式表示数轴的区间,从而引出二元一次不等式图形引发学生的思考;在探究“二元一次方程与二元一次不等式在坐标系上的关系”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出二元一次不等式表示直线一侧的区域并总结相应的方法。用数形结合的方法,通过特殊点找到平面区域,这是最容易理解的方法,也是最适用的方法。

通过对本节课系统的回顾,梳理,我发现部分学生在由实际问题抽象为数学模型的过程中,存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。

总体来讲,在教授中我深刻的体会到新教材与以往的不同,新教材以学生为本的教学理念始终贯穿本课。采用的将上课的主权交给学生,新颖、有效。而学生的学习积极性有很大的提高,学习效果好。原本枯燥的、抽象的纯数学的东西通过与实际联系,利用数形结合,变的有趣、易懂。不但促使学生掌握了课本上的知识,还促使学生加强了对日常事物的观察分析的能力。真正使教学提高到培养学生能力的层面上来了。但是这对教师自身素质的要求大大提高。只有自己不断的学习,充实自己,才能把新教材教好。

篇2:高中数学二元一次不等式教学设计

高中二元一次不等式教学设计

高中二元一次不等式教学反思

通过本节课的教学实践,我发现一些比较成功的地方:

利用知识联系实际的教学方法,激发学生的学习兴趣,提高学生学习效果。例如:在新课引入时,提出了上节课所留的问题,老牛背上的包裹数是多少,小马驮的是多少,很自然的引入本节课的内容:解二元一次方程组。你想知道x、y是多少吗?如何求出来呢?我们解过什么样的方程?是如何解的,能把这个二元一次方程组变成我们学过的一元一次方程组吗?提出了一连串的问题,激发了学生的好奇心、好胜心,学生们争先恐后的回答问题,增加了课堂的活跃氛围。这样的教学方法使学生对如何解二元一次方程组的印象更加深刻。

注重学生的合作精神与探究能力的培养,体现了新课改的精神。例如:在解决老牛与小马驮的包裹数时,我采用了分组讨论的方法,学生通过这个活动后,最好一致认为要想解决此类问题,关键是把其中的一个未知数用另一个未知数表示出来,从而达到了消元的目的。于是,我借机就把用一个未知数表示另一个未知数的形式复习了一遍,总结了解题的五个步骤。

注重知识的拓展与综合。比如:在做最后一个练习时,联系了完全平方与绝对值的综合性问题。求式子(x+y-2)2+|x-y-4|=0中x与y的值。

注重及时巩固练习,加深印象。本节课我采用了一对一的练习,每讲一种类型就让学生做三道相应的练习题,起到了很好的巩固效果。

同时,在本节课的教学过程中与出现了一些不足之处:

我觉得虽然课堂纪律不太好,但基本上所有学生都动了起来,注意力比较集中,对重点内容也都能掌握,感觉比以前所上的这节课效果要好。所以我想无论什么样的课只要在备课时能真正的将“备教材”“备学生”“用学生的眼光看教材”三者结合起来,那么我们就能将每一节课都上成学生不仅能学到知识,同时能主动参与其中的课,让数学课不再枯燥,不再死板,让学生在愉悦的心情中学到知识,成为学生喜爱的课

课堂上没有顾及到全体学生,虽然有大部分学生都参与到了教学过程当中,但有一部分学生的积极性还没有调动起来,他们还没有真正完全的参与到教学当中。我要学会因材施教,教学能容要以课本为依据,瞄准大多数学生,让学生们在低的起点下也能很好的完成知识的掌握。

忽视了二元一次方程组表示的规范化及一些细节问题,使得一部分学生只知道两个方程要括起来,但表示的并不规范。

没有强调可根据二元一次方程组的解的概念进行验根,致使有些学生解出来的解也不知道正误。

在进行讨论的时候没有组织好学生,中间出现了混乱,浪费了一定的时间。以后我应在课前做好充分的准备工作。

篇3:《一元一次不等式组》教学设计

【知识与技能】

1、了解一元一次不等式组的概念。

2、理解一元一次不等式组的解集,能求一元一次不等式组的解集。

3、会解一元一次不等式组。

【过程与方法】

通过具体问题得到一元一次不等式组,从而了解一元一次不等式组的概念,解出每个不等式,利用数轴求出各不等式解集的公共部分,从而得到不等式组的解集,通过解几个有代表性的.一元一次不等式组,总结出求不等式组解集的法则。

【情感态度】

运用数轴确定不等式组的解集是行之有效的方法。这种“数形结合”的方法今后经常用到,锻炼同学们数形结合的能力,提高学习兴趣。

【教学重点】

篇4:《一元一次不等式组》教学设计

【教学难点】

确定一元一次不等式组的解集。

一、情境导入,初步认识

问题1 现有两根木条a和b,a长10cm,b长3cm,如果要再找一根木条c,用这三根木条钉成一个三角形木框,那么木条c的长度有什么要求?

解:由于三角形中两边之____大于第三边,两边之____小于第三边,设c的长为xcm,则x<____,①x>____,②

合起来,组成一个__________。

由①解得_____________,

由②解得_____________。

在数轴上表示就是________________。

容易看出:x的取值范围是____________________。

这就是说,当木条c比____cm长并且比____cm短时,它能与木条a和b一起钉成三角形木框。

问题2 由上面的解不等式组的过程用自己的语言归纳出一元一次不等式组的解法。

【教学说明】全班同学可独立作业,也可分组自由讨论,10分钟后交流成果,逐步得出结论。

二、思考探究,获取新知

思考什么叫一元一次不等式组,什么叫一元一次不等式组的解集,什么叫解不等式组?

【归纳结论】

1、定义:

(1)一元一次不等式组:几个含有相同未知数的一元一次不等式合起来组成一个一元一次不等式组。

(2)一元一次不等式组的解集:几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。

(3)解不等式组:求一元一次不等式组的解集的过程叫解一元一次不等式组。

2、一元一次不等式组的解法:

(1)求出每个一元一次不等式的解集。

(2)求出这些解集的公共部分,便得到一元一次不等式组的解集。

篇5: 一元一次不等式组教学设计

【基于课标】

会用数轴确定由两个一元一次不等式组成的不等式组的解集

【基于对教材的理解】

一元一次不等式组是河南中考的必考内容,近五年的考卷多以填空选择出现。教材在这部分以解不等式组和确定解集为重点,中招考试落脚点也在于此。并且这部分内容常常结合一次函数、反比例函数来确定函数值范围。

【基于对学情的分析】

1、学生已有知识基础。

九年级学生已经初步掌握了初中三年的数学知识,经历了一元一次方程、一次函数、一元一次不等式的学习,积累一定的知识基础。大部分学生能够解一元一次不等式,但是基础薄弱的学生在用数轴确定解集时方向会出错。一元一次不等式解集的应用,确定字母的值或范围,很多学生在此容易迷惑,到底是未知数的范围还是字母的范围。

2、已有的活动经验

九年级学生具备一定的自学、交流、表达能力,具备有条理的思考分析和书写解答过程能力,思维正逐步由具体走向抽象。但是目前更多的还倾向于通过具体的问题来理解定义、定理和性质。3。学习本节可能出现的难点

(1)用数轴确定不等式组解集。

(2)用不等式组解集确定字母的值或范围。

【学习目标】

1、通过具体举例分析,会用不等式基本性质解一元一次不等式组。

2、会用数轴正确表示一元一次不等式组的解集。

3、能根据不等式组的`解集确定字母的值或范围。

【学习重点】

解一元一次不等式组

【学习难点】

(1)数轴确定一元一次不等式组解集

(2)用不等式组解集确定字母的值或范围

【评价任务】

1、能用待定系数法求二次函数表达式。

2、能用顶点坐标公式或配方法求出二次函数最值。

3、能用五点法画出二次函数图象。

【评价标准】

1、学生能通过看课本,说出这节课复习主要内容和重点

2、学生能正确举出一元一次不等式组的例子,并自主解答

3、学生通过借助数轴,能正确表示不等式组的解集

4、学生积极参与讨论,能用所给解集求出不等式组中字母的值或范围。

【评价方式】

以交流式评价和表现性评价和检测为主要方式进行。

1、交流式评价。

通过师生、生生对话交流,及时对学生进行评价。

评价内容如下:根据学生对以下活动的开展情况检测任务的完成。

针对评价任务1:

请一两位同学说说这节复习课的主要知识点和复习重点。

针对评价任务2:

(1)请同学举一个一元一次不等式组的例子,并请该同学上台板演解答过程。

(2)结合学生给出的例子,再画出另外三种解集情况,学生单独回答不等式解集。

针对评价任务3:

小组讨论交流,选出中心发言人回答确定字母值或范围的方法。

2、表现性评价。

通过独立思考,互学,师生互动、生生互动观察学生在活动中的表现以及回答问题情况对学生进行评价。

3、检测评价。

通过当堂检测3个小题,对学生进行检测性评价。

【学习过程】

一、复习引入

1、回顾上节课复习内容

2、呈现课标要求

3、呈现本节复习内容在中考中的出题方向和题型

4、明确本节复习目标

二、基础巩固

任务1:重回课本巩固概念

(1)阅读八下课本56页——59页,概括出主要内容和重点。(多媒体展示主要内容,学生齐读一遍,再强调重点是解不等式组。)

任务2:解一元一次不等式组并确定其解集

(2)学生举一个一元一次不等式组的例子,全班同学一起求解,并要求在解题后总结易错点。

(请一位同学板演过程,批改时用彩色粉笔标出易错之处。)

(3)不等式组的解集,我们是通过数轴来确定的。现在老师把这条数轴上的解集范围变化一下,请你再确定解集范围。

(还有三种情况,在黑板上画出来,提问学生回答。)

篇6:一元一次不等式组教学反思

这节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,经历探索求一元一次不等式组解集的过程,并培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,从而使他们能:①准确的解一元一次不等式;②能正确地找出几个一元一次不等式解集的公共部分。在教学过程中,我利用生活中的实际问题,使学生感知到要解决的问题同时满足两个约束条件,而两个约束条件都是不等式,这样,引入不等式组就比较自然;在探究“不等式组的解集”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出求不等式组解集的方法。用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。至于用“同大取大、同小取小、大小小大取中间、大大小小为无解”口诀求解不等式组,我认为这样可以让学生在不画数轴的情况下,更快地找到解集。

在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。

让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。

但是我发现部分学生在由实际问题抽象为数学模型的过程中,存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。我会吸取教训,更上一层楼。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

总体来讲,在教授中我深刻的体会到新教材与以往的不同,新教材以学生为本的教学理念始终贯穿本课。采用的将上课的主动权交给学生,新颖、有效。而学生的学习积极性有很大的提高,学习效果好。原本枯燥的、抽象的纯数学的东西通过与实际联系,利用数形结合,变的有趣、易懂。不但促使学生掌握了课本上的知识,还促使学生加强了对日常事物的观察分析的能力。真正使教学提高到培养学生能力的层面上来了。但是这对教师自身素质的要求大大提高。只有自己不断的学习,充实自己,才能把新教材教好。

篇7:一元一次不等式组教学反思

课后我把自己的课堂教学进行了冷静思考和总结,下面谈谈自己的收获和体会。

1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念,体现了数学是源于生活的,然后通过练习进行辨析,并让学生自己归纳注意点,再接下去是应用新知、巩固新知、再探新知、巩固新知、知识梳理、布置作业。整个流程比较流畅、自然。

2、利用多媒体进行辅助教学,能直观的展示了一元一次不等式中各解集的公共部分、使学生更容易理解一元一次不等式解集的意义。

3、本节课的最大的亮点是通过小组合作探究新知、自学例题等环节鼓励学生自己探究,让学生真正去思考、去尝试,培养学生观察、发现、归纳、概括、猜想等探究创新能力,让学生学会思考了,解决问题的能力也得到了锻炼,让学生经历了整个探究过程,真正体现了学生是数学学习的主体,教师是学生数学学习的引导者和帮助者。教学的重难点也得到了很好的突破,教学效果不错;

4、注意渗透数学思想方法的教学、利用类比与化归的思想引导学生归纳一元一次不等式组的有关概念。运用数形结合的方法,引导学生通过小组合作探究,通过借助数轴找出公共部分解出解集。

5、练习的形式新颖,请第一组的同学任点其余三组的同学板演,板演的同学如不会做,可请本组的同学教的做法,激发了学生的兴趣,更好的关注了学困生,实现了兵教兵。

几点不足:

1、在对整节课的时间把握上有所欠缺,学生探究的时间过多,以致堂堂清无法在课堂上完成。

2、课堂的节奏还可以更紧凑些。

如果重新上这节课,我一定再会改正以上不足之处,使本课的课堂教学效益更高。

篇8:一元一次不等式组教学反思

本月我顺利完成了课题研究展示课《一元一次不等式》的教学,作为一个课改实验的数学教师,我切实体会到新课改给我和我的学生带来诸多收获。

在《9.3一元一次不等式组》教学中,我非常重视开头的引入教学,激发学生学习的兴趣。注意概念的引入,从实例出发,展现知识的形成过程,使学生能够利用已学的知识,通过知识迁移、类比的方法归纳得出概念以及不等式组的解法。使他们不会觉得数学概念学习的单调乏味,逐步提高学生抽象概括的能力。教学时,我根据新课程理念精神,利用学生的感性材料的作用,以启发和小组讨论交流为主,进行谈话式的引导,并注意利用设计练习题,以期达到调动学生学习积极性,使学生的思维更加活跃,让学生在理解一元一次不等式组的有关概念的基础上学会用数形结合的思想解决数学问题,我觉得通过本章教学学生的收获不小。

本节课的教学中我觉得自己:

1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业。整个流程比较流畅、自然。

2、精心处理教材:我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备。

3、教态自然、大方、亲切。能给学生以鼓励,能较好地激发学生的学习兴趣;比如在知识归纳环节让学生了解一元一次不等式组的解集的四种解集的不同情况时用了通俗的语言即:同大取大,同小取小,大小小大取中间,小小大大题无解。我觉得学生非常善于总结、类比和思考,所以我及时予以肯定。

4、通过探究新知的环节鼓励学生自己探究,让学生真正去思考、去尝试,让学生变得更会思考了,解决问题的能力也加强了,真正体现学生的主体地位,并能有效促进生生互动,效果不错。

5、在对整节课的时间把握上有所欠缺,致使拖了堂,当然这也存在着经验不足,如在引课时设置不够合理,如果我再上一次这个内容我会把探究活动直接作为学生课后探究的`问题,而且在小结后我将让学生利用本节课所学知识解决引例中的问题,让学生领会到数学也是应用于生活的,让学生能体会到所学知识的用处,借此也可引出下一节课,起到抛砖引玉的作用。

6、还应更注重细节,讲究规范,强调反思。

篇9:一元一次不等式组教学反思

一元一次不等式(组)的主要内容是一元一次不等式解法及其简单应用。这是继一元一次方程和二元一次方程组的学习之后,又一次数学建模思想的教学,是培养学生分析问题和解决问题能力的重要内容。本单元的教学设计主要是改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和经验,实施开放性教学。数学来源于生活,又应用于生活。因此我们在认识不等式的教学过程中大量地运用现实生活情景:如天气预报、猜猜我几岁等实际情境引入与学生共同探索,让学生在探索中发现新的知识,认识不等式,让学生意识到不等关系和相等关系都是现实生活中的重要数量关系,意识到数学就在我们身边,离我们是那么的近,增强学生学习的兴趣与自信心。

而不等式的基本性质和解一元一次不等式,是一些基本的运算技能,也是学生以后学习一元二次方程、函数,以及进一步学习不等式知识的基础。由于函数、方程、不等式度是刻画现实世界中量与量之间变化规律的重要模型,因此,我们在一元一次不等式的应用教学中通过旅游优惠、购物优惠等具体例子渗透这三者之间的内在联系,帮助学生从整体上认识不等式,感受函数、方程、不等式的作用,进一步提高学生分析问题解决问题的能力,增强学生学数学、用数学的意识。

在课前,我做了很多的准备,对我所教的学生会出现什么样的情况,我都做到了心中有数。满以为自己可以打一个漂亮的战役。

当我开始上课时,情况真的出乎我的意料。学生们不但一点都不配合,而且好像对这部分知识掌握的不是很理想,虽然我费尽脑汁想尽办法去让学生动起来,可收效甚微。我想我们上课的目的就是让孩子变得有个性,变得能积极主动发言。到底我错在什么地方了呢?

经过分析我终于找到了答案,急于求成。在上课时只想到要展示三项技能可忘记了学生的渐进舒展的规律。还没等学生得以舒展时,就进入下一个环节。导致学生没能舒展开。同时复习课上的练习应在于精而不在于多,由于讲求多练,导致学生没有真正把知识练透,削弱了复习的效果。

通过这节课,让我在教学的道路上又成长了许多。使我明白了怎么更能上好一节数学课

篇10:一元一次不等式组教学反思

本节课通过多媒体呈现习题,节省了大量的时间,充分利用了宝贵的课堂45分钟。通过学生自我训练、小组互帮和教师释疑,成功地解决了在新授过程中存在的部分遗留问题,达到了巩固一元一次不等式和一元一次不等式组的相关知识,尽管培养学生乐于探索的学习品质不是一朝一夕的事,但本节课在这方面也发挥了积极的作用;对知识的综合、迁移和应用等能力也起到了潜移默化的功效。但在教学过程中我觉得还有如下遗憾:

在课件中尽管有一个知识网络图,但学生在学习过程中对本章知识并没有能够形成知识体系,没有能够构建完整的知识网络图。主要原因应该是:

1、知识网络图不是由学生自我总结得出的。

2、没有和学生共同分析知识结构图中各部分内容之间的关联。

3、网络图中做了链接,学生点击后进入链接内容,知识网络很快消失。

在今后的教学中,一定要让学生自我总结,自我设计知识结构图,教师引导规范由学生板书在黑板上,使之和课件中的结构基本一致,然后呈现课件中的知识结构图,再由学生点击进入下一阶段。

篇11:一元一次不等式组教学反思

回顾本节课,我有以下感受:

1、整体的思路比较清晰:

先从实际生活中遇到的问题出发引出一元一次不等式组的概念(同时也体现了数学是源于生活的),然后通过练习进行辨析,并让学生自己归纳注意点(巩固概念),再接下去是应用新知、巩固新知、再探新知、巩固新知、探究活动、知识梳理、布置作业,整个流程比较流畅、自然;

2、精心处理教材:

我选的例题和练习刚好囊括了解由两个一元一次不等式组成的不等式组,在取各不等式的解的公共部分时的四种不同情况,以便为后面的归纳小结做好准备;

3、能给学生以鼓励,能较好地激发学生的学习兴趣;

比如在知识梳理环节安楠同学区分了解一元一次不等式组和解二元一次方程组是不一样的,它们是有本质的区别的,我觉得她非常善于总结、类比和思考,所以我及时予以肯定;

4、在对整节课的时间把握上有所欠缺,致使拖了堂,当然这也存在着经验不足,在做课件时没预先设计的问题;如果我再上一次这个内容我会把探究活动直接作为学生课后探究的问题,而且在小结后我将让学生利用本节课所学知识解决引例中的问题,让学生领会到数学也是应用于生活的,让学生能体会到所学知识的用处,借此也可引出下一节课,起到抛砖引玉的作用;

5、在知识梳理环节有同学提出疑问:

若出现两个一样的不等式它的公共部分怎么找?若有三个不等式组成的一元一次不等式组它的解又是怎样的?能否直接就在数轴上画出它的公共部分等问题时有些没能及时给学生以肯定,有些引导不够到位。

篇12:一元一次不等式组教学反思

本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,猜想,验证的问题研究方法,培养学生善于动手、善于观察、善于思考的`学习习惯。利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生之间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

课堂开始通过回顾旧知识,抓住新知识的切入点,使学生进入一种“心求通而未得,口欲言而未能”的境界,使他们有兴趣的进入数学课堂,为学习新知识做好准备。在这一环节上,留给学生思考的时间有点少。

通过问题四让学生比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。

在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的。符号语言表达能力。

在练习的设计上两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。

让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。

篇13:一元一次不等式组教学反思

在教学过程中,利用生活中的实际问题,使学生感知到要解决的问题同时满足两个约束条件,而两个约束条件都是不等式,这样,引入不等式组就比较自然;在探究“不等式组的解集”时,引导学生运用数形结合的方法,引起了学生探究的兴趣,学生小组合作探究,利用已有知识,很容易得出求不等式组解集的方法。用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法。根据不等式组的四种情况,引导学生结合数轴归纳出“同大取大、同小取小、大小小大取中间、大大小小无处找”的口诀求解不等式组,运用口诀的同时,头脑中想象数轴,使数形有机结合。

通过对本节课系统的回顾,梳理,我发现部分学生在由实际问题抽象为数学模型的过程中,存在一定的困难,教师要适时给以恰当引导,发展学生分析问题和解决问题的能力,并给学困生提供更多发言的机会。学生的学习积极性有很大的提高,学习效果较好。原本枯燥的、抽象的纯数学的知识通过与实际联系,利用数形结合,变得有趣、易懂。

篇14:一元一次不等式组教学反思

由于本节课的知识点多,又是一元一次不等式组的第一节课,学生主要是掌握如何利用数轴确定一元一次不等式组的解集和一元一次不等式组的解法,因此,在设计教学过程时,紧紧抓住如何确定一元一次不等式组解集这一重点知识和一元一次不等式组的解法。为了进一步加深学生对不等式组的解集的确定与理解,教学中注意运用以下几种教学方法:

(1)运用随堂课件启发学生的方法,结合数轴直观形象来研究与确定不等式组的解集;

(2)注重学生活动与教师活动的交流与配合;

(3)通过例题与练习,加深理解。

在数轴上表示数是数形结合的具体体现。而在数轴上表示不等式组的解集则又前进了一大步。因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题。

篇15:一元一次不等式组教学反思

一元一次不等式组教学反思

课后我把自己的课堂教学进行了冷静思考和总结,下面谈谈自己的收获和体会。

1、整体的思路比较清晰:先从实际生活中遇到的问题出发引出一元一次不等式组的概念,体现了数学是源于生活的,然后通过练习进行辨析,并让学生自己归纳注意点,再接下去是应用新知、巩固新知、再探新知、巩固新知、知识梳理、布置作业。整个流程比较流畅、自然;

2、利用多媒体进行辅助教学,能直观的展示了一元一次不等式中各解集的公共部分、使学生更容易理解一元一次不等式解集的意义。

3、本节课的最大的亮点是通过小组合作探究新知、自学例题等环节鼓励学生自己探究,让学生真正去思考、去尝试,培养学生观察、发现、归纳、概括、猜想等探究创新能力,让学生学会思考了,解决问题的能力也得到了锻炼,让学生经历了整个探究过程,真正体现了学生是数学学习的主体,教师是学生数学学习的引导者和帮助者。教学的重难点也得到了很好的'突破,教学效果不错;

4、注意渗透数学思想方法的教学、利用类比与化归的思想引导学生归纳一元一次不等式组的有关概念。运用数形结合的方法,引导学生通过小组合作探究,通过借助数轴找出公共部分解出解集。

5、练习的形式新颖,请第一组的同学任点其余三组的同学板演,板演的同学如不会做,可请本组的同学教的做法,激发了学生的兴趣,更好的关注了学困生,实现了兵教兵。

几点不足:

1、在对整节课的时间把握上有所欠缺,学生探究的时间过多,以致堂堂清无法在课堂上完成。

2、课堂的节奏还可以更紧凑些。

如果重新上这节课,我一定再会改正以上不足之处,使本课的课堂教学效益更高。

篇16:一元一次不等式组教学反思

教后记今天讲列不等式组解应用题,学生的问题出在阅读上。有的学生懒得读题,一看那么长的题就烦了。其实,你带着他们分析,他们也能列出来。而猴子分花生的问题引起了学生的兴趣:把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗?

有的学生用的是穷举法,换句话说,就是一个一个试。1只、2只、3只。。。试到5只时,满足条件了,学生说了:“老师,我算出来了,是5只!”有的还接着试,能试出6只也可以,而试到7只时就不满足条件了。所以,答案应该是两个:5只猴子,23颗花生;6只猴子,26颗花生。对于这种方法,我给予了充分的肯定,这是一种很好的方法,而且是学生容易理解、最易接受的一种方法,也说明了学生开动脑筋、认真思考了!当然,也说明学生对方程思想应用还是比较熟练的,但对于不等式思想解题还不习惯,所以我们有必要花大力气在学生已经理解的基础上进一步加大不等式解题的渗透,帮助学生从不等量关系入手,用不等式知识解题。

数量关系中的不等和相等是事物运动和平衡的反映,虽然量的不等是普遍的,绝对的,而量的相等是局部的、相对的。但初中教材对方程安排多些,在一定程度上误导学生应用方程思想解题,而不习惯从不等关系方面考虑问题,所以在学习这一章时,有必要加深学生对知识的理解以及对不等式解题的应用。

篇17:二元一次方程组教学设计

教学目标

1、认识二元一次方程和二元一次方程组.

2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

重点、难点

重点:理解二元一次方程组的解的意义

难点:求二元一次方程的正整数解

教学过程

一、复习导入

什么是一元一次方程?“元”指什么?“次”指什么?

什么是方程的解?

设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。

二、观看视频

观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。

视频内容

设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

三、探究新知

根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.

把两个二元一次方程合在一起,就组成了一个二元一次方程组.

提问:对比两个方程,你能发现它们之间的关系吗?

师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.

探究二元一次方程组的解:

满足x+y=10的值有哪些?请填入表中:

使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.

满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:

不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。

归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.

思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?

带着问题让学生观看洋葱数学视频二元一次方程组的解

视频内容

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

四、例题讲解

例、若方程2x2m+3+3y3n-7=0是关于x、y的二元一次方程,求m+n的值。

例2、暴风雨即将来临,一群蚂蚁正忙着搬家.其中有大蚂蚁和小蚂蚁,已知大小蚂蚁总共有1 00只,小蚂蚁一次只能搬一粒食物,大蚂蚁一次能搬两粒,一场忙碌过后,洞里的160粒食物刚好一次被安全转移,求大小蚂蚁各有几只?

例3、

学生思考,试着解答,最后共同宣布答案。

设计意图:在例题讲解过程中,让学生充分活动起来,通过例题探究来进行总结,不要让学生死记硬背,重点在理解,会灵活运用。

五、随堂练习

1.下列方程中,是二元一次方程的是( )

A.3x-2y=4z B.6xy+9=0

C.+4y=6 D.4x=

2.下列方程组中,是二元一次方程组的是( )

A. B.

C. D.

3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程为关于x,y的二元一次方程,则k值为( )

A.-2 B.2或-2 C.2 D.以上答案都不对

4.二元一次方程x-2y=1有无数多个解,下列四组值中不是该方程的解的是( )

A、B、C、D、

5.二元一次方程组的解为( )

A. B. C. D.

6.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( )

A.1种B.2种C.3种D.4种

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识

六、拓展延伸

1.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨,设一辆大货车一次可以运货x吨,一辆小货车一次可以运货y吨,根据题意所列方程组正确的是( )

A. B.

C. D.

2.甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试计算a2 016+(-b)2 017.

设计意图:这个环节是巩固本课知识点,通过设置练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。

七、课堂小结

以提问进行:

(1)、二元一次方程(组)的特征是什么?

(2)、二元一次方程组的解要满足什么条件?

设计意图:通过共同小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,再一次突出本节课的学习重点,改善学生的学习方式。有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.同时为以后的学习作知识储备.

八、教学反思

1.概念课教学模式:本节课的主要内容是二元一次方程(组)的有关概念,设计时按照“实例研究,初步体会——比较分析,把握实质——归纳概括,形成定义——应用提高,发展能力”的思路进行,让学生体会到是因为“需要”而学习新知识,逐步渗透应用意识。

2.类比法的运用:二元一次方程及其解的意义类比一元一次方程学习,一方面加深学生对于方程中“元”与“次”的理解,另一方面易于理清一元一次方程与二元一次方程“解”的相关知识的异同,同时为二元一次方程组相关概念扫清障碍。

3.分层递进,循环上升:学生对知识的理解,教师对学生的要求,都是由低到高,逐步提升,题目的设计从单一知识点的直接运用,逐渐到多个知识点的灵活运用,给学生设计必要的台阶,使其一步步向前,最终达到教学目标。

篇18:二元一次方程组教学设计

二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:

从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。

热门教案

学诗词

学名句