以下是小编为大家整理的7篇高等数学课件,希望对您有所帮助。
关于高等数学课件
学习目标:
1.理解和掌握比例的意义,了解比例和比的区别。
2.能根据比例的意义正确判断两个比能否组成比例。
3.探索国旗中的数学知识,渗透爱国主义教育。
教学重点:理解比例的意义。
教学难点:应用比例的意义判断两个比能否组成比例。
教学过程:
一、创设情境
1.请同学们回忆一下比的知识,你能说说什么叫做比?(举例说明)
教师板书学生举的例子并注明比的各部分的名称。
2.我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让学生求出它们的比值。
12:16
3/4: 1/8
4.5:2.7
10:6
学生求出各比的比值后,再提问:你有什么发现?
(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)
[设计意图:在学习比例之前,就强调了两个比的比值相等,为学习新知识提供了“最佳关系”和知识的“固定点”。
二、自主探究,构建新知
1.学生观察课本情境图,激发爱国情操。
四幅情境图分别呈现的是什么情景?
天安门升国旗仪式,校园升旗仪式,教室场景,国家间的会议
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2.板书国旗的长和宽,并提出问题。
天安门升国旗仪式:长5米,宽10/3米。
校园升旗仪式:长2.4米,宽1.6米。
教室场景:长60厘米,宽40厘米。
签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?
3.学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢?
学生自主观察、计算,发现国旗的长和宽的比值相等。
(1)比较学校操场上和教室里的国旗长与宽的比值。
2.4:1.6=3/260:40=3/2
2.4:1.6=60:40
(2)在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生回答,教师板书(说明:四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等的。)
像这样表示两个比相等的式子叫做比例。
[设计意图:为学生提供四个实际情境图,创设这个情境有五方面的考虑:一是使学生通过现实情境体会比例的应用;二是“四面国旗的大小不同,但因为是按照一定的比制作的,它们的长与宽的比值是相等”,由此引入比例意义的教学;三是依据四面国旗长与宽可以组成多个比例式,为比例意义的教学提供较多的资源;四是为以后学习图形的放大与缩小做铺垫;五是有助于在教学中渗透爱国主义教育,注重了“数学化”和“生活化”的结合,使这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程,让学生自己观察比较,总结得出比例的意义。让学生通过自己的'分析、思考、概括出了较为简洁的数学概念,学生感受到成功的喜悦,参与课堂的主动性被充分调动。]
4.我们也学过不同的两个量也可以组成一个比,如:
一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:
时间(时)25
路程(千米)80200
指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。
这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答,板书:
第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
让学生算出这两个比的比值。
指名学生回答,教师板书:80:2=40,200:5=40。
让学生观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。
[设计意图:应用上面的方法,在学生原有知识的基础上提出新问题,使学生由感性认识过渡到理性认识。引导学生自己思考解决问题,用自己理解后的语言叙述比例意义,培养了学生的思维能力,使学生既长知识又长智慧。
指着比例式,引导学生观察得知,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?
5.比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
比一个式子两数相除有两项
比例一个等式两个比相等有四项
三、练习反馈,巩固新知
做P33“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
[设计意图:通过这一组题的练习,增强了新知识的清晰度与稳定性,有利于学生掌握比例的意义,层次清楚。
四、拓展迁移,升华新知
1、填空。
5:2=80:()
2:7=:5
1.2:2.5=:4
[设计意图:此题有了数的形式的变化,兼备有意设难、激发挑战、活跃气氛的功效。
2、下面每组中的四个数能组成比例吗,把组成的比例写出来。(能写几个就写几个)
(1)4,5,12和15
(2)2,3,4和6
[设计意图:边讲边练逐步延伸了知识。提出条件让学生自己组成比例,有利于激发学生学习兴趣和调动学生思考的积极性。同时培养了思维的深刻性和灵活性。
五、总结
这节课你有什么收获?
高等数学学习课件
高数学习技巧:【学霸版】
1 认真听老师讲课,注意记笔记,不要忽略老师上课讲的任何一道习题,它可能就是你以后考试的题目。
2配套的辅导书最好每一道题目都做几遍,反复做,多理解。太难的题目不要太纠结,知道精髓就行。
3作业认真完成,认真改错。
4有空闲可以买辅导书,做一做题目。
5定期翻看笔记,加强印象。
6提前预习
高数学习技巧:【学渣版】
1上课认真听讲,把老师的笔记都腾到笔记本,把所讲的例题都弄懂。
2作业独立完成,不会的问同学,一定要把每道题都弄懂,因为考试会出练习册上的原题和例题。
3考前把作业的题目再刷一遍,还有历年的高数试卷,出原题或类似的题目的可能性很大哦~还有考前一定一定跟着老师的重点走,它是复习的曙光啊!~
高数学习技巧:【实用版】
一、摒弃中学的学习方法,尽快适应环境
一个高中生升入大学学习后,不仅要在环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。
从中学升入大学学习后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法会感到很不适应。这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性较强的基础理论课程。而学生正是习惯于模仿性和单一性的学习方法。这是从小学到中学的教育中长期养成的,一时还难以改变。
中学的教学方式和方法与大学有质的差别,中学的学习学生是在教师的直接指导下进行模仿和单一性的学习,大学则是在教师的指导下进行创造性的学习。【例如,中学的数学课教学完全是按教材的内容进行的,老师在课堂上讲,学生听,不要求学生记笔记。教师授课慢,讲得细,计算方法举例多,课后只要求学生能模仿课堂上所讲的内容解决课后习题就可以了,没有必要去钻研教材和其他参考书(为了高考增强学生的解题能力而选择一些参考书,仅是为了训练学生的解题能力的需要)】。而大学高等数学课程的学习,教材仅是作为一种主要的参考书,要求学生以课堂上老师所讲的重点和难点为线索,课后去钻研教材和阅读大量的同类参考书,然后去完成课后习题。就这样反复地进行创造性学习。这是一种艰苦的脑力劳动,需要学生能反复地、自觉地进行学习。还要在松散的环境中能约束自己,大学生活是人生的一大转折点。大学时期注重于培养同学们的独立生活、独立思考、独立分析问题和解决问题的能力,而不像中学那样有一个依赖的环境。高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。中学时期主要是老师领着学,学生只需要跟着老师的指挥棒走就可以了,而在大学时主要靠自学,教师只起一个引导的作用。新同学应尽快适应大学生活,形成一个良好的开端,这对四年的大学生涯是有益的。
二.注意中学数学和《高等数学》的区别与联系
中学数学课程的中心是从具体数学到概念化数学的转变。中学数学课程的宗旨是为大学微积分作准备。学习数学总要经历由具体到抽象、由特殊到一般的渐进过程。由数引导到符号,即变量的名称;由符号间的.关系引导到函数,即符号所代表的对象之间的关系。高等数学首先要做的是帮助学生发展函数概念——变量间关系的表述方式。这就把同学们的理解力从常量推进到变量、从描述推进到证明、从具体情形推进到一般方程,开始领会到数学符号的威力。但《高等数学》的主要内容是微积分,它继承了中学的训练,它们之间有千丝万缕的联系。
三.尽快适应《高等数学》课程的教学特点
为了适应21世纪高等数学课程的教学改革,高等数学课程的教学也发生了很大的变化,在传统的教学手段的基础上,采用了更加具体化、形象化的现代教育技术,这也是一般中学所没有的,因此,同学们在进入大学以后,不仅要注意高等数学课程的内容与中学数学的区别与联系,还要尽快适应高等数学课程的新的教学特点。认真上好第一节高等数学课,严格按照任课老师的要求去做。若能坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,从而也就掌握了所学的知识,就不难学好高等数学这门课。有些同学就是没有把握好自己,一看高等数学一开始的内容和中学所学内容极其相似,就掉以轻心,认为自己看看就会了,要么不听课,要么不完成作业,结果导致后面的章节听不懂,跟不上,甚至有的同学就一直跟不上,学期末成绩不理想,甚至不及格。
四.掌握正确的学习方法
由于《高等数学》自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一点学习《高等数学》的方法,供参考。
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。
第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。
第六,掌握学习规律
1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。
2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。
这些都做到了,高等数学应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此,并不象你想象的那么难。还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道高等数学真的很有用。
42句有关高数知识点的口诀:
口诀1:函数概念五要素,定义关系最核心。
口诀2:分段函数分段点,左右运算要先行。
口诀3:变限积分是函数,遇到之后先求导。
口诀4:奇偶函数常遇到,对称性质不可忘。
口诀5:单调增加与减少,先算导数正与负。
口诀6:正反函数连续用,最后只留原变量。
口诀7:一步不行接力棒,最终处理见分晓。
口诀8:极限为零无穷小,乘有限仍无穷小。
口诀9:幂指函数最复杂,指数对数一起上。
口诀10:待定极限七类型,分层处理洛必达。
口诀11:数列极限洛必达,必须转化连续型。
口诀12:数列极限逢绝境,转化积分见光明。
口诀13:无穷大比无穷大,最高阶项除上下。
口诀14:n项相加先合并,不行估计上下界。
口诀15:变量替换第一宝,由繁化简常找它。
口诀16:递推数列求极限,单调有界要先证,两边极限一起上,方程之中把值找。
口诀17:函数为零要论证,介值定理定乾坤。
口诀18:切线斜率是导数,法线斜率负倒数。
口诀19:可导可微互等价,它们都比连续强。
口诀20:有理函数要运算,最简分式要先行。
口诀21:高次三角要运算,降次处理先开路。
口诀22;导数为零欲论证,罗尔定理负重任。
口诀23:函数之差化导数,拉氏定理显神通。
口诀24:导数函数合(组合)为零,辅助函数用罗尔。
口诀25:寻找ξη无约束,柯西拉氏先后上。
口诀26:寻找ξη有约束,两个区间用拉氏。
口诀27:端点、驻点、非导点,函数值中定最值。
口诀28:凸凹切线在上下,凸凹转化在拐点。
口诀29:数字不等式难证,函数不等式先行。
口诀30:第一换元经常用,微分公式要背透。
口诀31:第二换元去根号,规范模式可依靠。
口诀32:分部积分难变易,弄清u、v是关键。
口诀33:变限积分双变量,先求偏导后求导。
口诀34:定积分化重积分,广阔天地有作为。
口诀35:微分方程要规范,变换,求导,函数反。
口诀36:多元复合求偏导,锁链公式不可忘。
口诀37:多元隐函求偏导,交叉偏导加负号。
口诀38:多重积分的计算,累次积分是关键。
口诀39:交换积分的顺序,先要化为重积分。
口诀40:无穷级数不神秘,部分和后求极限。
口诀41:正项级数判别法,比较、比值和根值。
口诀42:幂级数求和有招,公式、等比、列方程。
教材分析:
圆是小学数学平面图形教学中唯一的曲线图形。本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。教材将理解“化曲为直”的转化思想贯穿在活动之中。通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的建构过程。学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。
【教学目标】
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点】
探索并掌握圆的面积公式。
【教学难点】
探索推导圆的面积公式,体会“化曲为直”思想。
【教具准备】
投影仪,多煤体课件,圆形纸片。
【学具准备】
圆形纸片。
【教学设计】
一、创设情境。提出问题
(投影出示P16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、探究思考。解决问题
1、估计圆面积大小
师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)------
2、用数方格的方法求圆面积大小
① 投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
② 指明反馈估算结果,并说明估算方法及依据。
1、根据圆里面的正方形来估计
2、用数方格的方法来估计。
三、探索规律
1、由旧知引入新知
师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。那么圆形的面积可由什么图形面积得来呢。
2、探索圆面积公式
师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
指名汇报(学生在说的同时教师注意板书)
请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。]
想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?[等分的份数越多,就越接近长方形。]
观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)
因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底×高,那么圆形面积公式=圆周长的1/2×半径即可。
因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
用字母怎么表示圆面积公式呢?
S=∏RR还可以写作S=∏R2
师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。
3、应用圆面积公式
根据下面的条件,求圆的面积。
r=6厘米 d =0.8厘米 r=1.5分米
师:现在请大家用圆面积公式计算喷水头转动一周可以浇灌多大面积的农田。(学生独立解答,指名回答)
四:拓展应用
习题设计:
1.填空:
(1)圆的周长计算公式为( ),圆的周长计算公式为( )。
(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。
(3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。
2.判断:
(1)半径是2厘米的圆,周长和面积相等( )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]
(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14X1.52=3.14X3=9.42平方厘米。( )。[此题在计算1.52的时候把1.52看作1.5X2,而1.52=1.5X1.5]
(3)直径相等的两个圆,面积不一定相等。( )
(4)一个圆的半径扩大3倍,面积也扩大3倍。( )
(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )
3.实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?
4.要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
实践练习:
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。]
修改稿:
一、创设情境。提出问题
(投影出示P16中草坪喷水插图)
师:同学们,这是现代化农田里的一个自动喷水头,喷射的距离为5米,你们谁知道喷水头喷射一周,我们得到了一个什么样的图形?
学生回答:圆形]
[课件演示喷射过程,理解什么是圆的面积]
你们想知道这样一个自动喷水头它喷射一周浇灌的农田面积是多少吗?这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
第二环节估计圆面积大小的两种设计哪个好呢?
方案一:出示课件::
用边长等于半径的小正方形透明塑料片,直接度量圆面积,(如图)观察后得出圆面积比4个小正方形小,好象又比3 个小正方形大一些。初步猜想:圆的面积相当于r2的3倍多。
由此看出,要求圆的精确面积通过度量是无法得出的。
三、探索规律
1、由旧知引入新知
我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形, 大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积推导来的吗?(学生回答后教师课件演示平行四边形,三角形,梯形面积推导过程。)
今天我们能不能也用这样的方法推导出圆面积的计算公式呢?
[这一探索性地设问,使学生产生悬念,引入深思。它与得出圆面积计算公式后的验证,前后呼应,融为一体。使学生对圆面积与r2的倍数关系,获得十分鲜明的表象,而且有助于避免与圆周长的计算公式(C=2πr)产生混淆。]
2、探索圆面积公式
(1) 学生操作
师:请大家拿出准备好的16等分的圆,和小组同学一起剪一剪,拼一拼,看看能拼成一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
(2)指名汇报
初步汇报:你们把圆转换成了什么图形?(在学生说的同时教师课件演示)
学生可能出现的4种情况:
(3)操作反思
小组内拿出32等分的圆形,剪一剪,拼成一个长方形,和用16等分的圆拼成的长方形比较你发现了什么? [32等份后拼成的图形更接近于长方形]
如果把一个圆等分成64份、128份……拼成的长方形会怎样呢?(微机显示)(圆等分的份数越多,拼成的图形越接近于长方形。)
(4)转化思考:近似长方形的长相当于圆的哪一部分?怎样用字母表示?
(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)[课件演示]
(5)观察汇报: 你能否由长方形的面积公式得到圆形面积公式呢?并说出你的理由。 [ 因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。]
(生说,教师板书)用字母怎么表示圆面积公式呢?
[指导学生自己动手,并通过微机演示,把一个圆剪拼成近似的长方形,从长方形面积公式,推出圆面积计算公式。这样,可以培养学生初步的空间想象力,也可以渗透以直代曲的辩证唯物主义观点。] (6)拓展探究:根据上面的由长方形的面积计算公式推导出来圆的面积计算公式,你是否受到了启发?刚才还有的同学把圆转化成了平行四边形,等腰三角形或者是梯形,你能试着用你转化成的那个图形的面积公式推出圆的面积公式吗?[小组探究尝试,然后汇报,]
[师根据汇报演示:1把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/2·2r=πr2 。2圆16等份分割后可拼插成近似的等腰三角形。三角形的底
相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/2·2πr/4r=πr2
。3把圆分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2·πr·2r=πr2]
(7)总结:无论我们把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,验证了原来猜想的正确。说明在求圆的面积时,都要知道半径。
[引导学生通过多次不同的实验,采用转化的方法,利用等积变形把圆面积转化成近似的长方形、等腰三角形和等腰梯形,从而推导出圆面积计算公式。同时,利用计算机的演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进一步加深对圆面积公式推导过程的理解。]
(8)升华:今天我们探究出了圆的面积计算公式,真了不起,在人们没有总结出这个公式的时候, 如何计算圆的面积,是各国数学家共同关心的问题。老师这里有一段小故事,大家一起来读一读。
内容:刘徽在校注《九章算术》时,创立了一种新的数学方法—— “割圆术”来进行有关圆的计算。《九章算术》中已有圆面积的计算公式,但没有说明是怎么来的,刘徽为此苦苦思索,有一次他看见石匠在加工石料,石匠把一块方石砍去四角,就变成八角形的石头,再去掉八个角又变成了十六角形,这样一凿一斧地干下去,一块方形石料就被加工成一根光滑的圆柱了。刘徽因此得到启发:原来圆与直线是可以相互转化的。他认为一个圆的内接正多边形的边数越多,其周长就会越接近于圆的周长。同时,通过求圆内接正多边形的边长和圆的直径之比,可以越来越精确地求得圆周率(即圆周与直径之比),这就是所谓“割圆术”。“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”这句话简明扼要地概括了刘徽割圆术的实质。同时,刘徽在这里还用了“极限”这个数学概念,今天我们知道“极限”是高等数学的基础。后来,祖冲之和他的儿子祖恒,利用割圆术,得出了3.1415926<π<3.1415927 。没有前人这样艰苦的努力,我们现在就不可能精确地计算出圆的面积和周长,一切与圆有关的计算无疑也要大打折扣了。
读了这个故事,你想说点什么?生说感受。看来生活中处处有数学,我们要培养自己热爱数学,善于观察的良好习惯哦。下面我们就一起来动脑筋解决以下下面的问题。
四:拓展应用
1.填空:
(1)圆的周长计算公式为( ),圆的周长计算公式为( )。
(2)一个圆的半径是3厘米,求它的周长,列式( ),求它的面积,列式( )。
(3)一个圆的周长是18.84分米,这个圆的直径是( )分米,面积是( )平方分米。
2.判断:
(1)半径是2厘米的圆,周长和面积相等( )[让孩子知道得数虽然相同,但计量单位不同,不能进行比较。]
(2)一个圆形纽扣的半径是1.5厘米,它的面积是多少?列式:3.14X1.52=3.14X3=9.42平方厘米。( )。[此题在计算1.52的时候把1.52看作1.5X2,而1.52=1.5X1.5]
(3)直径相等的两个圆,面积不一定相等。( )
(4)一个圆的半径扩大3倍,面积也扩大3倍。( )
(5)两个不一样大的圆,大圆的圆周率比小圆的圆周率大。( )
3、根据下面的条件,求圆的面积。
r=6厘米 d =0.8厘米
4、实际应用:一块圆形铁板的半径是3分米,它的面积是多少平方分米?
5、要求一张圆形纸片的面积,需测量哪些有关数据?比比看谁先做完,谁想的办法多?
(1)可测圆的半径,根据S=πr2求出面积。
(2)可测圆的直径,根据S=π(d/2)2求出面积。
(3)可测圆的周长,根据S=π·(c/2π)2求出面积。
师:经过一节课的学习,你们能计算出喷水头转动一周可以浇灌多大面积的农田了吗? (学生独立解答,指名回答)
实践练习:
圆形的物体生活中随处可见,公园的露天广场是个圆形,怎样才能计算广场的面积呢?[让学生讨论,你有哪些方案?并留给学生课后去实践。这样,使学生意犹未尽,感到课虽尽,但疑未了,为下一课已知周长求面积埋下伏笔。]
3稿教案设计
一、回顾旧知,引出新知
师:我们在学习推导几何图形的面积公式时,总是把新的图形经过分割、拼合等办法,将它们转化成我们熟悉的图形, 大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积推导来的吗?
(学生回答后教师课件演示平行四边形,三角形,梯形面积推导过程。)
师:大家说的真好,我们运用这些数学知识解决了许多实际生活中的`问题,通过今天这堂数学课的学习,你一定会增加新的用数学解决问题的本领,有信心吗?
二、创设情境。提出问题
(投影出示P16中喷水动画):
师:请你用数学的眼光来观察画面,这是现代化农田里的一个自动喷水头,喷射的距离为5米,从画面中得到了哪些数学信息?[课件演示喷射过程,理解什么是圆的面积]
学生可能回答:圆形,知道半径是5M
师:你能提出哪些数学问题呢?
学生可能回答:这个自动喷水头喷射一周的周长是多少? 自动喷水头它喷射一周浇灌的农田面积是多少?
师:求喷水头转动一周浇灌的面积有多大就是求谁的面积?课件演示由生活中的圆抽象的过程。(板书:圆的面积)
三、探究思考。解决问题
1、估计圆面积大小
你能估一估这个圆的面积是多大平方米吗?
(1)与同桌说一说你是怎么估的
(2)汇报
师:求圆的面积,我们用数格子的方法方便吗?如何又快又好的求出圆的面积呢?[引出用公式计算。]
2、探索圆面积公式
(1) 学生操作
师:请大家拿出准备好的的圆,和小组同学一起剪一剪,拼一拼,看看能拼成一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)
(2)指名汇报实物展台展示
初步汇报:如何分的,把圆转换成了什么图形?拼成的图形与原来的圆形有什么关系?(在学生说的同时教师课件演示)
学生可能出现的4种情况:
(3)操作反思
根据同学汇报,观察反思 (圆等分的份数越多,拼成的图形越接近于长方形。
(4)转化思考:近似长方形的长相当于圆的哪一部分?怎样用字母表示?
(圆周长的一半,C/2=πr),它的宽是圆的哪一部分?(半径r)[课件演示]
(5)观察汇报: 你能否由长方形的面积公式得到圆形面积公式呢?并说出你的理由。 [ 因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长×宽,那么那么圆形面积=圆周长的1/2×半径即可。
(生说,教师板书)用字母怎么表示圆面积公式呢?
[指导学生自己动手,并通过微机演示,把一个圆剪拼成近似的长方形,从长方形面积公式,推出圆面积计算公式。这样,可以培养学生初步的空间想象力,也可以渗透以直代曲的辩证唯物主义观点。
(6)拓展探究:根据上面的由长方形的面积计算公式推导出来圆的面积计算公式,你是否受到了启发?刚才还有的同学把圆转化成了平行四边形,等腰三角形或者是梯形,你能试着用你转化成的那个图形的面积公式推出圆的面积公式吗?[小组探究尝试,然后汇报,
[师根据汇报演示:1把圆16等份分割后拼插成近似的平行四边形,平行四边形的底相当于圆周长的四分之一(C/4=πr/2),高等于圆半径的2倍(2r),所以S=πr/22r=πr22圆16等份分割后可拼插成近似的等腰三角形。三角形的底
相当于圆周长的1/4,高相当于圆半径的4倍,所以S=1/22πr/4r=πr23把圆分割后,可拼成近似的等腰梯形。梯形上底与下底的和就是圆周长的一半,高等于圆半径的2倍,所以S=1/2πr2r=πr2]
(7)总结:今天我们已经实践证明了,无论把圆拼成什么样的近似图形,都能推导出圆的面积公式S=πr2,说明在求圆的面积时,都要知道半径。
[引导学生通过多次不同的实验,采用转化的方法,利用等积变形把圆面积转化成近似的长方形、等腰三角形和等腰梯形,从而推导出圆面积计算公式。同时,利用计算机的演示,化静为动,化虚为实,帮助学生把抽象的内容具体化,进一步加深对圆面积公式推导过程的理解。]
师:生活中处处有数学,我们要培养自己热爱数学,善于观察的良好习惯。下面我们就一起来动脑筋解决以下下面的问题。
四:实践应用
你能计算出人民大会堂前的这样一个石柱的占地面积吗?怎样才能计算广场的面积呢师总结:大家真是太聪明了,通过一节课的学习,你们的用数学知识解决问题的本领更强了,希望大家用数学的眼光到生活中找一找我们用今天学习的圆的面积公式,还能能解决那些实际问题。好吗?
3稿教案教学反思
教学反思:
通过试讲觉得学生对活动的设计比较喜欢,思维活跃,教案设计基本满意。结合自己课堂教学体验反思和网友和学校领导的悉心帮助,总结出以下不足:
1、教学语言“迟钝”。
我平时讲课领导总说我语速快,可这次今天试讲后领导首先说的一句就是:今天的语速有点慢了。分析原因是:修改完完成3稿教案,做完课件已经凌晨了3点,6点起床,9点30分试讲,思路虽然清晰,但教案熟悉内化的时间太短, 语言组织不够自然,加上有领导和摄象,所以不自觉的紧张。
2、复习占用时间不当。
复习设计方式不够合理,教师的演示过程加上学生的叙述占用了宝贵的时间,现在反思,这一环节如此“精细”是在浪费课堂的宝贵时间。
3、探究没有充分放手。
在探究圆的面积公式推导过程中,孩子的兴趣是很高的,但在学生汇报的环节,我总是担心孩子,在孩子操作演示的时候给予帮助。造成了放手不够,造成了引导过度的现象。出现了探究一直是在我的控制下进行。
4、没给问题爆发的机会。
教学中很关注“R2” 在运算中容易出现的问题,所以在教学时直接提醒学生这一运算顺序,本以为做的很好,但现在反思,我的“先预防错误出现”的做法,失去了让学生经历在错误中反思的珍贵体验,也就是说由于我的“认真”,在计算应用环节孩子们失去了精彩的错误分析与错误反思。这也是我们学生为什么学过知识遗忘快的根结所在,没有充分理解,怎么能记得好呢?
参赛的过程,是雪燕子学飞的过程。我在一次次反思中发现自己的不足,看到自己的幼稚,发现并改正自己教学不足的过程是痛并快乐的。
有以上的反思要谢谢网友们的帮助,区教研员和学校领导的引导。由于自己数学教学的水平有限,也许我的反思还有不当的地方。请大家继续热心指导。
高职高等数学课件
一、高职高等数学教育教学的现状
(一)高职教育前景广阔,机遇与挑战并存,并逐渐趋向多元化。
高职院校已成为我国高等教育发展、改革的重要力量。高职院校通过不断的自身摸索、改革与国内外借鉴,为国家输送了大量的专业型人才,一定程度上促进了社会的进步。马卓昊在《高职教育现状及发展趋向研究》一文中,通过对我国高职教育的发展现状进行重点分析,对相关的教学理念和高职教育的发展趋向进行了简单的研究和探讨。他从专业设置、办学理念、提高就业率、师资建设等方面进行了逐一分析,认为高职教育在国家的引导与支持下,逐步走向正轨,并呈现多元化。故而,机遇与挑战并存。
(二)高职高等数学教育虽重要,但没引起足够重视。
高职教育是高等教育的重要组成部分,《高等数学课程对高职生素质培养的重要性》中阐述了高等职业教育的目标、人才规格决定了高等数学教育不容忽视的重要地位,并针对高职教育现状与高职生特点,结合高等数学特质与素质教育的功能,说明了高等数学课程的重要性,但由于客观与某些人的主观臆断,以高等数学课程为代表的公共课并没有得到足够重视。鉴于此,在此呼吁高等数学日后教育教学的改革方向是增强师资力量、提高教师素养、改革教学方法提高学生学习兴趣等。
(三)高职高等数学的教学有待改革。
虽然高职教育在整体趋势上是积极进取的,是逐渐适应这个社会发展的,但面临社会的发展与生源的紧缺、就业率有待提高的紧迫局势,高职院校仍然在教学上面临着诸多困难。郭倩茹在《浅谈高职院校中高等数学教学的现状及问题解决策略》一文中,认为高职院校中高等数学教育的教材编制不合理,与高职教育不适应;高等数学教学没高职特色,与专业脱轨;评价机制落后,考核体系陈旧。与此同时,在描述高等数学教育现状的同时,提出了诸如规范教材与专业接轨、活跃课堂气氛、构建评价、考核新体系等。最后,强调高职院校一定要以学生的特点作为教育的先决条件,因材施教。这正是教育工作者所要考虑的,也是我国高职院校培养人才的目标与宗旨,一切为了学生,为了学生的一切。
二、高职高等数学教学中存在问题的成因
(一)高等数学不被重视。
大多数高职院校偏重于职业技能的培养和实践活动的开展,作为专业基础课的高等数学学时时多时少,只是专业教学计划里专业课的替补而已。这在综合性的职业院校不常见,但在专业系别少的管理不严格的小职业院校是家常便饭,这无形中也造成了高等数学可有可无的尴尬境地。
(二)高职教师知识更新跟不上,教学方法与教学手段单一,教学态度不积极、忽略学生的德育教育与职业生涯规划导向等。
有些高职院校是中专合并等形式转轨而成或新成立的,万事在摸索前进。大部分教师还停留在原来的教学步伐上,高职教育的先进理论知识不够,年纪大一点的教师甚至根本不关心高职教育的改革与发展,混退休的大有人在。一些教师虽然胜任课程知识的讲解,但不求创新,教学方法单一,教学手段传统,而且对学生的德育与职业生涯规划引导、管理漠不关心,认为只是班主任与学生管理人员的责任,这在某种程度上疏忽了学生课上的教育与管理,这也是教学质量不高的原因之一。
(三)学生入学的数学基础整体较差,学习动力不足,缺乏学好数学的信心。
随着高职院校的扩大招生,高职学生数学基础整体较差。中学的数学知识点繁多、灵活多变且有很大的连续性,这让中学基础差的学生很头疼,担心高等数学会衔接不上,学习还没开始就产生了畏难情绪,担心的压力超过学习的动力。况且,高等数学的抽象性与逻辑性让学生不能立刻享用成果。这与专业即学即用立竿见影的效果反差较大。故而,学生学习专业课的动力更大,从而忽视高等数学课的学习与钻研。
(四)学生与教师缺少沟通,源自教师缺少发自内心对学生尤其是对差生的关爱。
进入高职院校的学生大都学习成绩不是很好,这使得他们稚嫩的心灵蒙一层倔强的外衣。他们看着坚强,却内心脆弱,他们渴望关爱。对于高等数学这样比较难的课程,他们担心被骂,索性不学,给别人造成不是学不会而是不学的假象,他们渴望沟通与被理解却又害怕不被理解而被耻笑,干脆装出事事漠不关心的样子掩盖内心跃跃欲试的蠢动。
三、提高高职高等数学教学质量的对策
(一)重现高等数学教学的重要性。
一是高职院校要响应国家高职教育政策号召,重视学生综合能力的提升,把学生培养目标从单一的技术要求提升为德、智、能等综合型人才。二是院教学领导从长远的发展考虑,不能忽视高等数学课对高职生综合素养提高的重要作用。三是为教师提供学习、进修的机会,努力提高数学教师的整体素质能力。
(二)高等数学教师要为人师表。
高等数学教师为适应高职教育的改革和发展要求,在追求业务能力提高的同时,不放松道德素养的提升,给学生树立榜样。高等数学教师不能只了解目前高等数学书本的知识,还要了解社会发展动态,熟知国家高职教育政策以及未来发展趋势。不断地加强政治、思想学习,提升自身道德素质,注意自己的一言一行,给学生呈现积极、向上的生活面貌,引导学生在正轨上前行。
(三)高等数学教师要积极参与学生课上的管理,将德育、纪律规范融入高等数学教学。
学生的管理不只是某个部门的责任,不只是某些管理人员的责任,而是高职院校全体教职工的责任,关心每一个学生的身心健康发展,也是每一位任课教师无可推卸的`责任。加强德育教育,增强学生的责任心,对于知识的学习动力具有促进作用。高等数学教师除了帮助学生克服学习数学的困难,更要注意在解决数学难题的过程中培养学生克服困难、勇往直前的坚毅品格,这是他们一生都受益的事情。
(四)高等数学教师要经常与专业课教师沟通,保障高等数学的学习与专业学习接轨。
高等数学抽象性扩大了它的难度,所以,高等数学教师要深入展业教师队伍,与他们讨论高等数学在专业上的应用,寻找高等数学解决专业难题的实践案例,提高学生的学习兴趣。
(五)探索高等数学课程的教学方法和手段,优化教学环节,合理利用多媒体教学,提高教学质量。
教学方法与教学手段的选择和应用都要有利于学生掌握知识、培养能力出发,以提高教学质量为目的。高等数学课程不能从一而终地使用一支笔、一本书、学生听的模式,也不能几张PPT一放学生一看的模式。每门课程都有各自的特点,高等数学的计算准确性、逻辑严密性、高度抽象性决定了它离不开一支笔、一黑板讲练模式,更离不开数形结合完美体现的PPT和实物演示。两者要结合,才能使枯燥的高等数学课增添趣味。
(六)创新教学模式,因材施教,创新评价体系,注重过程考核。
教育教学的基本原则就是因材施教,高等数学也是如此。高职数学改革的切入点要具有科学性、针对性和可行性的分层教学、分层考核。在考核过程中,要注重过程考核,提高学生的学习主动性和能动性。期末考试的结果只是学生成绩的一部分,期末考试的形式各系部应听取任课教师的建议。任课教师要根据班级整体的学习水平及层次确定考核的层次数与不同层次上的考核标准。
四、结语
在高等数学的高职教育教学中,在德育教育、纪律教育不放松的前提下,把握好以应用为目的、以必需、够用为度的原则,不断地探讨、总结高等数学教育教学的经验教训,始终以改革、创新为手段,提高教学质量,为学生专业课学习打好基础。
一、重视绪论课,激发学生对高等数学的学习热情:
开篇第一课要首先简单介绍微积分的发展历史,从欧多克斯、阿基米德、牛顿、莱布尼兹等数学家对发现微积分的贡献,谈到认知世界的一般规律,即感性到理性、从定性到定量、从常量到变量,结合我国庄子的《天下篇》、刘徽的“割圆求周”到赵州桥的建造,都深刻地揭示了微积分中的“以直代曲”“不变代变”的辩证思想。同时介绍本课程的研究对象、研究内容和研究工具,将主要内容用一条线穿起来给学生一个整体印象。明确告诉学生微积分对自然科学的发展起了决定性的作用。
二、通过教学使学生逐步树立学好高等数学的信心
近几年来我主要从事自考院高等数学的教学工作,针对学生的数学基础比较薄弱,过关率不高,有很多学生一开始就对学好高等数学没有信心等情况。我决定,必须因材施教,在课堂上应尽可能的用通俗易懂的语言来描述数学概念,让学生逐步明白学习高等数学不是简单地从“高三”到“高四”,更主要是思维方式的转变。使学生明白基础不好未必就学不好高等数学,只要方法得当是可以学好高等数学的。
三、注重教学效果
加强对学生的了解与交流,建立良好的师生关系,有助于将单纯的教育教学过程变成师生平等对话、合力互动、教学相长的友好合作的过程。心理学认为:满足人们对理解、尊重和追求的需要,就能激发人的潜能,使人有一股内在的动力,朝所期望的目标前进。因此教师要树立以学生为主体的生本教育观念,要尊重学生、赏识学生、鼓励学生、相信学生,达到激发学生学习兴趣的目的。另外,教师要注意调控好个人的情绪,不能随意把自己的喜怒哀乐带进教室。良好的教学情绪,积极的教学情感,能唤醒学生愉快的情绪体验,使之精力充沛,兴趣盎然。
好的提问方式常常能激起学生的求知欲和探索欲,引发辩论,引导学生全身心地投入到深层次的思维活动中,从而增强学生的学习兴趣。为此,可以通过以下两个途径:
1、重视预习。预习是学习过程中很重要的一个环节,一方面让学生带着问题来听课,以提高听课的效率。更重要的是逐步培养学生的自学能力。在我看来,大学教育的主要的目的之一就是培养学生的自学能力。教师在每次授课结束时明确提出下次授课的具体内容和预习要求,让学生对将要学习的内容有问可提,才真正达到预习的目的。
2、引导学生分析归纳所提的问题,并学会做出恰当的评价。以鼓励为主,学生提的问题越是多样就表明他们预习效果越好,然后鼓励他们把这些问题分类,教师因势利导地再提出新的问题,并在讲解过程中逐步使学生理解所提问题的价值,分析问题之间的关系,了解其中的含义。
四、重视数学概念和定理的讲述
在讲叙数学概念和定理时,不仅要向学生传授这些知识,还要向他们传授这种抽象、概括问题的思维方法,让学生学会从具体内容中抽象概括,找出事物的本质。例如,在建立定积分概念时,通过对两个具体问题一一曲边梯形的面积和变速直线运动的路程的计算,可以看到:前者是几何量,后者是物理量,实际意义并不相同,但它们的数学思想和计算方法是相同的。排除其具体内容,抽出其本质特征,即单从数量关系看,都具有一种相同结构的特定形式,从而抽象概括出定积分的普遍性定义。
分析与综合是数学学习中最常用的方法。分析是从未知“看”需知,“逐步靠拢到”已知的过程;而综合则是从已知“看”可知,“逐步推到”未知的过程。两者对立统一,它们相互依存、相互转化。所以在讲解一些证明或者比较复杂的问题时,两者一定要结合着用,先用分析法来探求解题的途径,再用综合法加以叙述。比如在证明一些中值定理的命题时,我们常用的“构造辅助函数法”,就是利用这种思路去找辅助函数证明结论的。
其次要注重培养学生的发散性思维。发散性思维是一种不依常规、寻求变易、从多方面思索答案的思维方式。在这种思维方式的驱动下,学生思想活跃、勇于探索、善于发现.对学生发散性思维的培养应体现在:(1)在问题求解前要尽可能提出许多设想,多种解法,充分调动学生的积极性,启发他们从多方面去探求原因,抓住问题的关键,找出其最好的解答方法。(2)在求解问题的过程中重点要放在对题目的分析过程上,把教师精讲和学生的多练结合起来,选择有代表性的范例,从多方面分析题目的解题思路和解答方法,尽量做到一题多解、一题多变、一题多问,以加深学生对所学知识的理解,激发学生的发散性思维。?
五、要重视习题课
习题课是高等数学教学的一个重要环节,是对所学知识的复习、巩固、运用和深化。通过上习题课可逐步培养学生的运算能力、抽象概括能力和综合运用所学知识分析问题、解决问题的`能力。如何才能上好习题课呢,我以为应注重下面几点。
1、首先应注重培养学生的逻辑思维能力。逻辑思维能力包括抽象与概括的能力、分析与综合的能力和归纳与演绎的能力。习题课上教师通过具体的例题对高等数学中的概念、定理和法则进行梳理,使学生加深对各个知识点的联系。
2、此外,在习题课上,对所学的基本定理、基本概念要重点强调它们的条件、应用范围及其相互关系,使其在学生思维中形成一个完整有机的知识体系,为培养学生的创造性思维创造有利条件。新旧知识要联系着讲,不仅仅要讲这一单元的知识,也要注重对以前单元知识的复习。随着时间的推移,有些知识可能会遗忘,若在讲题的过程中,把以前单元的知识也捎带着复习一下,不仅可以增加学生的记忆效果,还会加深学生对本单元知识的理解,起到温故而知新的作用。? 总之,数学学科自身的特点决定了要学好它就必须对它产生兴趣。为此,需要教师在教学过程的各个环节中,根据学生的具体情况和心理特点,因材施教,采用多样化的教学方法和技巧,有计划、有目的地培养和激发学生的学习兴趣,最终达到较好的教学效果。
完整版的高等数学课件
教学目的:了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
重 难 点:数学新认识,基本初等函数,复合函数
教学程序:数学的新认识—>函数概念、性质(分段函数)—>基本初等函数—>复合函数—>初等函数—>例子(定义域、函数的分解与复合、分段函数的图像)
授课提要:
前 言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。 一、新教程序言
1、为什么要重视数学学习
(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的.重要力量; (2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;
(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;
(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识
(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;
(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。[见教材“序言”]
二、函数概念
总学时64学时(XRG)
1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:)(xfy(说明表达式的含义) (1)定义域:自变量的取值集合(D)。
(2)值 域:函数值的集合,即}),({Dxxfyy。
例1、求函数)1ln(2xy的定义域?
2、函数的图像:设函数)(xfy的定义域为D,则点集}),(),{(Dxxfyyx 就构成函数的图像。
例如:熟悉基本初等函数的图像。
3、分段函数:对自变量的不同取值范围,函数用不同的表达式。 例如:符号函数、狄立克莱函数、取整函数等。 分段函数的定义域:不同自变量取值范围的并集。
例2、作函数0,20
,)(2xxxxxf的图像?
例3、求函数?)1(),0(),1(0
10
)(2fffxxxxf的定义域及函数值,,
三、基本初等函数
熟记:五种基本初等函数的定义域、值域、图像、性质。
四、复合函数:设y=f(u),u=g(x),且与x对应的u使y=f(u)有意义,则y=f[g(x)]是x的复合函数,u称为中间变量。
说 明:
(1)并非任意几个函数都能构成复合函数。 如:2,lnxuuy就不能构成复合函数。
(2)复合函数的定义域:各个复合体定义域的交集。
(3)复合函数的分解从外到内进行;复合时,则直接代入消去中间变量即可。 例5、设?))(()),((,2)(,)(2xfgxgfxgxxfx求
例6、指出下列函数由哪些基本初等函数(或简单函数)构成?
(1))ln(sin2xy
(2) xey2
(3) xy2arctan1
五、初等函数:由基本初等函数经有限次复合、四则运算而成的函数,且用一个表达式所表示。
说 明:(1)一般分段函数都不是初等函数,但xy是初等函数;
(2)初等函数的一般形成方式:复合运算、四则运算。 思考题:
1、确定一个函数需要有哪几个基本要素? [定义域、对应法则]
总学时64学时(XRG)
2、思考函数的几种特性的几何意义? [奇偶性、单调性、周期性、有界性] 3、任意两个函数是否都可以复合成一个复合函数?你是否可以用例子说明?[不能]
探究题:
一位旅客住在旅馆里,图1—5描述了他的一次行动,请你根据图形给纵坐标赋予某一
个物理量后,再叙述他的这次行动.你能给图1—5标上具体的数值,精确描述这位旅客的这次行动并用一个函数解析式表达出来吗?
小 结:函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映;复合函数反映了事物联系的复杂性;分段函数反映事物联系的多样性。
作 业:P4(A:2-3);P7(A:2-3)