以下是小编帮大家整理的12篇倒数的认识课件,欢迎大家分享。
北师大版倒数认识课件
北师大版倒数认识课件
一、探究体悟,学习新课
1、学习倒数的意义
(1) 出示例7的一组分数,提问这些分数中,哪两个分数的乘积是1?
(2) 学生思考,并作回答;
3/8×8/3=1 5/4×4/5=1 7/10×10/7=1
(3)概括:像这样,乘积是1的两个数互为倒数。
(4)揭题:这就是我们今天要学习的新内容:板书倒数的认识
(5)追问:怎样的两个数互为倒数?师板书倒数的意义。学生思考:为什么这里要说“互为”倒数呢?
(6)引导学生用不同的方式表述互为倒数的两个数的关系:
3/8和 互为倒数,3/8的倒数是 ; 8/3的倒数是_________ 。
(7)学生自己选择一个两个数相乘的等于1的例子,用倒数的意义同桌说说。
2、求一个数倒数的方法。
(1)你能找出3/5和2/5的倒数。
(2)学生用自己的方法完成后讨论:你是怎样找的?
概括方法:
一是根据倒数的意义来找倒数。
二是把分数的分子和分母调换位置来求倒数。
(3)引导学生对两种方法进行观察、比较:两种方法都正确吗?为什么?你会选择哪种方法?为什么?
小结:两种方法都是正确的,求一个分数的倒数时,只要把它的分子分母调换位置就可以了。
(4)让学生和同桌说两组互为倒数的数,再指名说说。
3、研究整数的倒数
(1)提问:5的倒数是几?你是怎样求的?
全班交流,明确:方法一:想5×( )=1,( )就是5的倒数。
方法二:5=5/1。所以5的倒数是1/5。
(2)练习:分别说说7、16的倒数是多少?
(3)讨论:1的倒数是多少?
(4)0有倒数吗?为什么?
(5)小结:因为0和任何数相乘都得0,没有一个数与0相乘的积是1,所以0没有倒数。除0以外,在求一个数的'倒数时,只要把这个数的分子和分母调换位置即可。
4、教学“练一练”
学生在书上直接写,注意格式。然后请学生回答。
指出:分子是1的分数,它的倒数就是分母,整数的倒数就是这个整数做分母,分子是1。
二、巩固练习。
1、做练习十第1题
学生填书上后,集体订正。
2、做练习十第2题
指名口头回答。
3、做练习十第3题
学生填书上后,集体订正。
4、做练习十第4题
(1) 读题,说说每组分数的特点
(2) 分别找出每组分数的倒数
(3) 仔细观察你发现了什么?
通过交流使学生明确:第1组的分数都是真分数,真分数的倒数是大于1的假分数;第2组的分数都是大于1的假分数,大于1的假分数的倒数是真分数;第3组的分数都几分之一,它们的倒数都是整数;第4组都是非0的自然数,他们的倒数都是几分之一。
5、拓展:0.5和2互为倒数吗?为什么?
引导学生根据倒数的意义来判断。
明确:非零的数都有倒数。
6、做练习十第5题
7、练习十第6题
(1)学生读题,比较找出两题的不同之处
明确:第1题中的2/5表示两个数量之间的倍比关系,求还剩多少吨,就是求3/4吨的2/5是多少,要用乘法计算。第2题中的2/5表示用去的吨数,求还剩多少吨,要从3/4吨里去掉2/5吨,用减法计算。
(2)学生独立完成。
8、解答思考题
小组讨论交流
全班交流,使学生明确:第二根钢管用去的长度是随着钢管全长的变化而变化的,因而是不确定的。要知道哪一根用去的长一些,要按三种情况进行分类讨论。
三、全课总结
这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?
四、作业
1、练习:写出下列各数的倒数
35 0.5 1又1/2 0.125 0.75
2、拓展
A×4/3=11/12×b=15/15×c ,并且a、b、c都不等于0,把a、b、c这三个数按从大到小的顺序排列,并说明为什么?
一、说教材
本课的内容是九年义务教育数学第十一册第一单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
基于以上的认识,遵循“知识与技能的学习必须以有利于其它目标(数学思考、解决问题、情感态度)的实现为前提”的重要理念,确定本课的教学目标:
1、让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。
2、让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。
3、培养学生良好的合作意识,具有回顾与分析解决问题过程的意识。
4、感受数学的趣味性和挑战性,获得良好的情感体验。
二、说教法
本课我采用了发现式教学法、小组讨论式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,以平等宽容的态度激起学生的探究热情,让学生在互动和活动过程中充分地运用自己的能力器官。
三、说学法
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生尝试发现,体验到创造的过程;另一方面,也可以增强学生的合作意识,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,在互动中迸发出智慧的火花。
四、教学程序设计
在课前准备阶段,我抓住“互为”二字作文章,先安排这样一个课前活动。
1、联系语文中的反义词的知识,举倒如:“黑”的反义词是什么?(白)“正”的反义词是什么?(反、倒)
2、用“互为”造句。举倒如:“黑和白互为反义词”,这句话还可以怎样表达?(黑是白的反义词或白是黑的反义词)
3、思考:能否说“黑是反义词,白是反义词”?为什么?
通过以上的活动帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
(一)激趣引入,导入新课
先说出结果是1的算式,再通过观察、分类与思考来接题:我们今天就来研究倒数(出示课题)。这样就有效地激发了学生的观察兴趣。
(二)举例辨析,理解意义。
分三步进行:
一是微机出示:(1)什么是倒数?满足什么条件的两个数互为倒数?(2)你能找出互为倒数的两个数吗?请举例。
结合例子说明:3/8和8/3互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。
二是同桌互说,举例说出互为倒数的两个数,并说理由,充分感知。
三是让学生回答,进行交流:怎样理解“互为”的含义?能说某数是倒数吗?(举例如:“小明和小华是好朋友”,能说成“小明是好朋友”或“小华是好朋友吗”?)
此处在学生自学的基础上,让学生举例说明倒数,积累感性材料。引导学生重点理解“乘积是1”而不是“和(差、商)是1”,理解“互为”是指两数的依存关系。
(三)观察比较,归纳方法
该环节让学生寻找求倒数的方法,注意先独立思考,再合作交流。具体分为三个层次:
第一层次:创设问题情境:“找朋友—好朋友,手拉手”,请把互为倒数的两个数用线连起来。微机显示:
7/9、11/6、6、2/3、9/7、6/11、1/6练习后,质疑“为什么2/3孤零零地站在哪里?”
学生回答后,再激趣:“大家有勇气探索求倒数的方法吗?
第二层次----我来试试看:我能行
写出11/6、1/5、9和15/8的倒数(微机显示)
提示:如有困难,可先自学课本,或请教你的好朋友,找不同层次的学生回答。
第三层次----回顾、交流
1、小组交流:(1)你是怎样求一个数的倒数的?(2)互为倒数的两个数相等吗?怎样表示它的结果?
2、全班交流,突出重点:(1)互为倒数的两个数有何特点?(2)强调:到数可用“—”表示,不能用=表示。(3)重点讨论“9”和“15/8”的倒数求法过程,动态演示成:(见演示稿)
此环节引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建。”
(四)辨析比较,弄清特例
微机显示:你最喜欢下面哪个数的倒数?为会么?(见演示稿)
设计这样一个针对性练习,既突出本课的重点,又有利于突破难点;既有对刚刚学过的倒数求法的运用,又使学生产生新的认知冲突:1的倒数为什么是它本身?0有没有倒数?为什么0没有倒数?这样学生在宽松的氛围里,勇于发言、敢于辩论。
(五)回顾、质疑,自我评价。
通过这节课,你学到哪些知识?先闭着眼睛想一想,再同桌的同学互相说一说。
该环节的设计,是让学生在互动中互相启发,共同发展。“自主探究”旨在改变教与学的方式,教师的教是为学生的自主学习、主动探究创造条件,是为学生的独立思考,动手实践,自主探究等合作交流引路搭桥。是让学生真正在探究学习中发展。
教学目标:
知识目标:理解倒数的意义,掌握求倒数的方法。能力目标:会求倒数,提高学生观察、比较、抽象、概括以及合作学习、口语表
达能力的提高。
情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯和合作的意识。教学重点:理解倒数的意义和怎样求一个数的倒数。教学难点:正确理解倒数的意义及0为何没有倒数。
教学过程:
一、情境导入,引出问题
1.风景倒影图。
2.游戏,按规律填空。
吞———吴呆———
3/8———(/)10/7———(/)
(1)学生观察填空,指名回答,并说出是怎么样想的。
(2)师:你们能按照上面的规律再说出几组数吗?(学生举例,教师板书)
3.学生观察板书的几组分数,看看每组中的两个数有什么特点?根据预习单小组交流后汇报。
教师注意引导。(主要是分子、分母的数字特点和两个分数的乘积方面。)
A:分子、分母相互调换位置的两个数叫做互为倒数。
B:乘积是1的两个数叫做互为倒数。
师生根据学生汇报归纳倒数的意义:乘积是1的两个数叫做互为倒数。(教师板书)
二、合作探究、解决问题
大家知道了什么是倒数,在看看倒数的意义,你发现哪些词我们要重点理解?
引导学生理解“两个数”“乘积是1”“互为”
教师重点指导“互为”,学生先说说自己的想法,师根据情况可以加入握手的游戏引导。
倒数是两个数的关系,这两个数是互相依存的,如果是一个数就不存在倒数的关系。
2.根据说法理解倒数。
(1)观察3/8与8/3,说说哪两个数互为倒数?还可以怎么样说?
(2)谁能说说10/7与7/10中谁和谁互为倒数?也可以怎么样说?
(3)学生练习说。
2.探究求倒数的方法。
学习例1:写出7/8、5/2的倒数。
教师根据预习单让学生说说自己找倒数的方法。总结出分子、分母交换位置可以找出一个数的倒数。
(2)师:同学们已经会求一个分数的倒数了。想一想,我们还学过哪些数?那么怎么样求整数、小数的倒数呢?选择一种,在小组内探究。
A:学生选择一种研究,教师巡视指导。
B:学生交流汇报,教师分别板书一例。
C:引导学生概括求倒数的方法。
(3)教师引导质疑:0有没有倒数?为什么?学生讨论释疑。
1×()=1,所以1的倒数是1。而0×()=1呢?
1的倒数是它本身,0没有倒数。
求一个数(0除外)的倒数,只要把这个数的分子、分母互相交换位置就行了。
(设计意图)充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
三、巩固联系、拓展深化。
1.下面哪两个数是互为倒数。
4/3,7/6,8,6/7,3/4,1/8
2.写出下面各数的倒数。
4/11,16/9,35,15/8,1/5
学生在课练本上写出这些数的倒数,指名回答,并说出是怎么样求的,集体评价。
3.争当小法官,明察秋毫。
(1)1的倒数是1。(2)所有的数都有倒数。
(3)3/4是倒数。(4)A的倒数是1/A。
(5)因为0.5×2=1,所以0.5与2互为倒数。
(6)7/5的倒数是7/2。
(7)真分数的倒数都大于1。(8)假分数的倒数都小于1。
(9)因为8-7=1,3÷3=1,所以8和7,3和3是互为倒数。
4.填空。
3/4×()=17×()=1
2/5×()=()×4=5/4×()=0.5×()=1
5.游戏:找朋友。
师:刚才我们在上课时各自说出了自己的好朋友,老师觉得你的朋友太少了,现在我们就在课堂上再找几个朋友吧,愿意吗?
一名学生说出一个数,谁能又对又快地说出这个数的倒数,谁就和这名同学互为好朋友。
(设计意图)多层次的练习,帮助学生巩固新知,活跃思维,伴随着学生情感参与的游戏练习,调动了学生学习的积极性和主动性,再次激起思维高潮,让学生获得愉悦的情感体验。
四、总结反思、评价体验
这节课你们有什么收获?还有什么疑问?
(设计意图)帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
五、布置作业。
《倒数的认识》说课
“倒数的认识”是在学生掌握了整数乘法、分数乘法的.意义和计算法则、分数乘法解决问题等知识的基础上进行教学的。理解倒数的意义和会求一个数的倒数是学生学习分数除法的前提。学生必须学好这部分知识,才能更好地掌握后面的分数除法的计算和应用题。
“倒数的认识”这一课的核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。
本节课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,如意义的引入中,我在学生预习的基础上,安排学生交流互学,发现“两个数乘积是1”这一规律,让学生自己研究学习例子,给学生提供放手的思维空间,并尊重学生的自主性。在教学的设计中我还结合实际情况,借助语言学科与数学学科之间的联系为切入点,由文字的规律引发学生数学思维的火花;实现社会、语、数的整合。在教学中我们还有允许学生在探索新知中犯错误,并在修正错误中体会成功。以平等宽容的态度,激起学生的探究热情。特别是在探究倒数的意义与求倒数的方法时,放手让学生自己去探索,去观察,去归纳,去总结。此环节的设计,是为了引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切知识都要由学生自己获得或由他们发现,如“1”和“0”这两个特例,让学生独立思考,分组探讨,教师及时引导。得出1的倒数是1,而0没有倒数的结论。让学生从讨论中充分展示了自己的能力,调动学生的积极性,利于学生对问题的思考解决。我认为这样做不仅增添了课堂活力,提高了学生的注意力,而且还让学生经历了探索的过程,解决了学生的困惑,更让学生体会到了成功了快乐”。
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我还采用小组合作形式组织教学。这一方面可以让学生尝试发现,体验到创造的过程;另一方面也可以增强学生的合作意识,让学生在小组交流、全班交流过程中,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,迸发出智慧的火花。并且充分调动学生的学习积极性,给学生提供充足的从事数学活动的机会,引导学生进行小组合作学习,在讨论中探究知,理解并掌握倒数的意义和求法,培养学生的探究能力和探究意识。
在课后的巩固练习中,我设计了“填空,判断”、“连线”等题型,根据重点内容和关键点进行了多层次的练习,帮助学生巩固新知,活跃思维,让学生获得愉悦的情感体验。
最后在全课的小结中再次提出问题,总结反思,帮助学生梳理知识,反思自己的学习过程,领会学习方法,获得数学学习的经验。
今天教学倒数的认识后,我的感触很多。以往教学这部分内容,我是直接让学生写出结果是1的算式,再从学生说的算式中把乘积是1的算式板演在黑板上,再让学生观察算式的特点,然后再让学生理解互为的意思,最后总结出倒数的意义,好像时时都是我引导学生在我思维的引导下,被动的学习知识。现在想起来有一种牵着学生鼻子走的感觉。通过新课标理论的学习,我重新改变了教学理念,我觉得只有立足于学生的设计才是好的设计,只有学生自己通过观察、比较、归纳总结出倒数的意义,学生自己通过参与整个学习过程后才会有真正的收获。所以在今后的教学中,我们应该更好考虑学生学的情况。当然我的教学中还有很多不足之处,希望各位老师提出宝贵意见。
教学目标
1.理解和掌握倒数的意义.
2.能正确的求出一个数的倒数.
3.培养学生的观察能力和概括能力.
教学重点
认识倒数并掌握求倒数的方法
教学难点
小数与整数求倒数的方法
教学过程
一、基本训练
(一)口算
=
上面各式有什么特点?
还有哪两个数的乘积是1?请你任意举出乘积是1的两个数.
(板书:乘积是1,两个数)
二、引入新课
刚才我们所举出的乘积是1的两个数之间有一种特殊的关系.
(板书:倒数)
三、新课教学
(一)乘积是1的两个数存在着怎样的倒数关系呢?
请看: ,那么我们就说 是 的'倒数,反过来(引导学生说) 是 的倒数,也就是说 和 互为倒数.
和 存在怎样的倒数关系呢?2和 呢?
(二)深化理解
教师提问
1.什么是互为倒数?
2.怎样理解这句话?(举例说明)
( 的倒数是 , 的倒数是 ,……不能说 是倒数,要说它是谁的倒数.)
3.0有倒数吗?为什么?1有倒数吗?为什么?(0虽然可以看作几分之0,如 , ,……但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0.1可以写作 ,1与 相乘还是1,符合倒数的意义,所以1的倒数是1).
(三)求一个数的倒数
1.例:写出 、的倒数
学生试做讨论后,教师将过程板书如下:
所以 的倒数是 , 的倒数是 .
(能不能写成 ,为什么?)
总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置.
2.深化
你会求小数的倒数吗?(学生试做)
三、训练、深化
(一)下面哪两个数互为倒数
(演示课件:倒数的认识1)
(二)求出下面各数的倒数
(演示课件:倒数的认识2)
(三)判断
1.真分数的倒数都是假分数.( )
2.假分数的倒数都小于1.( )
3.0没有倒数.( )
(四)提高
如果末尾加上=1怎么填?
如果末尾加上=0怎么填?
如果末尾加上=2怎么填?
四、课堂小结
今天我们学习了有关倒数的哪些新知识?什么叫倒数?怎样求一个数的倒数?还有不明白的问题吗?
五、课后作业
(一)下面哪两个数互为倒数?
8
(二)写出下面各数的倒数.
3 1
六、板书设计
倒数的认识课堂实录:
一、揭示课题
师:在我们小学语文中学过许多多音字,大家看这一个词该怎么读?(板书:倒数)
生:(窃窃在读)
师:读给老师听一听
生(齐):倒数(dào shù)
师:真是老师的弟子,心有灵犀,跟老师的读法一模一样,怎么没读成倒数(dào shǔ)呢?
生:咱们学的数学,肯定与数有关,怎么会读成dào shǔ呢?
师:大家同意这种解释吗?
生:同意
师:刚才这个孩子说的很好,倒数肯定跟数有关,大家回忆一下,目前为止学过哪些数?
生:整数、自然数
生:不对,整数包括自然数,还有分数、小数
师:也就是说三种数,整数、分数、小数,同意吗?
生:同意
师:(板书:整数、分数、小数)
师:谁能举几个整数的例子?
生:3,5,100,99
师:很好,还有吗?数字能不能大点儿?
生:999
师:很好,这个数字我喜欢
生:1688
师:一路发发,好,我喜欢,写上。能不能再小点?
生:1
师:小棒1,最基础的数字,写上。还有吗?还有一个最不起眼的数字(老师手势表示)。
生(齐):0
师:对吗,怎么把这个忘了?写上。
师:谁能举几个分数的例子?
生:2(1)、10(3)、8(7)……
师:很好,这些都是真分数,能不能举些假分数?
生:3(5)、99(100)……
师:噢,能不能再举一些样子不一样的呢?
生(抢):应该是带分数了。
师(竖起大拇指):真棒!
生:12(1)、35(2)……
(学生举例的过程中老师选一些有代表性的板书)
师:好了,该举小数了?
生:0.3、0.8……
师:这些是纯小数,能举带小数吗?
生:1.5、3.6……
(同样,老师选一些有代表性的板书)
师:好了,现在咱们步入正题,这节课咱们一起来研究“倒数”。(题目补充完整:倒数的认识)
二、铺垫新知
师:看到这个课题,你想说点什么?
生:倒数是一种什么样的数?它是怎么倒过来的?
生:到底什么是倒数?它和以前学过的数有什么区别?
师:你们两个的意思也就是说想知道什么是倒数?(板书:倒数的意义)大家还想知道什么?
生:学倒数有什么用途?
师:很好,还有吗?
生:倒数能求吗?能运算吗?
师:也就是怎样求倒数(板书:求倒数)
三、探究新知
(一)、倒数的意义
1、自学课本
师:请同学们自学24页例1,看看什么样的数是倒数呢?倒数的意义课本上都有,我们一看都知道。重要的是我们在学习中要有自己的发现。
2、初步探究
师:谁能举例说一说是什么样的数是倒数呢?
生:乘积是1的两个数互为倒数,比如8(3)×3(8)=1,它们的积是1,因此8(3)和3(8)都是倒数。
师:噢,有道理,我想问一下“互为”是什么意思呢?
生:互相称为。
师:怎么理解“互为倒数”呢?
生:沉默
师:举个例子吧,杜欣莹请起立(老师走到学生跟前),咱俩握握手,你是我的小朋友,我是你的大朋友,咱们两个互为朋友!同学们想一想,能不能单独地说:“杜欣莹是朋友,老师是朋友”?
生:不能!只能说“谁是谁的朋友”!我懂了!不能说8(3)、3(8)是倒数,只能说8(3)是3(8)的倒数,3(8)是8(3)的倒数!
生:老师,能不能说8(3)、3(8)互为倒数呢?
生:能!老师和杜欣莹互为朋友,8(3)和3(8)怎么能不互为倒数呢?
师:说的太好了,有两种说法来叙述倒数,一种是×和×互为倒数,另一种是×是×的倒数,不能单独的说×是倒数。同桌互相说一说例1中剩余的3个式子。
3、深入剖析
师:理解了“互为倒数”的意义,请看下面几题的说法对吗?为什么?
(1)4(3)+4(1)=1,所以4(3)和4(1)互为倒数。
生:错,互为倒数的两个数必须是积为1,而不是和为1。
师:(2)2(1)×3(4)×2(3)=1,所以2(1)、3(4)、2(3)互为倒数。
生1:似乎对呀!
生2:不对,互为倒数的必须是两个数,而不是三个数。
师:同学们,咱们分析一下,倒数这个概念中,重点的部分是什么呢?
生1:互为
生2:乘积是1
3:还有“两个数”
师:好,现在咱们已经深刻认识了倒数,那同学们再观察一下,例1中互为倒数的每一组都有什么特点?
生:分子、分母颠倒了位置,怪不得叫倒数呢!
(二)、倒数的求法
1、分数的倒数
师:那现在咱们能不能找到一个数的倒数呢?看黑板上的三类数,整数、分数和小数,哪种数的倒数最好找呢?
生(齐):分数
师:咱们就从最简单的开始吧!先看分数2(1)、10(3)、8(7),谁能说一下他们的倒数。
生1:很简单,分子、分母倒过来即可,分别是1(2)、3(10)、7(8)
生2:错,2(1)的倒数应为2。
师:12(1),35(2)的倒数又是多少呢?这个有点难,谁来说呢?
生1:老师,简单!分别为11(2),32(5)
生2:似乎不对呀!
生3:对!分子、分母分别颠倒了位置
生4:不对,老师你看它们的乘积不是1!
生(齐,恍然大悟):是的,不对!积不是1
师:孩子们,你们真棒!找到问题的关键了!那带分数的倒数我们该怎么找呢?能不能先把它们的样子先变一下呢?
生:老师,应该先把带分数化为假分数,然后分子、分母颠倒位置就行了!
师:这个发现太好了!孩子们用这个方法试试吧!
2、整数的倒数
师:分数的倒数大家会求了,整数的倒数又该怎样求呢?它没有分子、分母怎么办呢?
生:老师,可不可以把它先变成分数,然后分子分母颠倒位置。
师:这个想法不错!可怎么变呢?
生:所有的整数都可以看作分母是1的分数,这样不就行了吗?
师:说的太好了!大家同意吗?同桌互相说一说3、5、100、99、999、1688的倒数。
师:1的倒数是几呢?
生1:1可以看作是1(1),颠倒过来还是1(1)。
生2:不对,1(1)是个假分数,应化为整数1。
生3:因为1×1=1,所以1的倒数还是1。
师:所以1的倒数还是它本身。那0的倒数呢?
生:和1一样,0的倒数是0。
师:噢,是吗?再想想
生:0好像没有倒数。你看,0可以看作1(0),分子、分母颠倒成0(1),0作分母失去意义,不存在呀!
生:(掌声)
师:你的想法很有创意!握握手吧!
生:我的想法比他的好,因为找不到任何一个数和0相乘得1,这样0就没有倒数了!
生:(掌声)
师:我的弟子真了不起,王江浩和任南旭分别从两种角度分析0没有倒数,咱们就把这个发现叫“江南发现”好吧!
生:好!挺有诗意的!
3、小数的倒数
师:该攻破最难的堡垒了,求小数的倒数了!我先做一个,大家看对吗?0.3的倒数是3.0
生:(哄笑)错了!
师:错在哪儿?
生1:老师,你看0.3×3.0根本不等于1,怎么会是它的倒数呢?
生2:老师,你是不是糊涂了,是分子、分母交换位置,不是小数点左右交换位置!
师:(故作迷茫)那怎么办呢?
生:先把小数化为分数不就得了!
生:(齐鼓掌)
师:真是青出于蓝胜于蓝呀!孩子们咱们就用丁欣然发现的方法把这几个小数的倒数求出来吧!
四、综合练习
1、3(2)×( )=4×( )=9(1)×( )=0.75×( )=1 (学生说,老师写答案)
师:你有发现吗?
生:这道题其实就是求3(2)、4、9(1)、0.75的倒数,你看它们的积都是1。
师:现在擦去1,你认为有几种填法?
生:还可以让它们的积等于2,3……,所以有无数种填法。
师:但是根据倒数的意义来填是最容易考虑的,是吧?
2、一个数与它倒数的和是99(1),这个数是( )
生:这个数是9
师:为什么呢?
生:因为9的倒数是9(1),它们的和是99(1)
生2:那这个数也可是9(1)呀,因为倒数“互为”的吗!
师:是的,这个数应该是9或9(1) ,我们考虑问题还需要全面些
3、填符或或数字
①10÷2○10×2(1) ②9÷3○9×3(1)
(学生说,老师写)
③20÷( )=20×( )
生:20÷(2)=20×2(1) 生:20÷4=20×4(1)
……
4、总结延伸
出示:1÷3(2)○1×2(3)
师:你猜一下,中间能划等号吗?(生:能)那究竟为什么呢?我们下一节课再作研究,好吗?(生:好)
师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!谢谢大家,下课!
[倒数的认识]
教学设计点评
这个教学设计符合知识本身的内在联系以及学生的认知规律,教学目的明确,要求具体,重点突出,结构严谨,层次清晰。
教学中教师紧紧围绕倒数的意义,使学生在观察比较中理解知识、掌握知识,体现了学生学习新知形成能力的过程。
练习中,通过“教、扶、放”使讲练有机结合,既加强了双基,又开发了智力。
教学目标:
1、在计算、比较、观察,发现倒数的特征并理解倒数的意义。
2、掌握求一个数的倒数的方法。
教学重点:
会求一个数的倒数。
教学难点:
理解“倒数”是不能孤立存在的。
教学过程:
一、谈话导入
真分数的倒数一定大于这个数。(或真分数的倒数一定大于1)
假分数的倒数一定小于或等于这个数。(或假分数的倒数一定小于或等于1)。
二、揭示概念
师:请同学们结合语文的学习,猜几个字,中国的汉字结构优美,有上下结构,左右结构,如果把“杏”上下颠倒,变成什么字了?(呆)把“吴”字颠倒呢?(吞)……那数是不是也有这样的特性呢?
师:事实上,一个数也可以倒过来变成另一个数,比如3/4倒过来变成了4/3,1/7倒过来变成7/1。
师:你能根据它的特性给它起个名字吗?(倒数)今天我们就一起来研究倒数。(板书课题:倒数)
师:请同学们打开教材第24页,在书上完成“算一算”,并认真观察思考,看你有什么发现。
组织学生交流自己的发现,引导学生总结几组算式的共同特点(乘积都是1),以及算式左边的两个乘数的关系(分子和分母互相颠倒),从而引出倒数的'概念。
师:你怎样描述上面算式中两个乘数的关系呢?(根据学生的回答,教师板书)
乘积是1 | 乘积是1 |
2/3*3/2=1 | 2*1/2=1 |
8/11*11/8=1 | 1/10*10=1 |
7/9*9/7=1 | 7*1/7=1 |
6/5*5/6=1 | 1/5*5=1 |
分子和分母颠倒 | 分子和分母颠倒 |
师:乘积是1的两个数互为倒数。你能说出黑板上谁和谁互为倒数吗?还能举出其他例子来吗?(学生举例,教师板书:2/3和3/2互为倒数……)
师:你们是怎么理解“互为”这两个字的?能否举出生活中的例子?(学生举例,如互为朋友是指互相是朋友……。)
三、试一试
主要是让学生理解整数可以看作是分母为1的分数,1的倒数还是1。
四、想一想
教师借助分数中分母不能为0,说明0没有倒数。
五、练一练
学生独立完成 P24 。
六、归纳总结
板书设计
倒数课件实验小学
实验小学倒数课件
教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
教学重点:求一个数倒数的方法。
教学难点:1和0倒数的问题。
一、导入:
同学们,在上数学课之前,老师想考你一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?
生:上下两部分调换了位置,变成了另一个字
师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!
师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?
二、合作探究:
(一)教学例题例1(出示例题课件)
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?
你认为哪些字或词比较重要?你是如何理解“互为”的?
教师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的`。
(二)教学例题2:
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。
课件展示问题:
发现:1的倒数是(1),0(没有)倒数。
师提问:(1)为什么1的倒数是1?
生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数?
生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
(三)探讨带分数、小数的倒数的求法
发现1:带分数的倒数都(小于)本身;
发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。
发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。
三、练习巩固:
做一做练习六的题,学生汇报,集体订正。
四、全课总结
今天学习了什么?我们一起回顾总结出来好吗?
五、课堂总评价
对学生整节课的表现评价。
一、说教材
本课的内容是九年义务教育数学第十一册第一单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。
基于以上的认识,遵循“知识与技能的学习必须以有利于其它目标(数学思考、解决问题、情感态度)的实现为前提”的重要理念,确定本课的教学目标:
1、让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。
2、让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。
3、培养学生良好的合作意识,具有回顾与分析解决问题过程的意识。
4、感受数学的趣味性和挑战性,获得良好的情感体验。
重点:倒数的求法。
难点:带分数、小数的倒数求法。
关键:理解倒数的意义。
二、说教法
本课我采用了发现式教学法、小组讨论式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,特别是注重情境的创设,如创设“取名称”、“找朋友”、“我来试试看”、“我来当名医”、“火眼金睛”等情境,以平等宽容的'态度激起学生的探究热情,让学生在互动和活动过程中充分地运用自己的能力器官。
三、说学法
“倒数”的学习适于学生展开观察、比较、交流、归纳等教学活动。为了更好地指导学法,我采用小组合作形式组织教学。这样,一方面可以让学生尝试发现,体验到创造的过程;另一方面,也可以增强学生的合作意识,相互学习、相互借鉴,逐步完成对“倒数”的认识,有时还受同学启发,在互动中迸发出智慧的火花。
四、教学程序设计
在课前准备阶段,我抓住“互为”二字作文章,先安排这样一个课前活动。
1、联系语文中的反义词的知识,举倒如:“黑”的反义词是什么?(白)“正”的反义词是什么?(反、倒)
2、用“互为”造句。举倒如:“黑和白互为反义词”,这句话还可以怎样表达?(黑是白的反义词或白是黑的反义词)
3、思考:能否说“黑是反义词,白是反义词”?为什么?
通过以上的活动帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍。并在课中多次强调表达的准确性,引导学生在与他人的交流中,运用数学语言清晰地、有条理地表述自己的思考过程,进行讨论与质疑。
(一)激趣引入,导入新课
1、请说出结果是1的算式
2、观察、分类:学生可能会以加、减、乘、除或和、差、积、商是1为标准进行分类。
3、思考:结果是1的两个数有何特点?你能根据它们的特点给它们取个名称吗?可能会有以下回答:
①加法中两个数的和是1,名称:补数…
②减法中两个数相差1,名称:邻数…
③除法中的两个数是同一个数,名称:镜数…
④乘法中的两个数(微机只演示积为1的一组数,让学生再观察),名称非常好听,又很符合它们的特点:数学上把乘积是1的两个数叫做互为倒数。
4、顺势揭题:我们今天就来研究倒数(出示课题),以上让学生自己提供教学材料,能迅速激发学生的探索兴趣,为探求新知作好心理上的准备。在取名称的过程中,学生需要观察两个数存在的特点,这样就有效地激发学生的观察兴趣。
(二)举例辨析,理解意义。
分三步进行:
一是微机出示:
(1)什么是倒数?满足什么条件的两个数互为倒数?
(2)你能找出互为倒数的两个数吗?请举例。
让学生按“读、思、划”三步阅读课本,即一边读书P19,一边思考,并把重点知识或不明白的地方勾画出来。结合例子说明:3/8和8/3互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。
二是同桌互说,举例说出互为倒数的两个数,并说理由,充分感知。
三是让学生回答,进行交流:怎样理解“互为”的含义?能说某数是倒数吗?(举例如:“小明和小华是好朋友”,能说成“小明是好朋友”或“小华是好朋友吗”?)
此处在学生自学的基础上,让学生举例说明倒数,积累感性材料。引导学生重点理解“乘积是1”而不是“和(差、商)是1”,理解“互为”是指两数的依存关系。
(三)观察比较,归纳方法
该环节让学生寻找求倒数的方法,注意先独立思考,再合作交流。具体分为三个层次:
第一层次:创设问题情境:“找朋友―好朋友,手拉手”,请把互为倒数的两个数用线连起来。微机显示:
7/911/662/39/7、6/11、1/6练习后,质疑“为什么2/3孤零零地站在哪里?”
学生回答后,再激趣:“大家有勇气探索求倒数的方法吗?
第二层次――――我来试试看:我能行
写出11/6、1/5、9和15/8的倒数(微机显示)
提示:如有困难,可先自学课本,或请教你的好朋友,找不同层次的学生回答。
第三层次――――回顾、交流
1、小组交流:(1)你是怎样求一个数的倒数的?
(2)互为倒数的两个数相等吗?怎样表示它的结果?
2、全班交流,突出重点:(1)互为倒数的两个数有何特点?
(2)强调:到数可用“―”表示,不能用=表示。
(3)重点讨论“9”和“15/8”的倒数求法过程,动态演示成:(见演示稿)
此环节引导学生在仔细观察数据特征的基础上,细心体会分子与分母的位置关系,尝试发现求倒数的方法。设计力求让学生成为学习的主人,做到“一切真理都要由学生自己获得或由他们重新发现,至少由他们重建。”
(四)辨析比较,弄清特例
1、微机显示:你最喜欢下面哪个数的倒数?为会么?(见演示稿)
设计这样一个针对性练习,既突出本课的重点,又有利于突破难点;既有对刚刚学过的倒数求法的运用,又使学生产生新的认知冲突:1的倒数为什么是它本身?0有没有倒数?为什么0没有倒数?这样学生在宽松的氛围里,勇于发言、敢于辩论。
2、数学诊所:“我来当名医”――有病就治。
(1)互为倒数的两个数的乘积一定等于1。
(2)2和它的倒数的和是5/2。()
(3)假分数的倒数是真分数。()
(4)小数的倒数大于1。()
(5)在8―7=1和3÷3=1中,8和7,3和3是互为倒数的。()
(6)a的倒数是1/a。()
本设计围绕易混易错之处,让学生用手势判断,进行辨析,训练说理能力,同时学生的思维也得到训练。
(五)回顾、质疑,自我评价。
通过这节课,你学到哪些知识?先闭着眼睛想一想,再同桌的同学互相说一说。
该环节的设计,是让学生在互动中互相启发,共同发展。“自主探究”旨在改变教与学的方式,教师的教是为学生的自主学习、主动探究创造条件,是为学生的独立思考,动手实践,自主探究等合作交流引路搭桥。是让学生真正在探究学习中发展。
各位老师:
大家好,今天我有幸和老师们一起探讨小学六年级数学倒数的认识的教学,使我感到无比荣幸。我说课的内容是人教版小学数学六年级上册第三单元第28页例1:倒数的认识。学生在前面已经学过各种数(整数、小数、分数)及分数的加、减、乘法的计算。本节课在此基础上教学倒数的认识,为接下来的分数除法垫定基础。因此,对用倒数意义(乘积是1),求一个数的倒数的方法(用1除以这个数或分子分母调换位置)并不会感到困难。但是,由于倒数及分数除法接触才刚开始,对其意义的理解不透,特别是对0、1、小数、带分数等特殊数的倒数很有难度。因此,这一课的学习对学生来说也是非常必要的。学习这部分内容,有利于学生掌握分数除法的计算方法,并为分数除法的计算打好基础。根据以上分析以及新课标提出的要求:要让学生在获得新知的同时,在情感态度价值观等方面都能得到进一步发展和培养,我制定了以下的教学目标:
1、知识技能目标:理解倒数的意义,会求一个数(整数、小数、分数、带分数)的倒数。
2、情感与态度目标:在探索倒数的过程中,培养学生自学能力、阅读理解的能力,提高学生观察、比较、抽象、概括以及合作学习、口头表达的能力。
由于学生对数及数的运算有了一定的经验,通过知识的迁移学生能很好的掌握知识,所以本课的重点制定为:理解倒数的意义,会求一个数(整数、小数、分数、带分数)的倒数。
新课程标准指出教师是课堂的引导者,而学生才是课堂的主体。所以我制定了以下的教法:
1、目标教学法:课前复习有关数的知识后师直接出示本课时目标:
(1)、倒数的意义(即什么是倒数)?
(2)、怎样求一个数的倒数?学生自学教材28页的内容。带着问题目的学习,激发他们的学习兴趣,使他们产生迫不及待获取新知的欲望,产生积极的数学情感。
2、任务教学法:学生通过自学、猜测、思考、验证、合作、交流等活动学习新知,完成教学任务。
在这过程中我注意使用启发式原则和因材施教原则,真正体现学生是学习的主体,教师为主导的角色。我遵循新课程标准的要求和新的教学理念(数学教学,要紧密联系学生的生活实践,从学生的生活经验和已有知识出发,创设生动有趣的情景,引导开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,以及学好数学的愿望。)并结合学生的年龄及认知特点。对整个教学思路作了如下设想:第一步通过复习有关数的知识,让学生整理整数、小数、分数(带分数)等有关知识,以此激发学生的学习积极性和参与度。第二步通过自学与发现,使学生通过观察、操作、类比、交流、反思等活动探究新知。第三步通过巩固提高及时对所学知识进行练习,达到牢固掌握所学知识的目的。第四步通过课后作业对学生学习的新知识进行消化,从而得到学生学习的信息反馈。四个步骤构为一个整体,同时把教学过程分为复习旧知、探究新知、巩固提高、课后作业四大部分。
老师们,由于本人的能力有限、对《课程标准》的学习不够全面、对学生的学习情况不够了解等原因,在教学中难免有诸多不足之处,恳请各位老师能多找出教学中的不足之处,提出宝贵的建议,以不断提高自己的业务水平,达到为学生负责,为家长负责的目的。在此先谢谢大家。
今天我将要为大家讲的课题是“倒数的认识”。
一、说教材
倒数的认识在西师版九年义务教育六年制数学教材第十一册第45—47页,这部分内容是在分数乘法计算的基础上进行教学的。倒数主要是为后面学习分数除法做准备的,因为一个数除以一个分数的计算方法是归结为乘上这个分数的倒数。所以说倒数的认识是小学数学重要的内容之一。作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试观察、归纳、类推、联想等数学思想方法。
二、教学目标:
根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,我制定如下教学目标:
1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义。
2、让学生经历提出问题、探索问题、应用知识的过程,自主总结出求倒数的方法。
3、通过合作活动培养学生学会与人合作,愿与人交流的习惯。
4、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。
三、教学重点、难点:
本着课程标准,在吃透教材基础上,我觉得首先必须掌握倒数的意义与求法,其次1、0的倒数,以及小数、带分数倒数的求法,所以我认为倒数的意义及其倒数的求法是教学的重点。乘积是1的两个数互为倒数。这里要强调倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的'倒数,不能孤立地说某一个数是倒数。所以我认为正确理解倒数的意义是教学的难点。教学的关键就是教会学生克服难点,办法是结合课本中的例子说明,然后可以让学生举出几组倒数,并对学生的回答让学生们发表意见,用倒数的意义来检验所举的例子对不对。下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈一谈:
四、说教法:
数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与尝试教学的教学原则,我进行了这样的教法设计:在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受。
五、学法:
课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的尝试教学方法,结合师生共同讨论、归纳。在课堂结构上,我根据学生的认知水平,我设计了如下几个层次: ①创设情境——引入概念②观察归纳——形成概念③讨论研究——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。
六、教学资源
为了充分利用远程教育资源提高自身的教育教学水平,提高教育质量,增强教育的趣味性,让受教育者由被动学习变成主动学习,本课件在制作过程中选用了四川基础教育网上的部分内容并加以整合利用
接下来,我再具体谈一谈这堂课的教学过程:
七、教学程序及设想:
(一) 创设情境——引入概念
我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。在这里我由生活中的具体的实例引入:生活中哪些物体可以倒过来?同学们可以相互交流得出多种答案
a、人倒立 b、杯子 c、凳子 d、分数
这样符合小学生喜欢探究新奇奥妙事物的特点,有利于激发学生的学习兴趣。
(二)观察归纳——形成概念
仔细观察这4组数字,除了形上有倒的现象外,每两个分数之间还存在什么特征?教师引导学生概括总结出本课新的知识点:每两个分数相乘的积是1,在此基础上引出倒数的概念,重点理解乘积是1的两个数互为倒数。在这里老师强调“互为”说明成为倒数的两个数之间是相互依存的,即表述倒数时,必须说明一个数是另一个数的倒数,或者说一个数和另一个数互为倒数。
(三)讨论研究——深化概念
① 找倒数(这里指的是分数),引导学生考虑怎么找的?有什么规律?教师引导学生概括总结出本课新的知识点:求一个数的倒数,只要把这个数的分子、分母调换位置。方法如下: 分母是8,分子是15,求它的倒数就是把他的分子和分母调换位置,也就是
②整数(这里指的是大于1的自然数),这样的数怎么办?教师引导学生概括总结:整数可以看成分母是1的分数,它们的倒数也是只要把这个数的分子、分母调换位置。
③ 1有没有倒数?如果有,它的倒数是多少?引导学生概括总结:1有倒数,1的倒数就是它本身,因为1等于一分之一,一分之一分母、分子调换位置还是一分之一,就是1。
④0有没有倒数?学生起争议,0不能作分母,0不能作除数,任何一个数和0相乘的积都不会是1,所以0没有倒数。
⑤ 充实规律,加深规律。非0自然数的倒数和0没有倒数是学生容易混淆出错的地方,也是学生认识的误区。
(四)即时训练—巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,在这组练习题中除了有整数、分数以外还有小数,以及带分数的求倒,可以让学生通过观察尝试,讨论研究,教师引导来巩固新知识。
(五)总结反思——提高认识
由学生总结本节课所学习的主要内容:⑴倒数的意义;⑵倒数的求法;⑶非0自然数,以及小数、带分数的倒数⑷ 0的倒数。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(六)任务后延——自主探究
学生经过以上五个环节的学习,已经初步掌握了探究倒数规律的一般方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。
七、简述板书设计:
本课的板书设计着重从倒数的意义及方法上出发,力求简明厄要,我把板书的重点放在重要的概念上面。目的是加深学生对所学知识的理解与掌握 结束:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。希望各位专家领导对本堂说课提出宝贵意见。
《倒数的认识》说课稿
一、教材分析
“倒数的认识”是人教版九年义务教育六年制小学数学第十一册第一单元的内容。本节课是在学生学习了分数乘法的基础上进行教学的,它是分数乘法计算的后继内容,同时又是学习分数除法的先备条件,是属于承上启下的知识类型,主要包含两部分的知识:一是倒数的意义,二是求一个数倒数的方法。内容看似简单,但对学生来说比较抽象,难理解。根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:
1、知识目标:理解倒数的意义,掌握求一个数倒数的方法;
2、能力目标:通过观察、思考、探究,培养学生抽象概括、发现创新、迁移类推、触类旁通的能力;
3、德育目标:培养学生良好的合作意识和刻苦钻研的精神,渗透“万事万物既相互联系又相互转化”这一辩证唯物主义思想。
根据上述观点,我认为本节课的教学重点是:求一个数的倒数的方法。
教学难点是:理解倒数的意义以及带分数、小数的倒数求法。
教学准备:多媒体课件。
二、说教法
基于教材内容比较单调,那么只有在教法上体现新、奇、特,才能让学生想学、要学。在教学过程中,我将始终扮演一个组织者、引导者、合作者的角色,根据小学生从具体的形象思维逐步向抽象的逻辑思维发展的思维特点,联系小学生熟悉的身边实际,使抽象的内容直观化,激发学生的学习兴趣,引导学生去发现问题、讨论问题,放手让他们自主探究,帮助他们在自主探究中真正理解并掌握本节课的数学知识、技能、思想和方法。为此我把本节课的教法归纳为四个字:激、导、放、探。
三、说学法
“倒数”的'学习适于学生展开观察、比较、交流、归纳等数学活动,在教学过程中,我将坚持以学生为主体的原则,引导学生从发现乘法算式的特点到从特点出发认识倒数的意义,再从倒数的意义到探究求一个数的倒数的方法,这一过程符合学生由具体到抽象的认知规律,真正做到玩中学、学中玩,合作交流中学、学后交流合作,使学生既学到了知识,又培养了技能。
四、教学程序:
1、课前谈话,渗透“互为”。
在课前准备阶段,我抓住“互为”二字作文章,在谈话中让学生理解“互为”应该是双方面的,例如“老师和大家互相成为好朋友”的意思,可以理解成“老师是你的朋友”,或者“你是老师的朋友”,渗透“互为”这个倒数概念中的关键词语,帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍,
上课铃声响起,为感谢同学们已经把老师当作了朋友,花1分钟时间表演一个变汉字的小魔术,让学生理解感受“倒”的意思,为学习新课作铺垫。
2、巧设比赛,激趣揭题。
首先设计一个“比一比”的环节,引出女生算的乘法算式更简单,乘积全部等于1,让学生仔细观察两个数的特点,尝试给这样的两个数起一个名字,在此基础上小结归纳出倒数的意义,板书揭题。然后抓住关键字“乘积是1”“互为”展开辨析纠错,最后质疑“为什么八分之九孤零零地站在哪里呀?”学生回答后再激趣:“你能帮它找到倒数吗?”从而进入下一阶段的学习。
3、观察思考,探究发现。
这一环节主要要解决的问题是:怎样求一个数的倒数。先让学生根据“乘积是1”这一倒数的意义来求一个数的倒数,然后引导学生仔细观察数据特征,细心体会两个数分子与分母的位置关系,尝试发现求一个数的倒数的方法,然后应用这种方法实践检验,着重引导学生思考“整数、带分数的倒数怎么求?”“是不是所有的数都有倒数?”在这一系列的学习活动后,小结概括出求一个数的倒数的方法也就水到渠成了。
4、闯关练习,小结深化。
该环节以“闯一闯”的形式设计三关练习,紧紧抓住本课重难点,让学生深刻理解所学知识,形成技能:
第一关:填补空白
该练习的目的是进一步巩固求倒数的方法,明确两个数互为倒数,它们的乘积等于1。
第二关:公正裁判
本设计围绕易混易错之处,同时穿插“怎样求小数的倒数”这一教学内容,让学生用手势判断,进行辨析,训练说理能力。
第三关:马小虎的日记
该练习的设计注重对学生的人文培养,既全面考查了学生对本节课的学习掌握情况,同时又是一个课堂小结,可谓一石二鸟。