圆柱的表面积指圆柱的底面积与侧面积之和。设圆柱的底面半径为r,底面周长为C,圆柱高为h,则:这次漂亮的小编为您带来了小学六年级数学教案《圆柱的体积》(优秀6篇),我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
教学内容:
人教版小学数学六年级下册《圆柱的体积》P25-26。
教学目标:
1.经历探究和推导圆柱的体积公式的过程。
2.知道并能记住圆柱的体积公式,并能运用公式进行计算。
3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。
4.激发学生的学习兴趣,让学生体验成功的快乐。
5.培养学生的转化思想,渗透辩证法和极限的思想。
教学重点:
掌握和运用圆柱体积计算公式
教学难点:
圆柱体积公式的推导过程
教具学具准备:
教学课件、圆柱体。
教学过程:
一、复习导入
1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?
2.回忆一下圆面积的计算公式是如何推导出来的?
(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分《·》割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。
3.课件出示一个圆柱体
我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?
二、探索体验
1.学生猜想可以把圆柱转化成什么图形?
2.课件演示:把圆柱体转化成长方体
①是怎样拼成的?
②观察是不是标准的长方体?
③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。
3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。
课件出示要求:
①拼成的长方体与原来的圆柱体比较什么变了?什么没变?
②推导出圆柱体的体积公式。
学生结合老师提出的问题自己试着推导。
4.交流展示
小组讨论,交流汇报。
生汇报师结合讲解板书。
圆柱体积=底面积×高
‖‖‖
长方体体积=底面积×高
用字母公式怎样表示呢?v、s、h各表示什么?
5.知道哪些条件可以求出圆柱的体积?
6.计算下面圆柱的体积。
①底面积24平方厘米,高12厘米
②底面半径2厘米,高5厘米
③直径10厘米,高4厘米
④周长18.84厘米,高12厘米
三、课堂检测
1.判断
①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。()
②圆柱的底面积扩大3倍,体积也扩大3倍。()
③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。()
④圆柱体的底面直径和高可以相等。()
⑤两个圆柱体的底面积相等,体积也一定相等。()
⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。()
2.联系生活实际解决实际问题。
下面的这个杯子能不能装下这袋奶?
(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)
学生独立思考回答后自己做在练习本上。
3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?
4.生活中的数学
一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。
①覆盖在这个大棚上的塑料薄膜约有多少平方米?
②大棚内的空间大约有多大?
独立思考后小组讨论,两生板演。
四、全课总结
这节课你有什么收获?
五、课后延伸
如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?
六、板书设计
圆柱体积=底面积×高
长方体体积=底面积×高
一、教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
二、教学重难点:
掌握和运用圆柱体积计算公式,圆柱体积公式的推导过程。
三、教学方法:
从生活情境入手,通过组织猜测、操作、交流等数学活动,使学生经历“做数学”的过程,鼓励学生独立思考,引导学生自主探索、合作交流,让学生根据已有的知识经验创造性地建构圆柱体积计算公式,鼓励解决问题策略的多样化,让学生的思维得到发展,创新精神、实践能力得到提高。
四、教学步骤
(一)创设情景提出问题情境引入:
某玩具厂厂长,他们厂新近开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?
(二)动手实验,探索公式
1.观察、比较,建立猜想引导生观察例4中的三个几何体,提问:
(1)长方体、正方体的体积相等吗?为什么?
(板书:长方体的体积=底面积×高)
(2)圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?
2.实验操作,验证猜想让学生自主探究(材料:圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。
教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的?可以模仿这样的方法来转化。
(1)小组合作研究怎样将圆柱体转化成一个长方体
(2)小组代表汇报,全班交流
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
演示操作
a请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。
b思考:这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?
c电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)
3.观察比较,推导公式
a圆柱体转化成长方体后,什么变了,什么没有变?
b根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积=底面积×高
d小结:要想求出一个圆柱的体积,需要知道什么条件?e学生自学第8页例4上面的一段话:用字母表示公式。
学生反馈自学情况,师板书公式:v=sh
(三)巩固练习,拓展应用
1.出示第26页试一试,学生理解题意,独立完成。集体订正,说一说每一步列式的根据是什么?使学生明确应用体积公式求圆柱的体积一般需要两个条件,即底面积和高。
2.完成第26页的“练一练”的第1题。
先看图说说每个圆柱中的已知条件,再各自计算,计算后,说一说计算的过程,强调:计算圆柱体的体积要先算出底面积。
3.完成第26页的“练一练”的第2题。
读题后强调说说为什么电饭煲要从里面量底面直径和高,然后列式解答。
4、把直尺绕着它的一条边旋转一圈得到了一个什么图形?它的体积你会计算吗?
(四)总结回顾评价反思
这节课你学会了什么?你是怎样学会的?
五、板书设计:
圆柱的体积
切拼成的长方体的体积等于圆柱的体积,长方体的底面积就相当于圆柱的底面积,长方体的高就相当于圆柱的高。
长方体的体积=底面积×高
圆柱的体积=底面积×高
字母表示:V=Sh=πrh2
教学内容:圆柱体积公式的推导
教学目的:
1、 通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程。
2、能够运用公式正确地计算圆柱的体积。
教具准备:圆柱的体积公式演示课件
教学过程:
一、复习回顾
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×高。)
2、长方体的体积怎样计算?
学生回答,教师引导学生想到长方体和正方体体积的统一公式“底面积×高”。
板书:长方体的体积=底面积×高
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多少条高?
二、回忆导入
师:请大家想一想,我们在学习圆的面积时,是怎样把因变成已学过的图形再计算面积的?
让学生回忆,说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的。面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
师:今天将要学习的圆柱的体积大家能不能把圆柱转化成我们已经学过的图形来求出它的体积?
学生相互讨论,思考应怎样进行转化。说出自己想到的方法。
师:这节课我们就让我们一起来研究圆柱的体积。
板书课题:圆校的体积
三、新课讲授
师:看到这个标题你想知道的什么?
学生回答后老师出示教学目标及重难点
1、圆柱体积计算公式的推导。
师出示一个圆柱,让学生观察底面提问:“大家看,这是不是一圆?”(是。)
“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?”
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。展示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形?
学生回答后,老师操作演示,“大家看,圆柱的底面被拼成了什么图形?”
生:长方形。
师:大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:)
师:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
师:“长方体的体积等于什么?”让全班学生齐答,教师接着板书:“长方体的体积=底面积×高”。
师:请大家观察,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
板书:圆柱的体积=底面积×高
师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; V=SH(板书)
2、公式应用
出示例4。
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=SH=50×2.1=105
答:它的体积是105立方厘米。
②2.1米;210厘米
V=SH=50×210=10500
答:它的体积是10500立方厘米。
③50平方厘米=0,5平方米
V=SH=0.5×2,1=1.05
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=SH=0.005×2.1=0.0105立方米
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的说说错在什么地方。
四、巩固练习:
1、做“做一做”的第1题。
让学生独立做后集体订正。
2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。
3、能力扩展
五:课堂总结:
通过这节课的学习,你有什么收获?你是怎样联系学过的知识进行学习的。
六:布置作业:
练习十一的第1—2题。
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出底面积,再求圆柱的体积。
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式。
2.会运用公式计算圆柱的体积。
教学重点
圆柱体体积的计算。
教学难点
理解圆柱体体积公式的推导过程。
教学过程
一、复习准备
(一)教师提问
1.什么叫体积?怎样求长方体的体积?
2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的。那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题。(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式。(演示动画圆柱体的体积1)
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体。
2.学生利用学具操作。
3.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了。
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化。
③近似长方体的高就是圆柱的高,没有变化。
4.学生根据圆的面积公式推导过程,进行猜想。
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体。
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。
6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由。
因为长方体的体积等于底面积乘高。(板书:长方体的体积=底面积高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高。(板书:圆柱的体积=底面积高)
(3)用字母表示圆柱的体积公式。(板书:V=Sh)
(二)教学例4.
1.出示例4
例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
2.1米=210厘米
50210=10500(立方厘米)
答:它的体积是10500立方厘米。
2.反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5.
1.出示例5
例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3.14
=3.14100
=314(平方厘米)
水桶的容积:
31425
=7850(立方厘米)
=7.8(立方分米)
答:这个水桶的容积大约是7.8立方分米。
三、课堂小结
通过本节课的学习,你有什么收获?
1.圆柱体体积公式的推导方法。
2.公式的应用。
教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历类比猜想――验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重、难点:掌握圆柱体积公式的推导过程。
教学流程:
一、复习引入
1、什么是体积?
2、怎样计算长方体和正方体的体积?
3、引入:这学期我们新学了两个立体图形,分别是?大家想不想知道圆柱的体积怎样计算?这就是我们今天这节课要研究的问题。
二、活动导学、精讲点拨
1、观察比较,建立猜想
引导学生观察例4的三个立体图形,提问:
⑴ 三个立体图形的底面积和高都相等,它们的体积有什么关系?
⑵ 长方体和正方体的体积一定相等吗?为什么?
⑶ 猜一猜,圆柱的体积与长方体和正方体的体积相等吗?
2、实验操作
(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,那你能否再大胆猜一下,圆柱的体积计算公式会是什么呢?指名说。(等于底面积乘高)。
大家都认为圆柱的体积=底面积×高,老师先写下来,这个公式对不对呢?(打上问号)这只是我们的猜想,我们还需要验证。那用什么办法验证呢?请独立思考。
(手拿着圆柱,指着底面)老师提示一下:想一想圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成已经学过的立体图形呢?
(2)出示底面被分成16等份的圆柱,谈话:老师这里有一个圆柱,底面被平均分成了16份,你能想办法把这个圆柱转化成已经学过的立体图形吗?
(3)指名两位同学上台操作教具,让学生观察。
师:大家看,圆柱的底面被拼成了什么图形?(长方形);再看整个圆柱,它又被拼成了什么形状?(长方体)也就是说,把圆柱的底面平均分成16份,切开后能拼成一个近似的长方体。
(4)引导想像:如果把底面平均分的份数越来越多,结果会怎么样?(闭上眼睛,在头脑里想象。)
演示一组动画(将圆柱底面等分成32份、64等份……)课件演示。问:和你的想象一样吗?使学生清楚地认识到:拼成的立体图形会越来越接近长方体。
3、观察比较,推导公式
(1)提问:拼成的长方体与原来的圆柱有什么关系?出示讨论题。
a、拼成的长方体的底面积与原来圆柱的底面积有什么关系?
b、拼成的长方体的高与原来圆柱的高有什么关系?
c、拼成的长方体的体积与原来圆柱的体积有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
(2)想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式:
圆柱的体积=底面积×高
(3)如果用v表示圆柱的体积,s表示圆柱的底面积,h表示圆柱的高,那么,圆柱的体积计算公式你能写出来吗?试试看。
指名同学到黑板板书:v=sh
我们发现圆柱拼成长方体后体积,底面积,高没有变,那什么变了呢?
指名回答。(形状变了;表面积变大)
4、回顾反思
回顾圆柱体积公式的探索过程,你有什么体会?
三、练习运用、迁移创新
1、做练习三第1题。
让学生口头列式并完成填表。问:要求体积必须知道底面积和高吗?
2、教学“试一试”。
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
3、做“练一练”第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
4、做“练一练”第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生先根据底面周长求出底面积。
5、做练习三第2题。
学生读题后,提问:计算电饭煲的容积,为什么要从里面量尺寸?
6、拓展题
把一个高是20厘米的圆柱切拼成一个近似的长方体,表面积比原来增加了200平方厘米,圆柱的体积是多少立方厘米?
四、课堂小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
教学目标
1.使学生初步理解和掌握圆柱的体积计算公式。会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点和难点
圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学过程设计
我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。(板书:圆柱的体积)
(一)复习准备
1.什么叫体积?(指名回答)
生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)
根据学生的回答,板书:
长方体体积=底面积×高
2.圆面积公式是怎样推导出来的?
生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。)得到圆面积公式S=πr2。
(二)学习新课
1.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?
2.看书自学。
(1)圆柱体是怎样变成近似长方体的?
(2)切拼成的长方体与圆柱体有什么关系?
(3)怎样计算切拼成的长方体体积?
3.推导圆柱体积公式。
(1)讨论自学题(1)。圆柱体是怎样变成长方体的?(指名叙述)再看看书和你叙述的一样吗?
把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。)
(2)动手操作切拼,将圆柱体转化成长方体。
出示两个等底等高圆柱体,让学生比一比,底面积大小一样,高相等,使学生确信,两个圆柱体的体积相等。
请两名同学按照你们的叙述,把圆柱体切拼成长方体。(如有条件,每四人一个学具,人人动手切拼,充分展示切拼过程和公式推导过程。)
现在讨论自学题(2)。
师:这个长方体与圆柱体比较一下,什么变了?什么没变?
生:形状变了,体积大小没变。
(3)推导圆柱体积公式。
讨论:切拼成的长方体与圆柱体有什么关系?(引导学生有顺序的进行叙述,分小组讨论,让学生充分发言。)
小结:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:V=Sh
(4)利用公式进行计算。
例1一根圆柱形钢材,底面积是50平方厘米,高2。1米,它的体积是多少?
引导学生审题,说出题目中的已知条件和问题。做这道题还要注意什么?
生:已知圆柱体底面积和高,求圆柱的体积,注意统一单位名称。
2。1米=210厘米(①用字母表示已知条件)
S=50h=210(②写出字母公式)
V=Sh(③列式计算)
=50×210(④写出答题)
=10500
答:它的体积是10500立方厘米。
引导学生总结出做题步骤。
小结:要求圆柱体积,必须知道圆柱的底面积(如果给半径、直径、底面周长,会求出底面积)和高。注意统一单位名称。
(三)巩固反馈
1.圆柱体的底面积3。14平方分米,高40厘米。它的体积是多少?
2.求下面圆柱体的体积。(单位:厘米)
3.填表:
4.一个圆柱形容器,底面半径是25厘米,高8分米。它的容积是多少立方分米?
5.一个圆柱形粮囤,从里面量,底面周长是6。28米,高20分米。它的容积是多少立方米?
(四)课堂总结
这节课,你学会了什么?还有什么问题?
生:学会了圆柱体的体积计算公式,并会用公式解答实际问题。
思考题:
一张长方形的纸长6。28分米,宽4分米。用它分别围成两个圆柱体,它们的体积大小一样吗?请你计算一下。
课堂教学设计说明
本节教案分三个层次。
第一层次是复习。
第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析和归纳能力。
第二层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
本节教案特点:充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于玩中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。