五年级数学求平均数优秀教案(10篇)

作为一名教学工作者,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么问题来了,教案应该怎么写?为同学们带来了五年级数学求平均数优秀教案(10篇),希望能够在作文写作上帮助到同学们。

《平均数》数学教案 篇一

一、教学内容:

人教版《义务教育课程标准实验教科书数学【WWW.XIEZUOWEN.NET】》三年级下册P42、43页《平均数》

二、教学准备:

直尺、三角板,学生按矮到高的顺序坐好。

三、教学目标与策略选择:

以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:

1、通过观察、比较,理解平均数不是一个具体的数(实际的数);

2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;

3、学生能掌握求平均数的方法:

(1)移多补少;

(2)先求总数再平均分等;

4、体现总体与样本的关系。

鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:

1、以“情”、“趣”开路。

2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。

四、教学流程设计及意图:

教学流程

设计意图

一、活动导入,引出平均数的意义。

1、创设情境:比身高。

(1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

(2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?

(3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:。.。.。.

(4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

师:如果不请男同学上来了,你觉得还有其它比较的办法吗?

2、同桌学生讨论。生:求出几个同学的平均数。

3、现场测量台上同学的身高。

4、学生尝试练一练,指名板书。

5、比较结果。是男同学高,还是女同学高。

6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。

二、延伸拓展,形成统计观念。

1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?

2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?

生:先把所有的身高加在一起,再除以有40人。

师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?

生:。.。.。.

3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?

(1)学生参考选取第一排或第五排。

(2)选取第一组的学生比较有代表性。

4、估计。

师:你们先估计一下,第一组5个同学的平均身高是多少?

生:。.。.。.(不会比最大的大,比最小的小)

5、学生计算。

6、进一步感悟平均数。

师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。

7、小结方法。

师:我们来观察一下,刚才我们是怎样求平均数?

生:先求总数(板书),除以人数,等于平均身高。

三、应用提高,深化统计观念。

1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?。.。.。.

2、你觉得有危险吗?

小朋友说:我身高140厘米,在这里游泳不会有危险。

2、猜猜看:

3根小棒,平均3根小棒,平均

每根长10厘米每根长15厘米

(1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?

(2)举例。师:能举个例子吗?同桌商量一下。

(3)汇报。

3、变式练习。

(1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?

①(39+87)divide;2=63(万张)

②(39+87)divide;3=42(万张)

(2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?

①(39+22+23)divide;2=42(万张)

②(39+22+23)divide;3=28(万张)

质疑:为什么两个数要除以3?三个数相加要除以2呢?

小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)

4、读信息,了解最新动态,解决实际问题。

(1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?

(2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?

(3)计算--课件验证。

(4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?

四、全课总结。

以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。

通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。

在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。

五、教学片断实录:

片断一:

开场白:今天我们进行一场比赛--比身高。板书:男、女

师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

师:你们说谁比较高?

生:男同学。

师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?

生:还是男同学。(男同学似乎很得意)

师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

此时学生大笑。

师:你们笑什么呢?

生:这个男同学这么矮?

师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。

师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?

生:是男同学。生:是女同学。生:一样高。

师:怎么比呢?

生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)

生:可以把男同学或女同学的身高加起来,再比较。

另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。

。.。.。.

师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

生:女同学或不公平。

生:还得再叫一位男生上来。

师:如果不请男同学上来了,你觉得还有其它比较办法了吗?

同桌讨论。

生:求出男、女生的平均身高。。.。.。.

六、教学反思:

1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。

2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。

平均数 篇二

教学内容:p92-94教材简析:这部分教材是在学生已具有一定的收集和整理数据能力的基础上教学比较简单的求平均数问题,其中包括平均数的意义和算法。教材选择一个小组男、女生进行套圈比赛的情景作为教学素材,分两个层次安排教学内容。第一层次先放手让学生从多种角度用数据描述各组套中的情况,在尝试中促使学生产生求平均数的心理需求。第二层次则倡导让学生自主探索平均数的意义和计算方法,然后安排交流。在第二层次里有两个重点:一是通过条形统计图中涂色方块的移多补少,直观地揭示平均数的意义。二是揭示“先求和再平均分”的求平均数的一般方法。“想想做做”中既安排了巩固求平均数计算方法的练习,也安排了加深对平均数意义的理解的练习。教学目标:1、使学生在丰富的具体问题情境中,感受求平均数是解决一些实际问题的需要,并通过进一步的操作和思考体会平均数的意义,学会计算简单数据的平均数(结果是整数)。2、在运用平均数的知识解释简单生活现象、解决简单实际问题的过程中,进一步积累分析和处理数据的方法,发展统计观念。3、进一步增强与他人交流的意识与能力,体验运用已学的统计知识解决问题的乐趣,建立学习数学的信心。教学重点:理解平均数的意义,学会求简单数据的平均数。教学准备:光盘教学过程:一、创设情境,提出问题。1、谈话:同学们,你们玩过套圈的游戏吗?(boys and qirls, have you ever play games like this ,look…)2、谈话:看,三年级第一小组的同学进行了男、女生套圈比赛,每人套15个圈。下面的统计图表示他们套中的个数。(光盘出示)3、从图中你知道了些什么?(what do you know in the picture?)和同桌说一说,指名回答,相机板书:(tell your partner)who want to say? tell us please .男生:6+9+7+6=28(个)女生:10+4+7+5+4=30(个)4、提问:男生套得准一些还是女生套得准一些?男生套中28个,女生套中30个。是不是女生套得准一些呢?女生中有人最多套中10个。是不是女生套得准一些呢?are you agree? is it fair?指名回答,追问:那怎样比才公平呢? 二、自主探索,解决问题。1、提问:怎样才能说明男生套得准一些还是女生套得准一些呢?小组讨论,指名回答。(please share your method with your partner,ok?)(要分别求出男生、女生平均每人套中多少?)2、提问:男生平均每人套中多少个?小组再讨论,(first, you can discuss in your group; then you can share your method with your partner.)交流:please tell us your method.(1)移多补少法。提问:怎么移?移动以后的每人7个表示什么意思?谁能给这个方法起个名字?(2)先求和,再求平均数法。(板书:28/4=7(个))你是怎么想的,为什么除以4?3、男生平均每人套中7个,是不是每人都套中7个?4、提问:观察平均数“7”和每个男生套中的个数,你发现了什么?(平均数比每人套中的个数中最大的数小,比最小的数大。)5、那你能根据这个规律来猜猜看女生平均每人套中多少个?指名回答。can you guess?谁猜得最准确呢?你是怎么知道的?把你的方法和你的同桌说一说。who is right? how do you know?板书:30/5=6追问:为什么除以5?6、提问:现在你知道男生套得准,还是女生套得准一些了吗?7、小结:刚才我们学会了用移多补少法和先求和、再求平均数的方法计算平均数,准确地知道了男生套得准一些还是女生套得准一些。当解决问题的方法有多种时,我们要针对不同的实际情况选择最恰当的方法。 三、练习巩固,学以致用1、做“想想做做”第1题。出示三筒铅笔。谈话:你能知道平均每个笔筒里有几枝铅笔吗?先分别数数。提问:怎样求平均每个笔筒里有多少枝?同桌讨论,指名回答。谈话:这两种方法都能得出平均数,你喜欢用哪一种,就用哪一种。2、做“想想做做”第2题。指名板演,其余学生做在练习本上。集体校对讨论:平均数“18”和每根丝带的长度有什么关系?3、做“想想做做”第3题。光盘出示题目。在小组内讨论。指名回答,要求说出理由。4、做“想想做做”第4题。(1)仔细观察统计图,互相说说你知道些什么。(2)指名回答问题(1)。(3)把第(2)个问题解答在练习本上。(4)提问:你还能提出什么问题? 四、全课总结1、这节课学习了什么知识?板书:平均数你对平均数有什么看法?你能用今天学的知识解决生活中的问题吗?2、(手指一组同学)提问:要想知道这一组同学的平均身高怎么办?指名回答。请同学们课后去量一量自己的身高,在小组里交流并求出你们小组成员的平均身高。

平均数 篇三

第一课时

素质教育目标

(一)知识教学

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解的意义,会计算一组数据的 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点·难点·疑点及解决办法

1.教学重点:的概念及其计算 .

2.教学难点:的简化计算 .

3.教学疑点:简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等。这些都涉及数据的计算问题。请同学们思考下面问题。(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验。两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法。

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣。

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质。在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面。本章我们将学习统计学的一些初步知识。

(三)教学过程

这节课我们首先来学习。

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求方法,这样做使学生对的计算公式能有深刻的认识 .

2.的概念及计算公式

一般地,如果有n个数 .

那么 ①

叫做这n个数的, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.计算公式①的应用

例1  一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

让学生动手计算,以巩固计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,计算结果保留的位数与原数据相同 .

例2  从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到

那么  ,

因此,

即 ②

为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的的公式① .

3.的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

八、布置作业

教材P153中1、2、3、4 .

九、板书设计

教学设计示例2

教学目标

(一)使学生了解的意义,会计算一组数据的。了解加权的意义,并会求加权;

(二)会运用的简化运算方法。

教学重点和难点

重点:会计算及运用的简化方法,会运用加权公式。

教学过程设计

(一)引入新课

在初中一年级代数课本P106的“读一读”那一节,讲的是求。有这样一例题:

女子排球队共有10名队员,身高(单位:米)分别为:

1.73,1.74,1.70,1.76,1.80,1.75,1.77,1.79,1.74,1.72.

求这个队的队员平均身高是多少?

解:求这个的计算方法有两个。

方法1:直接计算

方法2:简化计算

观察一下这些数都在1.75的上、下,这时,可以这样考虑:先计算各数与1.75的差,也就是先都减去1.75(为了不出现小数,不妨把单位换成厘米)得到-2厘米,-1厘米,-5厘米,1厘米,5厘米,0厘米,2厘米,4厘米,-1厘米,-3厘米。

计算这组数的,得:

因为前面计算时,每个数都减去了175厘米,所以把这里的得数0加上175,就得出这个排球队全体队员的平均身高是175厘米

在求一组数的时,只要这组数都接近某一个数,就可以采用这种简化的计算方法。

以上例子告诉我们什么是,怎样求。如果这组数存在着大致在某一个数的上、下波动的情况,可以用简便方法计算。

(二)新课

1.

在统计里,是重要概念之一,它是显示出一组数据的集中趋势的特征数字,也就是说这组数据都“接近”哪个数。

上面的公式①,就是我们在求女排队员身高的“直接算法”。

当一组数据x1,x2,…,xn的各个数值较大时,可将各数据同时减去一个适当

公式②就是我们在求女排队员身高的“简便方法”

例1 某食品厂为了加强质量管理,对某天生产的罐头抽查了10个,样本净重如下(单位:克)

342,348,346,340,344,341,343,350,340,342.

求样本的。

解法2:把已知数据都减去342,得0,6,4,-2,2,-1,1,8,-2,0,

例2 从一批货物中取出20件,称得它们的重量如下(单位:千克):

310,308,300,305,302,318,306,314,315,307,

295,307,318,292,302,316,285,327,287,315.

求样本的(结果保留到个位)

即样本为306千克。

解法2:

由于题中数据都较大,而且都在常数300上、下波动,把原数据都减去300,得:

10,8,0,5,2,18,6,14,15,7,-5,7,18,-8,2,16,-15,27,-13,15.

2.加权

设有甲、乙、丙三种可混合包装的食品,它们的单价分别是1.8元,2.5元,3.2元,现取甲种食品50公斤,乙种食品40公斤,丙种食品10公斤,把这三种食品混合后每公斤的单价是多少?

答:混合后的单价为2.50元。这个答案是不对的,因为混合后的售价不仅与每种食品的单价有关,而且还与每种食品的重量(公斤数)有关。这些食品混合后的售价应该等于

这种叫做加权。

一般说来,如果在n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次(这里f1+f2+……+fk=n),那么根据公式①,这n个数的可以表示为

计算加权的公式③,与计算的公式①,实际上是一回事。当一组数据中有不少数据多次重复出现时,用加权公式计算简便些。在公式③中,相同数据xi的个数fi叫做权。这个“权”,含有所占分量轻重的意思。fi越大,表示xi的个数越多,于是xi的“权”就越重。

例3 某班有50名学生,数学期中考试成绩90分的有9人,84分的有12人,73分的有10人,65分的有13人,56分的有2人,45分的有4人,计算这个班学生的数学期中考试平均成绩(结果保留到小数点后第一位).

在例1~例3的求问题中可以看到,能够反映出数据的集中趋势。

(三)课堂练习

若4,x,5的是7,则3,4,5,x,6五个数的是______.

(四)小结

1.用样本去估计总体,这是学习的目的。

2.计算公式,简化计算公式,加权计算公式都很重要,应根据具体情况,恰当选取哪个公式

(五)作业

1.数据15,23,17,18,22的是________.

2.5个数据的和为405,其中一个数据为85,那么另4个数据的是______.

(1)105,103,101,100,114,108,110,106,98,102;(共10个)

(2)4203,4204,4200,4194,4204,4210,4195,4199.(共8个)

4.在一个班的40名学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人。求这个班学生的平均年龄。

5.抽查了一个商店某月里5天的日营业额,结果如下(单位:元):

14845,25306,18954,11672,16330

(1)求样本;

(2)根据样本估计,这个商店在该月里平均日营业额约是多少?

6.在一段时间里,一个学生记录了其中8天他每天完成家庭作业 所需要的时间,结果如下(单位:分):

80,70,90,70,60,50,80,60.

在这段时间里,该学生平均每天完成家庭作业 所需要的时间约是多少?

作业 答案与提示:

1.19.

5.(1)样本是17421元;

(2)根据上面计算结果,可估计在该月里平均日营业额约为17421.

根据样本,可估计该学生平均每天完成家庭作业 所需时间约为70分。

课堂教学设计说明

1.是统计中的重要概念之一,通过样本来估计总体。样本容量取得越大,则用样本估计的总体越精确,也就是所表示的总体平均的变化趋势越集中于准确值。作业 中的第5,6两题就是为体现这种思想而设计的。

2.这一节课的目标是要弄清两个概念(、加权),三个公式(求平均值公式,求平均值的简化公式和求加权公式).

教学设计中,先从初中一年级代数课本的内容引出概念、计算公式及简化公式。所以很自然地转入新课,在介绍了概念后,紧接着对计算公式作出一般性的证明。

在加权一节,先列举一个易犯的错误,分析其错误原因,然后推导出公式。

平均数 篇四

平均数(1)教学内容 第42页例1

教学目标1、  使学生理解平均数的意义,初步学会简单的平均数的方法。2、  理解平均数在统计学上的意义。3、  培养应用所学知识合理、灵活解决简单的实际问题。教学重点   使学生理解平均数的意义,初步学会简单的平均数的方法。教学难点     培养应用所学知识合理、灵活解决简单的实际问题。教学过程:

一、创设学校“捡回一个希望”角学生参加收集矿泉水瓶情境,谈话导入。

1、他们在干什么?其中有一个红领巾小队收集的情况是这样的(给出数据、7个  、5个   、4个    、8个、)。

2、看了这些数据,你获得了那些信息?你是怎么发现的?

二、探索新知

1、刚才有同学发现了这四位同学平均每人收集了6个矿泉水瓶,谁能说说平均是什么意思?

2、这四位同学收集的个数如果都一样多的话,每个人收集了6个,这个数,你能给他取个名字吗?

3、他是怎么得到平均每人收集6个的呢?请同学们拿出学习材料,四人小组讨论一下。最后,推选一位同学介绍你们小组的学习成果。

小组汇报

1、他们用到了估算的方法,我们一起来估算一下,(教师把一根水平线移到7块的高度),平均数会是这么多吗?(继续往下移动水平线到4块的位置)会是这么多吗?(继续把水平线慢慢往上移)体验平均数。为什么呢?

2、通过这样的方法,使得不一样多的数量,在总数不变的情况下同样多,就得到了他们的平均数。你们能给这种方法取个名字吗?

(板书)还有其他方法吗?(以多补少)

3、那平均数是不是就是以前学过的每份数呢?为什么?(7+5+4+8)表示什么?

总数量(板书)4又表示什么呢?总份数,那你们知道平均数可以怎么求吗?

4、刚才同学们通过自己讨论,尝试,发现了平均数,学会了求平均数。知道这个红领巾小队平均每人收集6个。如果我们全班40名同学都去参加,一次可以收集多少个呢?你是怎么想的?这就是平均数的一个用处。我们还可以推想出全年级的收集的个数。

三、巩固

1、  我们已经学会了求平均数的方法,你们能解决有关平均数的问题吗?老师这里有一组来自会展中心博览会的消息。出示下列信息:

(1)美食节开幕后,第一天参观的有3万人;第二天参观的有4万人;第三天参观的有1万人。

(2)李刚参加打靶比赛,第一次中了7环,第二次中了9环,第三次与第四次共中了16环。

2、你能求什么问题?请大家做在练习本上。

反馈时强调:我们在求平均数时要找准总数量与总份数之间的对应关系。

3、平均数问题在我们生活中有很广泛的应用,我从统计部门了解一组平均数。出示:

(1)1959年南宁市女性平均寿命是52岁,1999年南宁市女性平均寿命是72岁。

(2)1978年南宁市平均每人住房面积4平方米,1999年南宁市平均每人住房面积9平方米。你发现了什么? 是不是南宁市每个人都拥有住房面积9平方米呢?

我们同学家里的住房面积有多大?你们能算出你们家里平均每人的住房面积吗?

我们同学家里的人均住房面积比9平方米大的有多少?

100%的同学都比9平方米大。生活是很幸福的,我们一定要珍惜这样幸福的日子,好好学习。

四、拓展

生活当中还有那些地方也用到平均数呢?谁举例

1、平均数在生活中的用处确实非常广泛,我们学校的校医非常关心我们同学的身体健康,经常要了解我们同学的平均体重,平均身高等,(出示班级座位图):

如果老师想要了解三(5)班第一组6位同学的平均身高的情况,你们想一想老师还需要了解些什么?

2、老师了解了这么些数据:(出示)你们能求出这一小组同学的平均身高吗?自己试一试。

3、请一位同学来说一说。

老师这里还有一组数,是第一排同学的身高,你能很快的求出平均身高吗?说说你是怎么求的?

4、这样同一个班里,抽取了两组数据,求出的平均身高是135厘米和130厘米,到底那一个更接近全班同学的平均身高呢?请认为是135厘米的同学说说理由。

五、总结

今天我们一起学习了什么?你有什么收获?

《平均数》教案 篇五

第一步:课堂引入

设计的几个问题如下:

(1)、请同学读P140探究问题,依据统计表可以读出哪些信息

(2)、这里的组中值指什么,它是怎样确定的?

(3)、第二组数据的频数5指什么呢?

(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。

第二步:应用举例:

例1:为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:

载客量/人组中值频数(班次)

1≤x<21113

21≤x<41315

41≤x<615120

61≤x<817122

81≤x<1019118

101≤x<12111115

这天5路公共汽车平均每班的载客量是多少?

分析:根据上面的频数分布表求加权平均数时,统计中常用的各组的组中值代表各组的实际数据,把各组频数看作相应组中值的权。例如在1≤x<21之间的载客量近似地看作组中值11,组中值11的权是它的频3,由此这天5路公共汽车平均每班的载客量是:

思考:从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?

分析:

由表格可知,81≤x<101的18个班次和101≤x<121的15个班次共有33个班次超过平均载客量,占全天总班次的百分比为33/83等于39、8%

活动:使用计算器说明,操作时需要参阅计算器的使用说明书,通常需要先按动有关键,使计算器进入统计状态;然后依次输入数据x1,x2,…,xn,以及它们的权f,f2,…,fn;最后按动求平均数的功能键(例如键),计算器便会求出平均数的值。

例2:下表是校女子排球队队员的年龄分布:

年龄13141516

频数1452

求校女子排球队队员的平均年龄(可使用计算器)。

答:校女子排球队队员的平均年龄为14、7岁

三年级数学《平均数》教案 篇六

一.目标和目标解析

1.通过本节教与学的活动,使学生了解平均数(加权平均数)的统计意义,理解“权”的意义和作用,学会计算加权平均数。教学中,以具体实例研究为载体,了解平均数可以描述一组数据的“平均水平”,理解“权”反映数据的相对“重要程度”,体会“权”的作用,使学生更全面的理解加权平均数,正确运用加权平均数解决实际问题。2.通过对加权平均数的学习,经历运用数据描述信息,作出推断的过程,体验统计与生活的联系,形成和发展统计观念,体会权的统计思想,养成用数据说话的习惯和实事求是的科学态度。3.通过具体问题的解决,培养学生严谨的统计精神,思维的深刻性。通过设计“我来决策”等教学活动,让学生学会从不同的侧面有侧重地对评价对象进行全面的客观的考察和评价,培养科学严谨的数学精神和思维的深刻性。

二.教学过程设计

活动一:创设情景,建立模型,揭示概念

问题

1以前的学习,使我们对平均数由有了一些了解,知道平均数可以作为一组数据的代表,描述数据的“平均水平”,本节课我们将在实际问题情境中,进一步体会探讨平均数的统计意义。 在一次数学考试中,七年级1班和2班的考生人数和平均成绩如下表:

(1)谈谈表格中“86分”所反映的实际意义。

(2)求这两个班的平均成绩,并和同伴交流你的计算方法。

预设:问题(2)可能会出现下面两种解法:

引导学生对比、分析、讨论,初步理解权的意义。设计目的:

问题(1)中,86分是七年级1班46名学生的数学成绩“取长补短”均衡的结果,反映该班46名学生数学成绩的一般“平均水平”,设计的目的是引导并体会平均数的统计意义。

问题(2)中,以“任务布置──发现问题──生成问题──研究问题──解决问题”为教学程序,经历操作、观察、对比、分析、交流等探索活动,初步了解“权”的意义,解释计算加权平均数的理论依据,为概念的引入作铺垫。

活动方式:以实际问题为研究载体,以自主参与、交流合作为教学形式,以多媒体动画演示辅助为教学手段,引导学生积极参与数学探究活动,发展数学思维。本活动中,教师应关注学生:

①参与数学活动的主动性和数学思维的深刻性;

②实际问题中体验平均数的统计意义和初步了解权的意义;

③体会算术平均数与加权平均数的区别与联系。

学生归纳:

1.平均数反映的是数据的平均水平,;

2.“权”反映了数据的相对“重要程度”;

3.算术平均数与加权平均数的本质一致的,算术平均数是各数据的权为1的加权平均数,当数据的权相同时,加权平均数与算术平均数是相同的;当数据的权数不同时,加权平均数能更好地反映数据的平均水平,应当计算加权平均数。问题2 某市三个郊县的人数与人均耕地面积如下表:

求这个市三个郊县的人均耕地面积 (精确到0.01公顷).

追问1:用算术平均数的方法求三郊县的人均耕地面积合理吗?为什么?

追问2: 0.

15、0.21和0.18这三个数中,那个数对总人均耕地面积的影响更大一些,你是怎么看出来的?这三个数的权分别是什么?你如何计算该市三个郊县的人均耕地面积的?

设计目的:以求三郊县人均耕地面积为研究载体,进一步引导学生认识加权平均数,渗透平均数的统计意义,理解权的意义以及为什么要采用加权平均数;在具体问题情景中,逐步建立并抽象出加权平均数这一数学模型;通过两种不同计算方法的比较,进一步体会算术平均数和加权平均数的区别与联系。活动方式:独立完成本问题任务,认真思考两个追问问题,交流看法和意见,教师做必要的指导或点拨,加深对权的意义的理解和用加权平均数计算的合理性;建立数学模型,抽象出加权平均数的计算方法。学生归纳:

(1)上例中15,7,10分别是0.

15、0.

21、0.18三个数据的权,平均数0.17称为三个数0.

15、0.

21、0.18的加权平均数,反映三个郊县人均耕地面积的平均水平。

(2)若已知n个数及其对应的权,则这n个数的加权平均数可求。活动二:实例分析,指导应用,体验概念

1.统计某一植树小组所有同学的植树情况,其中有5人各植树8棵,有3人各植树7棵,有2人各植树10棵,求平均每人植树的棵数。思考:各项的权分别是多少?如何计算植树的平均棵树?

2.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:

(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?

问题3 招聘口语能力强的翻译时,公司侧重于哪些方面的成绩?给出的比值是否能体现这些方面更加“重要”?听、说、读、写四种成绩的权分别是多少?数据对应的权表示的含义是什么?

设计意图:在变式中理解权的含义。

问题4 如果现在要招聘一名笔译翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?最后计算的结果与你设想的一样吗?试一试,比较你与其他同学设计的不同结果,谈谈你对数据权的作用的新认识。

设计意图:在系统中整体理解数据、权和平均数。通过解决实际问题,加深对权的作用的理解,探究权对平均数的影响。此处,借助于Excel的数据处理功能,给数据赋以不同的权,展示出现的不同计算结果,便于学生观察分析,从而更好地体现权的“掌控”作用。

问题5 若听、说、读、写的成绩分别按20%、20%、30%、30%的比例计入总成绩,如何计算应试者的平均成绩(百分制)?与(2)相比,数据权的表现形式发生了怎样的变化?

设计意图:进一步体会数据权的不同表现形式。 (自主合作,共同比较,交流分析,体会权的“掌控”能力。)

活动三:拓展创新,我来决策,感悟概念 一家广告公司欲招聘广告策划人员一名,对A、B、C三名候选人进行了三项素质测试,他们的各项测试成绩如下表所示:

假如你是该公司老总,请发挥你的才智,给每项成绩赋予适当的权数,并通过计算进行选拔。设计目的:创设情景,为学生创造参与数学活动的机会,亲身经历数学活动的过程,积累数学经验,在感受数学知识的同时获得成功的体验,强化数学的应用意识,增强学数学的积极性和热情;借助于Excel的数据处理功能,展示不同的权数下的不同结果,深入体会权的意义和作用。活动方式:猜想──设计──计算──体会──交流。

活动四:归纳小结,自主反思,优化概念

1.从下面的关键词中任选一个或几个,展示自己的演说才能,谈谈你本节课的收获或体会:

知识、方法、反思、猜想、交流、愉快、困惑、生活

2.布置作业:教科书P127页,练习第1题、第2题。设计目的:通过回顾和反思,让学生对数据的权的作用和加权平均数的意义有进一步的认识和理解,通过学生归纳和教师释疑,让学生优化概念、内化知识,同时让学生看到自己的进步,增强学生运用数学解决实际问题的信心,促进形成良好的心理品质。活动方式:反思学习过程,归纳并形成知识体系,交流体会和感受。三.目标检测设计(时间:15分钟;满分50分)

(一)填空题:(每题5分,共20分)

1.在“人与自然知识竞赛”中,七年级甲班5名同学的得分如下:9分、8分、9分、8分、9分。则这5名同学的平均成绩:= .

2.某人打靶,前3次平均每次中靶9环,后7次平均每次中靶8环,此人10次打靶的平均成绩:= .

3.从每公斤10元的水果糖中取出5公斤,每公斤12元的软糖中取出3公斤,每公斤9元的酥糖中取出2公斤,这三种糖混在一起后,这种“杂拌糖”应定价为每公斤 元.

4.若m个数的平均数是a,n个数的平均数是b,则这m+n个数的平均数是 .

(二)解答题:

5.(20分)某市去年7月下旬各天的最高气温统计如下:

(1) 计算该市七月下旬的平均气温。(5分) (2) (1)中所得到的平均数叫做

35、

34、

33、

32、28这5个数的 平均数。(5分)

(3) 在上面的5个数据中,35的权是 ,34的权是 ,28的权是 .(5分)

(4) 如果把35和28的权调换一下,平均气温是多少?与(1)的计算结果相比较发生了怎样的变化?由此你认为权在实际问题中的重要意义是什么?(10分)

6.(10分)某学校规定:学生的学期总评成绩由三部分组成:平时作业、期中测验、期末测验。小明同学的平时作业、期中测验、期末测验的数学成绩依次是98分、80分、90分。(1)若三项成绩分别按50%、20%、30%的比例计入学期总评成绩,这学期小明的数学总评成绩是多少?

(2)若三项成绩分别按5:2:3的比例计入学期总评成绩,小明的数学总评成绩是多少?

《求平均数》教案 篇七

总课时:4课时使用人:

备课时间:第十五周上课时间:第十六周

第4课时:8、3利用计算器求平均数

教学目标:

知识与技能:根据给定信息,会利用计算器求一组数据的平均数,并会进行数据的收集、加工与整理。

过程与方法:初步经历数据的收集、加工与整理的过程,发展学生初步的统计意识和数据处理能力。

情感态度与价值观:通过使用计算器求平均数的探索活动,培养学生的探索精神和创新意识;通过相互间合作交流,让所有学生都有所获,共同发展。

教学重点:用计算器求平均数

教学难点:按键顺序

教学准备:同种规格的计算器

教学过程

第一环节:情境引入(5分钟,学生遇到困难,亟待解决)

内容:展示引例:20xx年第一季度我国各地区农村家庭平均每人现金收入情况表:(单位:元)

北京1692.2上海3075.6天津1254.5河北584.4

山西420.5内蒙古596.2辽宁875.4吉林705.5

黑龙江746.8江苏1354.2浙江1891.1安徽520.6

福建972.2江西575.1山东831.9河南426.3

湖北582.2湖南685.7广东1065.5广西554.6

海南699.3重庆523.2四川538.4贵州316.4

云南411.6西藏254.4陕西441.0甘肃328.4

青海337.8宁夏458.1新疆340.3

请计算这组数据的平均数,在计算过程中,你体会到什么困难吗?

显然,当一组数据比较大且比较多时,用笔计算平均数较麻烦,因此,需要一个帮手—计算器,这节课就来学习用计算器求平均数。

第二环节:活动探究(15分钟,小组合作交流)

内容:学生分组(拿同类型计算器的同学分在一起)活动探究,看哪个小组做得好:

(1)估计一下自己课桌的`宽度,并将各组员的估计结果统计出来(精确0.1厘米)。

(2)用计算器求出估计结果的平均值,你是怎么做的?与同伴交流。

在学生分组合作探究的基础上,全班总结交流不同类型的计算器求平均数的一般步骤,教师根据反馈的信息,及时进行评价。

(3)用尺子量一量课桌的宽度,看看大家估计的结果怎么样。

各组派代表谈谈本组估计结果的准确度,对准确度较高的小组进行表扬,并评为优秀小组以资鼓励。

第三环节:运用提高(15分钟,教师引导,全班交流)

内容:1.利用计算器计算下列数据的平均数:

12.8,12.9,13.4,13.0,14.1,13.5,12.7,12.4,13.9,13.8,14.3,13.2,13.5。

2.观察下图1,利用计算器计算上海东方大鲨鱼篮球队队员的平均年龄。

3.英语老师布置了10道选择题作为课堂练习,小丽将全班同学的解题情况绘成了条形统计图,见下图2。根据图表,求平均每个学生做对了几道题?

4.利用计算器计算本节课的引例中我国各地区农村家庭平均每人现金收入的平均数、中位数和众数,并回答下列问题:

(1)如果要如实反映我国农村的现金收入状况,你会用哪个数据?

(2)如果要展示我国农村发展形势好,你会用哪个数据?

(3)从这些数据中,你获得了哪些信息?有何感想?

第四环节:课堂小结(5分钟,师生共同总结)

内容:引导学生归纳总结本节课学习的主要内容:

1.根据给定信息,利用计算器求一组数据的平均数。

2.从所给统计图中正确获取信息,并能进行数据的加工与整理。

3.探索精神和合作交流的方式,初步的统计意识和数据处理能力。

综合练习 篇八

1.做练习二十三第11题。

指名一人板演,其余学生做在练习本上。集体订正,让学生说说是按怎样的数量关系列算式的,(总路程除以时间等于平均速度)每一步求的什么数量。追问:为什么总路程是1402?为什么时间是4.5加5.5的和?指出:解答时要认真看题,弄清题意,理解条件和问题的意思。

2.做练习二十三第12题。

让学生默读题目。提问:三人的平均成绩是110分是什么意思?怎样才能求出另一位同学的成绩是多少分?指名学生口答算式,老师板书。追问:1103表示什么?为什么三人的总分数要用110乘3?

3.做练习二十三第13题。

指名学生说一说统计图的意思。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的。追问:为什么要用12做除数?说明:要根据问题要求的结果,确定应该用哪个量做被除数,哪个量做除数。

4.做练习二十三第14题。

让学生观察统计图。提问:你从图里了解了哪些情况?想到了哪些问题?请大家在小组里估计一下,平均每月水费、电费大约各要多少元,并且说说怎样想的。指名学生交流估计的结果和想法。再让学生求出平均数。

拓展延伸,巩固学习 篇九

动手分一分

1、将学生5人一组进行分组。让每组学生把十八枝小棒按5、6、7根的要求分别放到三个小纸盒内。

2、动手分一分,使每个纸盒内的小棒根数相同。看哪组最快最准地完成任务。

3、让分得好的小组发言总结。

动手算一算

1、师问:刚才大家很快就分好了,如果现在是180根小棒按不同的根数插入三个纸盒内再分一样多会怎样?

2、引导学生思考:可以利用刚才学的知识进行计算。师对两种方法再进行比较,并总结。

【设计意图:通过补充练习让学生切实感受到了计算“平均数”的方便和重要,也巩固了学生对平均数的计算】

三年级数学《平均数》教案 篇十

教学内容:

练习十一1—3题,教材42页例1

教学目标:

1、掌握平均数的意义和求平均数的方法

2、知道移多补少求平均数的方法

3、会根据数据列出算式求平均数

教学重点:

掌握求平均数的方法

教学难点:

正确计算平均数

教具准备:

课件,小黑板,统计表

教学流程:

一、导入

拿8枝铅笔,指4名同学,要平均分怎样分?

每人2枝,每人手中一样多,叫平均分。2是平均数

二、学习交流

1、出示例1、小红、小兰、小亮、小明收集矿泉水瓶统计图

(1)从图中,你知道了什么信息?

(2)他们四人怎样分才能一样多?

(3)平均分后是多少个?

2、课件展示统计图的变化过程

(1)指名展示

(2)这种方法叫什么?

点拨:移多补少

3、要求平均数,还可以怎样想?

(1)要把4人收集的矿泉水瓶平均分成4份,必须先求出什么?

14+12+11+15=

(2)平均分成4份,怎么办?

52÷4=

4、归纳

要求平均数,可以先求出( )数,再平均分几份

5、算一算你们小组的平均身高,交流展示求平均数的方法和过程

6、算出各小组的平均体重,说说你们是怎么算的?

三、交流展示

展示自己的学习成果,说清求平均数的方法和过程

四、达标测评

1、练习十一第2题

(1)什么是最高温度?什么是最低温度

(2)你知道了哪些信息?

(3)填写统计表:本周温度记录

(4)计算出一周平均最高温度和最低温度

(5)说说你是怎么算的?

2、测量小组跳远成绩,求平均数

五、总结

通过这节课的学习活动,你有什么收获?

热门教案

学诗词

学名句