作为一名老师,时常需要用到教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。如何把教学设计做到重点突出呢?下面是整理的小班数学教案【优秀6篇】,希望能够为您的写作带来一些帮助。
一、教材分析
在教材中的地位与作用
在《集合与函数概念》一章中,《集合的含义与表示》是一项重要的基础内容,在知识体系来看,他不仅是高中数学的开始,也是中小学数学的一个承接。具体体现在:
第一、内容的定位。
集合在高中课程中的定位,在标准中写的比较清楚。标准是这样说的,集合语言是现代数学的基本语言,使用集合语言可以简洁准确的表达数学中的一些内容。高中数学只将集合作为一种语言来学习,它把集合是作为一种语言,来描述和表达问题的一种语言来学习的。学生学会使用最基本的集合语言表示有关的数学对象,发展运用语言进行交流的能力。我觉得这一段话,就给了我们这个集合内容的一个基本的定位。
第二、集合内容的一个目标。
集合在实现目标中的作用。提高数学的表达和交流的能力,是集合的一个基本的目标。集合作为一个数学的概念,对于数学中的分类思想,起了一个促进的作用。我们数学里有自然语言,有符号语言,有图形语言,还有图表语言等等。集合就是一种特殊的符号语言。集合在实现这个目标中,是起了一个作用的。
集合主要是要把各种不同的事物能刻划清楚。在我们中学所使用、所体现出来的具体集合,都是非常清楚的元素和集合之间的关系,是非常清楚的。为了搞清楚集合在整个课程中的一个定位,我们应该搞清楚课程中的一个基本脉络。那些可以作为集合的载体,教室里的男女同学,自然数、整数、分数、小数等等。我们用这些来对数进行分类。另外呢,数轴上的点集,比如说我们在讲不等式的点集、不等式的解集、方程的解。我们总希望用数形结合,它反映在这个是一个点集。另外还有直角坐标系中的点集、方程的根、不等式的解集、函数的定义域等等,函数的定义域、单调区间,函数这个单调的区间,还要学习图形,图形上的一些特殊点。集合也需要,作为一种支撑的一个语言。直线与平面的关系,我们常常说直线L是含于某一个平面的等等。那么,到了我们学解析几何的时候,我们又要使用集合的语言来帮助我们去刻划平面直角坐标系中的某些特殊点,等等。对数据进行分类,用了直方图、扇形图,这些都是集合的比较好的一个载体。三角函数的周期刻划、零点的刻划、最值的刻划、单调区间的刻划、向量与平面点集的刻划等等。一元二次不等式、目标函数的可行域,在我们线性规划问题里数列的特殊点。所以当我们学完这个集合的内容,在我们后续的课程中,有很多的内容可以帮助我们不断的加深对于集合作为一种语言的认识。这样梳理以后,老师清楚我们在这四个课时要讲的内容中,在我们整个高中课程中,所处的一个位置。哪一些载体是学生比较容易掌握的,哪一些载体是学生不容易掌握的。在讲集合的时候,最好选用一维的载体,比如说数、数轴、不等式的解集、数量的范围等等。这些都是一维的载体。另外,就是有限点集学生比较容易。我们常常也把这个开区间,虽然也是无限的,但是学生有一个有限的范围的感觉。知道在讲集合的开始阶段,我们选用什么样的载体来支持学生学习集合的语言。我想这样的分析都使得我们能够更好的把握课程的定位,更好的理解集合所发挥的作用。
在考虑整体的时候,不仅仅要考虑这个内容,而且应该考虑这种思想-数学思想方法
教材编排与课时安排
给出实例→提出问题→问题思考→集合的含义与表示→强化运用(例题与练习)。
教师教学用书安排“集合的含义与表示”这部分内容授课时间2课时,本节课作为第一课时,重在交代集合含义的内容以及集合与元素之间的关系,教学中注重内容的阐述,并充分揭示集合结构特征、集合与元素的内在联系。
二、学情分析
1、学生的情感特点和认知特点:学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础
2、已具备的与本节课相联系的知识、生活经验:学生已较好地在初中接触过集合,为本节课学习集合的含义、元素的特征做好铺垫。
3、学习本课存在的困难:集合作为高中数学课程中的一种语言,因此,集合学习的初学者主要困难在于:使用最基本的集合语言表示有关数学对象,发展运用数学语言进行交流的能力。
基于以上分析,我初步确定如下教学目标与教学重、难点:
三、重、难点分析
【教学重点】 集合的含义;
【教学难点】 集合元素的基本特征。从知识特点看,与元素的基本特征相似的、需要类比并分类讨论的数学思想在高中前期的学习中很少出现,因此无法进行类比对照,需要充分理解集合的含义,并能整合知识,做到融会贯通,而这对学生却是比较困难的,何况分类讨论的思想方法是初次接触,对学生来说是很新鲜的,因此,教师在发挥学生主体性前提下要给予适当的提示和指导。
依据课程标准,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:
四、教学目标分析
依据课程标准,结合学生的认知发展水平和心理特点,确定本节课的教学目标如下:
【知识与技能】 认识并理解集合含义的内容;明确集合与元素之间的关系,一是已知集合,能描述其中元素的特征;二是会用集合表示给定元素;三是理解集合中元素的基本特征;四是基本思想方法(集合与元素从属与被从属)的运用。
【过程与方法】 感悟用集合表示一类事物的优越性,感受集合的严谨性与元素之间的相互关系,优化思维品质,初步提高学生的数学语言应用的能力。
【情感、态度与价值观】 通过经历对比探索的过程,对学生进行思维严谨性的训练,激发学生的求知欲,引导学生多角度思考与反面举例数学思想的建设,感受思维的奇异美、结构的对称美、形式的简洁美和数学的严谨美。
基于上述教学目标与教学重难点,我初步设计如下教法与学法:
五、教法分析与学法指导
1、教法分析
根据学生认知发展水平和心理结构特点,结合教学内容的难易程度,在教学过程中可以利用计算机多媒体和实物投影等辅助教学,以建构主义理论为指导,采用引导启发教学法和探究-建构教学相结合的教学模式,着重于学生的发现、探索和运用,并辅以变式教学,注意适时适当讲解和演练相结合。
2、学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此,在教学中要不断指导学生学会学习。根据本节内容的特点,这节课主要是教给学生“动脑想,严格证,多训练,勤钻研。”的研讨式学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的主体。也只有这样做,才能使学生“学”有新“思”, 学有心得。
3、教学构想
集合含义和集合元素的基本特征是本节课的重点内容,要积极引导学生观察实例,发现规律,类比推理,推导归纳,总结反思,增强认知,强化运用。 教学中可以给出一些实例,加强学生对集合含义的理解,以提高学生学习的兴趣,开拓学生的思维视野。例题和巩固练习的选择要全面,不能忽略集合元素特征的考察,注意分类讨论思想的渗透。
六、教学过程
设计环节 设计意图 师生活动
一、
创设情境
引出课题
。 以教学案例为背景,积极应用学生的好奇心,使学生形成迫切的求知欲望,让学生在好奇心的驱使下发现新知识,使新知识快速的被接受 师:同学们,今天我们开始高中数学的第一节内容——集合,那么,什么是集合呢(不给学生回答时间,只引入思考)? 这里有一位老师关于集合的讲解,让我们共同来学习一下集合吧。(打开课件) EMBED PBrush
二、
借助教学案例
讨论归纳
。 以案例为载体,用对比归纳总结的教学手段,重点在于引导学生体会集合的含义,并对集合初步认识,在此基础上,通过一系列有层次的问题串,在学生的思考基础上,得出集合元素的特征,意在体现数学课程中集合的语言性。因此,学习集合初步知识的目的主要在于能使用最基本的集合语言表示有关数学对象,发展运用数学语言进行交流的能力。 师:通过学习位老师关于集合的讲解,想必大家对集合已有简单地认识了。首先,一个班的男孩和女孩是一个——?
生:小组/群体/集体……
师:对了,集合就是一个集体,并且我们把组成这个集体的研究对象统称为元素。其次,男孩的集合又不包含女孩子,白人孩子的集合里也没有黑人的孩子,也就是说组成集合的元素都有他自己的——?
生:特点/特性/特征……
师生:非常好,正如同学们所说,组成集合的元素是具有一定特殊性质的事物,既然是具有一定性质的,那就是说他们是有范围的、可以和本组以外的其他事物有区别的确定的一组研究对象了。比如说(课本P2例子),那么,什么是集合呢?
活动目标:
1、喜欢倾听故事,理解故事内容。
2、大胆想象讲述,感受故事中的小脚丫不断变化的快乐。
3、积极与老师和同伴互动,体验阅读的快乐。
星期一上午的第一个活动是绘画《冰糖葫芦》,目的是让孩子们学习画圆圈
授课教案第一章学前儿童数学集合概念的教育教学目的与要求:
通过本单元的学习,你应该能够;
1、了解学前儿童感知集合的发展及教育理解学前儿童集合概念的教育要求。
2、掌握学前儿童集合集概念教育活动设计与组织的基本要求,根据教学内容及儿童特点设计并组织集合类教育教学活动。
重点:集合的基本知识及概念发展的阶段、特点。
难点:集合概念教育活动设计与组织的基本要求,根据教学内容及儿童特点设计并组织集合类教育教学活动。
学时安排:
共14学时课题学时备注3.1学前儿童数学集合的基本知识概念发展与教育要求设计与组织3.2学前儿童数学教育集合概念、量的认识的发展及教育;学前儿童集合概念的教育活动的设计与组织3.3拓宽练习、案例评析3.2
(1)学前儿童数学教育集合概念、量的认识的发展及教育学前儿童数学教育集合概念教育要求教学目标知识目标
1、理解学前儿童数学教育集合概念教育要求
2、各年龄班集合教育的具体要求是那些内容
3、小班、中班、大班的要求能力目标培养学生知道各年龄班集合教育的具体要求德育目标渗透数学集合的思想教学重点学前儿童数学教育集合概念教育要求教学难点各年龄班集合教育的具体要求是那些内容小班、中班、大班的要求教学方法讲述法讲练结合阅读指导法备课时间13课件教学过程讲一讲课件展示练一练阅读
作业提问:学前儿童感知集合发展的特点分类对于孩子重要的意义学前儿童数学集合的基本知识概念发展的阶段
一、学前儿童数学教育集合概念教育要求
1、体验事务的共同属性
2、掌握求同和分类的技能
3、初步形成集合的概念
4、对集合元素进行比较和体验集合与子集的关系
二、各年龄班集合教育的具体要求是那些内容
小班
1、探索物体的特征,学习讲述物体的异同。
2、学习按物体的某一外部特征(如颜色、形状、大小)进行分类。
3、学习与分类有关的词语:如“相同”,“不同”,“把同样的东西放在一起”,“找出一个和某某一样的东西”等等。
中班
1、学习按物体的数量进行分类。
2、学习概括物体(或图形)的两个特征。
3、学习并掌握有关的词语:“分成”、“分开”、“合起来”
大班
1、学习按某一特征的肯定与否定进行分类,讲述出某种事物所不具有的特征。
2、学习按两个特征进行分类和在表格中摆放图形。
3、学习把集合分成若干组成部分(子集),比较集合与子集的数量,初步体验集与子集的关系。
p100-102备注1025 25 20 3、2(2)学前儿童数学教育集合概念、量的认识的发展及教育学前儿童集合概念教育活动的设计与组织教学目标知识目标理解学前儿童集合概念教育活动的设计与组织求同操作活动的设计与组织掌握分类操作活动的设计与组织能力目标培养细心耐性的能力德育目标比较法、启发探索法、归纳法和演绎法的思想教学重点求同操作活动的设计与组织教学难点分类操作活动的设计与组织教学方法讲述法讲练结合阅读指导法备课时间13课件教学过程讲一讲课件展示试一试阅读作业提问:
各年龄班集合教育的具体要求是那些内容学前儿童数学教育集合概念教育要求
一、求同操作活动的设计与组织
1、按标志求同
2、用排除法求同举例:黄、蓝、红的汽车等
二、分类操作活动的`设计与组织
1、按对象分按物体的名称分类。按物体的外部特征分类。按物体量的差异分类。
2、按包含关系分具体概念的分类。即对同类同名称物体分类。如从不同水果的卡片中将香蕉、苹果、葡萄、梨等分别归类。一级类概念分类。如从一堆画有各种水果、车辆、餐具等卡片中把车的卡片挑出来或分别归类。二级类概念分类。如按交通工具、玩具、植物等分类。
3、包括:感知集合10以内的数10以内的加减法简单的几何形体量的初步知识空间方位时间
4、按分类的难度按物体的一个特征分类按物体的二个特征分类多角度分类、层级分类p102---103备注1010 20 10 20 10
教学目标知识目标
1、知道排除法求同操作活动的设计与组织(按物体的用途分类)
2、配对操作活动的设计与组织方法。分类操作活动的设计与组织(按物体的材料性质分类)
3、了解分类活动中注意事项能力目标活动中的数学教育渗透德育目标感受数的意义教学重点求同操作活动的设计与组织教学难点分类操作活动的设计与组织教学方法讲述法讲练结合阅读指导法备课时间13课件教学过程讲一讲课件展示练一练作业提问:
求同操作活动的设计与组织形式分类操作活动的设计与组织方法求同操作活动的设计与组织的内容幼儿在体验的过程中发现并挑选出具有某种共同属性的物体。
一、排除法求同分类操作活动的设计与组织分类就是把一组物体分成各有其共同属性的几组。
(1)按外部特征
(2)按内部属性
(3)按数量和逻辑关系
(4)按两个或两个以上特征
(5)层级分类备注1015 20xx 15
(6)自由分类层级分类:按两个或两个以上特征分类、自由分类分类后的式比较两组物体相等与不等。
二、配对操作活动的设计与组织方法;比较两组物体相等与不等就是用一一对应的方法比较两个集合中元素的数量,确定是否一样多(配对)
(1)关系配对
(2)做等价集合
(3)等量配对
(4)变成一样多例如:儿童思考讨论:边上的红三角形应放在哪?
1.第一阶梯:感知操作认知维度,即动作水平
2.第二阶梯:形象表征认识维度,即表象水平
3.第三阶梯:词语符号认知维度,即概念水平
三、分类活动中注意事项
1、重视分类活动中的材料的提供
2、充分利用游戏引导幼儿分类
3、充分利用日常生活情景引导幼儿练习分类p112引导学前儿童比较应注意的几个方面?教学反馈
教材分析:
“数学广角——集合”是教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即韦恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
?教学目标:?
1、学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。
2、能利用集合的思想方法来解决简单的实际问题。?
3、学生在探究、应用知识中体验数学的价值,渗透多种方法解决问题的意识。?
教学重点:学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。
教学重点:经历集合图的产生过程,理解集合图的意义,使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学难点:经历集合图的产生过程,理解集合图的意义。
教学过程:
一、巧用对比,初悟“重复”
1.观察与比较(课件出示图片)父与子
2、提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
二、初步探究,感知重叠
1、查看原始数据,引出重复。
师:我们来看看三(1)班是被老师选上的幸运之星。(课件出示)
书法比赛
小丁
李方
小明
小伟
东东
绘画比赛
小明
东东
丹丹
张华
王军
刘红
师:从这张表格中你了解到了哪些信息?
(2)师:一共有多少名同学参加比赛?
师:怎么会错了呢?再仔细看看,谁来说说?
(3)师:那到底是多少人呢?我们来数数看。
重复什么意思?指着第二个小明:“他算吗?”为什么不算?
(4)师:刚才你们算出来是11人,可现在我们数出来的怎么只有9人呢?、
2、揭示课题。(板书课题:重叠问题)。
三、经历过程,建立模型
1、激发欲望,明确要求。
师:刚才,我们通过仔细地查看三(1)班参赛的学生名单,发现有2个同学重复了,但是从这份名单中你能一下子就看出是哪2个人重复了吗?有难度是吧?
师:看来我这样记录不够清楚,大家想想办法,怎样重新设计一下这份名单能让我们看得更清楚一些?(课件出示要求:既要能让人很清楚地看出参加书法比赛的是哪5个人,参加绘画比赛的是哪6个人,又要能让人很明显地看出两项比赛都参加的是哪两个人。)
请同学们思考一下,大家现在有办法了吗?先不急着说,请把你想到的方法在练习纸上表示出来,行吗?你可以自己画,如果感觉有些困难也可以和你小组内的同学合作完成。
2、独立探究,创生维恩图
学生探究画法,师巡视,从中找出有代表性的作品准备交流。
3、展示交流,感知维恩图
师:我发现咱们班同学的画法很有创意,我从中选了几份,咱们共同来分享一下。我们不让画图的同学自己介绍,只把他们画的图让大家看,我觉得,不用自己介绍就能让别人看懂的方法那才是好方法。
预设:
第一种情况:做记号
师:你是怎么想的?
第二种情况:写在最前面;写在前面并圈出来
师:你是怎么想的?这样整理有什么好处?
师:(1)哪些同学是两项都参加的?你能上来指一指吗?我们可以给他们圈一圈。
引导:重复出现的同学用两个名字,我们容易看错。要是用一个名字,也能表示出他们既参加了书法比赛,又参加了绘画比赛,那该多好啊。
第三种情况:两项都参加的同学用一个名字表示(不是写在最前面的)
出示:他把这两个名字写在这合适吗?应该写在哪?
第四种情况:在前面并一个名字来表示
师:你是怎么想的?这样整理有什么好处?
师:哪一部分是参加书法的,你能用手指一下吗?要不用笔来圈一圈,参加绘画比赛的同学该怎么圈?
师:圈的时候,你们有什么发现?为什么?
师:看来,这样调整能清楚地表示重复和不重复的部分。
4、整理画法,理解维恩图
(1)动态演示维恩图产生过程
师:下面我们把同学们创造出来的韦恩图让电脑再演示一次吧。用一个圈来表示参加书法比赛的同学,再用一个圈来表示参加绘画比赛的同学(师边说边用红色和蓝色画了两个交叉的椭圆),演示形成过程。还是两个圈,不同的是这两个圈不是分开的,而是有一部分重叠在一块的,利用两个圈重叠的这一部分我们恰好可以用来表示什么?
(2)介绍维恩图的历史
师:这种图最早是英国的数学家韦恩提出的,后人就用他的名字来命名,称之为韦恩图。同学真了不起,你们和伟大的数学家韦恩想到一块去了。
(3)理解维恩图各部分意义
(课件出示用不同颜色,直观理解各部分意义)
师:仔细观察,你知道韦恩图的`各部分表示什么意思吗?
师:a.红色圈内表示的是什么?
b.蓝色圈里表示什么?
c.中间部分的两个表示什么?
d.左边的“紫色部分”表示什么?
e.右边的“绿色部分”表示什么?
师:对于韦恩图各部分表示的意思你都明白吗?请同位两个同学互相说一说。(学生同伴互说)
(4)比较突出维恩图的优势
我们把这个韦恩图和刚才的表格比较一下,哪个更好一些?好在哪?
(5)、数形结合,运用维恩图。
师:现在,你能不能根据韦恩图列算式来解决三(1)班一共有多少人参加了这两项比赛?教师巡视,找不同方法的学生进行板演
预设整理算法:
生1:5+6-2=9(人)
生2:3+2+4=9(人)
生3:5-2+6=9(人)
生4:6-2+5=9(人)
①看算式提问题:看第一位学生算式‘就图看算式,你有什么新启发?师:谁给他提问题?(生:你为什么减2?(课件动态演示)5在哪里?圈一圈。)
重点理解为什么-2。课件动态演示
②比较:
3+2+4=9(人)
5+6-2=9(人)
a.两道算式中都有个2,这个2表示什么呢?
圈出+2和-2,为什么(1)中是+2,(2)中是-2?
b、你能在第一个算式里找到5?6?
c. 3+2表示什么意思?2+4表示什么意思?这就是(1)算式中隐藏着的信息,你也能在(2)中找到隐藏着的信息吗?(课件演示)
师:现在我们能用这么多的方法算出三(1)班参加比赛的一共是9个人,是谁帮了我们的大忙啊?(韦恩图。)
四、解决问题,运用模型
1、创设情境,生活应用(课件演示)
这样的韦恩图除了能表示刚才的比赛问题,还能表示生活中的什么?
展示生活问题
(1)这是我们科学书中的重叠问题,找到重叠部分了吗?
(2)这是我们数学书中的重叠问题,谁重叠了?
(3)这是自然界的动物,它们之间存在重叠问题吗?
(4)这是鸡毛掸,找到重叠部分了吗?在哪里?看来,将木条重叠起来,可以增加长度,解决我们生活中的问题呢!
(5)、文具店的问题。
出示下题:
2、运用新知解决问题。
这些问题你们都能解决吗?(完成练习纸)
反馈:
第1题:(生活问题第5题文具店问题)你能把这些信息在韦恩图中表示出来吗?生填写韦恩图,并解决一共进了多少种货?
展示:5+5-3=7(种)
2+3+2=7(种)
师:这里的3表示什么?
为什么一个+3,一个-3呢?
师:比较一下这两个韦恩图(刚才的比赛问题和现在的进货问题),它们有什么相同的地方?
第2题:(生活问题第3题自然界的动物)对比正确和错误的。这两个小朋友填的不一样,你赞同谁的?填的时候有什么好方法?
第3题:(生活问题第4题鸡毛掸)一共有多长?要提醒大家的是什么?
五、展开变式,深化模型
师:下面我们再回过头来,看看那份学校的通知和我们已经解决的那个问题:每班一共要选多少人参加这两项比赛?我们一开始脱口而出的答案是5+6=11人,后来看到三(1)的参赛名单,发现有2人重复了,实际只有9个人。
我们现在再来思考这个问题,三(1)班是9人,其它班级呢?如三(2)班一定是9人吗?
老师可能派了几个同学?一共有几种可能?你能画图把自己的猜想表示出来吗?
反馈:5人。6人。7人。8人。9人。
课件动态演示:
师:仔细观察你有什么发现?
同学们,这样一个我们本来觉得很简单的问题,经过我们深入地思考,原来还有这么多的学问
六、回顾总结,延伸模型。
这节课你有什么收获?你还想知道什么?
教学内容:教材P113第1题及练习二十五第2、3、13、14、21题。
教学目标:
知识与技能:帮助学生建构小数乘法的知识网络,并能理清各知识点之间的联系。能熟练、正确地进行笔算小数乘法,按照要求截取积的近似值,并能解答有关的小数乘法应用题。
过程与方法:通过题组练习,进一步培养学生的分析、判断和概括能力;通过小组合作学习,让学生学会交流,相互评价,提高学生的合作意识和数学交流表达能力。
情感、态度与价值观:培养学生良好的计算习惯,提高计算正确率及速度,更深刻了解积与因数的联系。
教学重、难点
重点:通过合作题组练习,使学生自我意识中建立小数乘法的知识网络,并能准确地用数学语言表达各个知识点,在思维中理清各知识之间的联系。
难点:深刻理清积与因数的联系及培养合作意识和数学交流表达能力。
教学方法:复习归纳,质疑引导;练习体验,小组交流。
教学准备:多媒体。
教学过程
一、复习小数点的移动引起小数大小的变化规律。
学生独立做一做
老师生交流小数点的移动的规律。
即时练习:完成教材第113页第1题(1)。
二、整理和复习小数乘除法的计算方法。
老师:元旦节,老老师家搞了一次小活动,我们一起来看看老老师的购物清单吧!
出示购物清单:苹果每千克2.5元,买了4.8千克;
买了3件同样的玩具,共用73.5元;糖果每千克1.2元,共用22.32元;
老师:从清单中你得到了哪些信息?根据信息你可以解决哪些数学问题?
老师:下面就请同学们算一算苹果的总价和玩具的单价吧!教老师巡视,算完后。
老师:谁来说说苹果的总价你是怎么解决的?
(先让一个学生在实物投影仪下展示,并让他说说2.5×4.8是怎样算的,
老师:那也就是说,计算小数乘法的方法是先,再,最后。板书:计算方法
老师:玩具的单价你又怎么解决的?(再让一个学生说73。5÷3是怎么算的,一起回忆数除数是整数的小数除法的计算方法。)
老师:算算糖果的单价吧。教老师巡视,算完后汇报方法。22.32÷1.2
老师:也就是说在计算除数是小数的除法时必须先把除数转化成整数,就像这里的22.32÷1.2就要转化为223.2÷12,再按除数是整数的除法进行计算。
出示:5.98÷0.23 19.76÷5.2 8.84÷1.7 21÷1.4
老师:这几道题在计算时该怎么转化呢?
除法法则:一看:看看除数是几位小数。二移:把除数和被除数的小数点同时向右移动相同的数位(把除数转换成整数)。三对齐:商的小数点和被除数的小数点对齐。
老师:同学们刚才算的三道题到底对不对呢?你有什么好办法?(说验算的方法)
老师:小数乘除法的验算与整数乘除法的验算方法是相通的。
即时练习:指名板演教材第115页练习二十五第2题。
三、整理和复习小数乘除法的简算
老师:刚才我们用竖式算出了苹果的总价,请同学们仔细观察这两个数的特征,你还可以用什么方法进行计算?试试吧!
(巡视,选有代表性的作业展示,指名说简算依据。)
老师:看来整数乘法运算定律也适用于小数。(板书:运算定律)
即时练习:完成教材练习二十五第3、13题。
四、复习取近似数
老师:既然是元旦节就要有节日的气氛,老老师准备用彩带布置家。我们一起看看吧!
用40米彩带做花环,彩带每卷长7.5米。
(1)需要买几卷彩带?40÷7.5=5.333(卷)≈6(卷)
老师:5.333是循环小数,而且循环小数是无限小数。(板:循环小数—无限小数)
老师:这里要用进一法取商的近似数。(板书:取近似数:进一法)
(2)一卷彩带3.18元,一共需要多少钱?(得数保留一位小数)
3.18×6=19.08(元)≈19.1(元)(板书:四舍五入法)
(3)每1.5米做一个花环,40米彩带可以做多少个花环?
40÷1.5=26.666(个)≈26(个)(板书:去尾法)
老师:取近似数就有三种方法,同学们可要根据实际情况灵活应用哟!
即时练习:完成教材第117页练习二十五第14题。
五、混合运算
老师:同学们的表现可真棒!这么快就把清单中的一些问题解决了。老老师这也有两道题目想请你们帮忙算一下,好吗?比比看谁算的快。
4.6+5.4÷0.27 3.2×25 ÷8
(学生汇报时要说运算顺序。)
老师:你是怎么想到要先算再算
老师:看来小数混合运算的运算顺序和整数混合运算的运算顺序是一样的。
(板书:运算顺序与整数的相同)
六、拓展提高:教材第118页练习二十五第21__题。
学生阅读题目,理解题意。
分析:领先的运动员与最后的运动员相遇时,两人跑完了2个3km即6km,所以两人的相遇时间可以用两人跑的总路程6km除以两人的速度和求得。相遇时离返回点的距离可以3km减去最后的运动员跑的路程,也可以用领运动员跑的路程减去3km求得。(10分钟,100m)
七、小结
老师:今天这节课我们一起对小数乘除法进行了整理与复习。谁来说说我们主要复习了哪些知识?这节课你收获最大的是什么?
八、作业:教材第113页第1题(2),练习二十五第3、5、6、16题。
板书设计
小数乘、除法复习课
因数→整数计算方法先,再,最后
除数→整数一看、二移、三对齐
运算定律
小数乘除法运算顺序与整数的相同
循环小数——无限小数
四舍五入法
近似数进一法
去尾法
一、教材分析:
“渗透集合知识”是人教版《义务教育课程试验教科书数学》三年级下册第九单元《数学广角》第一课时的教学内容。小学生从一开始学习数学,就已经在运用集合的思想方法了。例如,学生在一年级学习数数时,把1个人、2朵花、3枝铅笔等等用一条封闭的曲线圈起来表示,这样表示的数学概念更直观、形象,给学生留下的印象更深刻。又如,我们学习过的分类实际上就是集合理论的基础。本节课教学的例1是借助学生熟悉的题材,渗透集合的思想,并利用直观图的方式求出两个小组的总人数。在教学例1时,我注重了三个方面的问题。
(1)集合的理解。
(2)有关计算。
(3)拓展延伸。基于以上的安排,结合新课程标准,我确定了本节课的教学目标:
二、教学内容:
教材第108页例1,练习二十四弟1、2题。
三、教学目标:
(1)知识与技能:同学们能够借助直观图,初步利用集合的思想方法去解决简单的问题。
(2)过程与方法:使学生能借助具体内容,利用集合的思想方法去解决问题。
(3)情感态度与价值观:培养学生观察思考问题的能力。
四、重难点
重点:初步体会集合的思想方法。 难点:用集合直观图来表示事物。
五、教法学法
教法:。情景演示与引导学习相结合。情景的演示激发学生兴趣,让学生进入到最佳学习状态。学生在老师的引领下,自主学习、观察、思考、交流、讨论和概括,从而完成本节课的教学目标。
学法:自主探究与合作学习相结合。2.补救法,在授课中有意将学生导入误区,最后学生用学到的知识判断并改正,这样做有利于学生的计算,一定得减去重复的个数。
六、教学准备:课件 图片等 七、教学流程:
教案目标
1、发现“1”和“许多”,感知“1”和“许多”的关系,即若干个1个合起来是许多个,许多个可以分成若干个1个。
2、知道班里除了有1个我,还有许多个我的好朋友,体验与小朋友在一起时的快乐。
教案准备
小镜子若干,大穿衣镜1面。
教案过程
1、看看小镜子,发现“1”个和“许多”个给每人提供一面小镜子,引导幼儿:“快看看小镜子里,有谁在里面?有几个你自己?”并告诉幼儿:“小镜子里还有你的好朋友。”让幼儿试一试,能不能从镜子里看到自己的'好朋友,看到了就大声说:“×××,你是我的好朋友。”然后比一比,看谁看到的好朋友多。
2、看看大镜子,体验“1”与“许多”的关系将幼儿集中到大镜子前,提问:大镜子里有谁?(引导幼儿说一说有许多小朋友)邀请全体小朋友当小猫,和老师一起做“老猫睡觉醒不了”的游戏。
游戏开始时,主班老师面朝镜子背对幼儿做睡觉状。当主班老师(老猫)嘴里念到:“老猫睡觉醒不了,小猫悄悄往外跑”时,配班老师悄悄请一个幼儿起身躲到屏风或布帘后面去(不能被镜子照到),主班老师睁开眼睛问:“几只小猫跑了?”幼儿回答:“1只。”游戏重新开始,如此反复直至所有幼儿都躲到屏风后面时,老师问大镜子:“每次只有1只小猫跑掉,怎么我的许多小猫都没有了?”(让幼儿发现许多只被分成了若干个1只)这时,配班老师逐一请幼儿回到大镜子前,主班老师问:“几只小猫回来了?”该幼儿答:“1只。”如此反复直至所有幼儿都回到大镜子前,主班老师再问:“每次只回来1只小猫,我这里怎么会有许多只小猫呢?”(让幼儿再次发现若干个1只合起来就有了许多只)。
活动延伸教师还可结合平时的各种生活、游戏活动,让幼儿反复感知“1”和“许多”(元素与集合)的关系,例如分餐具、发点心等。