圆柱体的体积说课稿(圆柱体的体积说课稿简洁)

以下是小编收集整理的13篇圆柱体的体积说课稿,仅供参考,希望对大家有所帮助。

篇1:《圆柱体的体积》的说课稿

《圆柱体的体积》的说课稿

一、说教材

1.教学内容

本节课是苏教国标教材六年小学数学(下册)第二单元25页的例4教学。内容包括圆柱体的体积计算公式的推导和运用公式解决一些简单的实际问题。

2.本节课在教材中所处的地位和作用

《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。

3.教材的重点和难点

由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,等积转化数学思想的培养以及观察比较新旧图形的联系,做出合请推理,从而推导圆柱体积公式的过程是本节课的难点。

4.教学目标

(1)让学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题。

(2)使学生进一步体会“转化”方法的价值,培养应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。

(3)通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

二、说教法

从学生已有的知识水平和认知规律出发,经过观察、比较、猜想、思考、、验证等方法,自主探究,合情推理。

三、说教学过程

本节课的教学过程分为六个教学环节,主要包括:

1、复习引导,揭示课题。

明确已有的圆柱的特征、体积概念的认识、平面图形公式的研究方法等知识水平,建立新的学习和探究欲望。

2、观察比较,建立猜想。

在观察长方体、正方体、圆柱体等底等高时,猜想他们的体积是否都想等?猜想后强调“可能“相等,因为是猜想的'。圆柱的体积是不是等于底面积乘高,我们还没有研究出公式来,所以这里只能是一种没有经过验证的猜想,只能用“可能”相等,没有经过验证的观点,不可以用“一定“两个字,让学生体会数学的严谨性。

3、激励思考,提出验证的方法。

有没有一个可以借鉴的好的研究方法,来证实等底等高的圆柱体与长方体、正方的体积有可能相等呢?或者说圆柱的体积也有可能等于底面积乘高呢?学生可以通过回忆平面图形面积计算公式时的推导方法,获取一些思考。

4、自主探究,合情推理。

在学生回忆的基础上,可以提出使用“切割—转化—观察—比较—分析—推理”等方法,四人一组,来讨论下面的问题:

小组讨论纲要:

(1)用 方法,把圆柱体转化成了 体。

(2)在这个转化的过程中, 变了, 没有变。

(3)通过观察比较,你发现了什么?

(4) 怎么进行合情推理?

(5)怎样用简捷的形式表示你推导出来的公式呢?

把课堂还给学生,教师的角色是组织和引导。

5、学以致用,解决实际问题。

应用所推导出来的圆柱体积计算公式,解决一些生活中的简单实际问题,理解生活中处处有数学,体会数学的应用价值和广泛领域。

6、全课小结,提升认识水平。

在研究圆柱体积公式的时候,我们运用了哪些方法?这里的切割是指切割旧图形,还是切割要研究的新图形?转化是指转化成已学过的旧图形,还是转化成没有学过的新图形?观察比较什么?怎样分析推理?这里蕴藏着什么样的数学思想?最后问大家这样一个问题,发明电灯重要,还是使用电灯重要,哪个更能造福人类,造福子孙万代?科学家、发明家就是这样诞生的,他们善于猜想、善于发现,敢于探究。如果我们将来想成为科学家,我们必须具备这样的品质。通过这节课的学习,你敢不敢大胆去尝试、去探究圆锥体的体积计算公式,或是更广泛的研究上下底面都是相等的三角形、上下底面都是相等的正多边形等一些直棱柱的体积计算方法呢?在研究中,你会发现,数学很美,它是思维的体操,有兴趣的同学,可以把你研究的成果告诉老师一起分享。

四、说教学反思

在本节课的教学中,我主要让学生自己动手实践、自主探索与合作交流,在实践中体验,在实践中提升,从而获得知识。讲课时,我再利用教具学具和课件双重演示,让学生通过眼看、脑想、讨论等一系列活动后,用自己的语言说出圆柱体体积计算公式的推导过程。我的第一层次是复习。通过复习来导入新课。第二层次,推导圆柱体的计算公式。在学生自学的基础上,亲自动手切拼,把圆柱体转化成近似的长方体,找出近似长方体与原圆柱体各部分相对应部分,从而推出圆柱体积计算公式。用知识迁移法,把旧知识发展重新构建转化为新知识,使学生认识到形变质没变的辩证关系,培养学生自学能力,动手能力,观察分析的和归纳能力。第三层次,针对本节所学知识内容,安排适度练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。

这节课,在设计上充分体现以教师为主导,学生为主体,让学生动手、动脑、参与教学全过程,较好地处理教与学,练与学的关系。寓教于乐中学会新知识,使学生爱学、会学,培养了学生动手操作能力、口头表达能力和逻辑思维能力,让学生充分体验成功的喜悦。

当然,由于经验不足,在教学过程中还有很多环节没有处理好。恳请大家提出宝贵的意见和建议。

篇2:圆柱体的体积说课稿

圆柱体的体积说课稿

我说的内容是:九年义务教育六年制小学教科书数学第十二册第三单元中的圆柱体的体积。

因为这是首次学习含有曲面的几何体的体积,不论是思考方法,还是对立体图形的认识上,都更加深入了一步,难度也加大了。所以本节的重点是:对圆柱体体积公式的理解。难点是:圆柱体体积公式的推导过程。

教学目标是:使学生知道圆柱体的体积公式推导过程;理解并掌握圆柱体的体积公式及相关的推论。并能正确运用公式解决一些简单的实际问题。通过对圆柱体体积公式的教学,加深学生对立体图形的认识,培养学生的观察能力,抽象和概括能力及综合运用能力,发展学生的空间观念,同时渗透一些关于极限的辨证唯物主义思想。

学习本节课应具备的旧知识是:1、长方体的'体积公式及推导过程。2、圆面积公式的推导过程。

在教学中就是要运用圆面积公式的推导方法,将圆柱体转化为长方体,从而由长方体体积公式推导出圆柱体体积公式。因此根据本节课的特点我采用的教学方法是:

1、有目的的运用启发引导的方法组织教学。

2、采用演示实验的方法,让学生观察比较,从而发现规律,找出体积公式。

3、适当采用“尝试——失败——总结——再尝试——再总结”的方法,引导学生找到推导公式的合理方法。

4、利用多变的练习,加深学生对公式的理解,找到公式的根本内涵。但是要注意循序渐进,由易到难,由简到繁。

在学法指导上,主要是让学生学会观察、比较,归纳概括出体积公式。通过直观实验,吸引学生主动、认真观察图形的拼接过程,积极回答观察结果,主动参与到教学中去,并且在教师的启发下,进行归纳概括。培养学生的自学能力及概括能力。

本节课所需教具为:圆柱体割拼组合教具及事先写好习题的小黑板。

教学一开始,首先复习。目的是:一是通过复习旧知识,为新课作好准备;二是引出新课。

一开始先复习体积的概念及长方体的体积公式。这个练习可采用提问的方式,但是这些知识已学过较长时间,所以适当的时侯教师要加以启发提示。

接下来,教师引导学生回忆长方体体积公式的推导过程,及圆面积公式的推导方法,为新课做准备。

然后,提问:圆柱体的特点是什么?圆柱体的侧面积、表面积公式是什么?由于这些内容刚刚学过,学生很容易回答,可以提问基础较差的学生,并加以鼓励,使他们树立信心,提高兴趣,以便学习新课。

通过以上复习,巩固了旧知识,为学习新知识做好了铺垫,同时调动了全体学生的学习兴趣。利用这一有利时机,教师及时引导、设疑:

圆柱体也是立体图形,也会占有一定的空间,大家一定很想知到道怎样求出这个空间的大小,好,今天我们就来学习求它的方法。——板书课题:圆柱体的体积

这样就顺利转入了新课的学习。

这时教师出示圆柱体模型。

首先引导学生用长方体公式的推导方法尝试。提问:“我们学过的长方体体积是用单位体积的小正方体块来量出的,现在我们也用同样的方法来量一下,现在这个圆柱体的体积是多少?”

学生反复尝试后回答:“无法量出。”

这时教师再问:“什么地方量不出来?为什么?”

学生回答:“圆柱体的侧面是曲面,无法量出。”

在学生尝试失败的基础上,促使他们改变思路,去寻找新的方法。这样充分利用学生的好奇心理,调动学生情绪,转入圆柱体体积公式的教学。

教师启发提问:“圆柱体上下两面是什么形?圆面积公式是怎么得到的?”通过学生的回答,引出新思路:用割拼的方法将它转化为其他的图形。

得到了新的方法以后,教师进行演示实验1:先将圆柱沿底面平分割成8等份,对拼成一个近似长方体。学生观察割拼过程。

教师提出问题:“这个圆柱体拼成了一个近似的什么立体图形?为什么说它是近似的?它的哪一部分不是长方体的组成部分?”

学生回答后,接着再进行演示实验2:将圆柱体沿底面平分16等份,再拼成近似的长方体。

再问:“这次是不是更象长方体了?”

这时教师启发学生想象;“把它平分成很多很多等份,这样拼成的图形将会怎样?”

教师总结:“将会无限趋近于长方体,并且最终会得到一个长方体。”

然后及时引导学生观察这个长方体,并把它与圆柱体进行比较,提问:“这个长方体的哪部分与圆柱体相同?”因为模型各面的颜色不同,所以学生会很快回答出来:“底面积与高。”

“那么这个长方体体积与圆柱体体积有什么关系?”学生回答:“相同。”

“长方体的体积是怎样计算的?”学生回答:“底面积乘以高。”

“那么圆柱体是否也可以这样算呢?”学生回答:“是的。”

这时教师根据学生的回答,及时板书这两个公式。

通过以上的教学,引导学生归纳概括出了圆柱体的体积公式。这样先通过复习做知识的铺垫,然后由学生进行尝试,充分运用思维的迁移规律,用圆面积公式的推导方法搭起了桥梁,顺利地实现了本节课的第一个目标。并且在推导过程中渗透了关于极限的辨证唯物主义思想。

学生通过尝试得到了成功的喜悦,思想高度兴奋。教师及时利用这一时机,将公式向深处拓展。设问:“如果不知道圆柱体的底面积和高,怎么求体积?”学生考虑,教师出示尝试题:

1、已知圆柱体的底面半径和高,怎样求体积?

2、已知圆柱体的底面直径和高,怎样求体积?

3、已知圆柱体的底面周长和高,怎样求体积?

4、已知圆柱体的侧面积和高,怎样求体积?

学生分组讨论。讨论完毕后,每组选一名代表回答,其他同学做适当补充。学生回答完毕后,教师及时进行总结,并且板书有关公式的推论。

通过以上练习,避免了学生只注意了公式的表面特征,而忽略了公式的本质特征。使学生明确,不论条件怎样变化,最终都要归到底面积乘以高上来。从而使学生理解了本公式的内涵,为灵活运用公式做好了知识的准备。

最后要求学生用字母表示公式。由于此方法学生早已熟悉,所以可全班集体回答。

学生理解和掌握了公式后,教师及时出示习题,指导学生将公式应用于实际:

(出示准备好的小黑板)

例4、一根圆柱形钢材,底面面积是50平方厘米,高是2·1米。它的体积是多少立方厘米?

例5、一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米。这个水桶的容积是多少立方分米?

提问:“这两道题是否要进行单位换算?各应选用什么公式?”学生回答完毕后,一起独立完成。教师巡视检查,发现问题,及时补救。

最后,对本节课进行小结。提出应用公式时应注意的问题:1、仔细审题,弄清条件的变化。2、单位名称要统一。

布置课后作业。

本节课到此结束。

篇3:圆柱体体积练习题

一、选择题

1.圆柱体的底面半径和高都扩大2倍,它的体积扩大( )倍。

①2 ②4 ③6 ④8

2.体积单位和面积单位相比较,( )。

①体积单位大 ②面积单位大 ③一样大 ④不能相比

3.等底等高的圆柱体、正方体、长方体的体积相比较,( )。

①正方体体积大 ②长方体体积大 ③圆柱体体积大 ④一样大

二、填空题

1.0.9平方米=( )平方分米 3立方米5立方分米=( )立方米

4.5立方分米=( )立方分米( )立方厘米

2.一个圆柱体的底面半径是4厘米,高6厘米,它的侧面积是( ),表面积是( ),体积是( )。

3.一个圆柱体的底面周长是6.28分米,高2分米,它的侧面积是( ),表面积是( ),体积是( )。

4.一个圆柱体的侧面展开图是边长为31.4厘米的正方形,这个圆柱体的底面积是( )平方厘米,这个圆柱体的体积是( )立方厘米。

5,一个高5厘米的圆柱体,沿底面直径将圆柱体锯成两块,其表面积增加40平方厘米,原来这个圆柱体的体积是( )。

三、应用题。

一个圆柱形烟囱,底面半径为1.2米,高2.5米,它的体积是多少立方米?

2.把一个棱长是6分米的.正方体木块,削成一个最大的圆柱体,这个圆柱体的体积是多少立方分米

3.要制作容量是62.8升的圆柱形铁桶,如果底面半径是2分米,高应是多少分米?

4.做一个无盖的圆柱形铁皮水桶,高30厘米,底面直径20厘米,做这个水桶至少要用多少平方分米的铁皮?这个水桶能装多少千克的水?(1立方分米水重1千克)

篇4:圆柱体体积练习题

1、填空不困难,全对不简单。

(1)圆柱的底面积为S,高为h,它的体积V=( )。

(2)圆柱的底面半径是r,高为h,它的体积V=( )。

(3)6.4立方米=( )立方分米 2升25毫升=( )升=( )立方分米

(4)一个圆柱的底面半径是1dm,高是2dm,它的侧面展开图是( )形,这个展开图的周长是( )dm,面积是( )dm2。

(5)把高2m 圆柱锯成两段,表面积增加了20m2,原来这个圆柱的体积是( )。

2、脑筋转转转,答案全发现。

(1)做一个圆柱形通风管要用多少铁皮,是求圆柱的( )。

A.侧面积 B.表面积 C.体积

(2)一个圆柱的侧面展开图是一个正方形,这个圆柱底面半径与高的比是( )。

A.1:2л B.1:л C.1:4л D.2:л

(3)圆柱的底面积扩大到原来的3倍,高缩小到原来的1/3,它的体积( )。

A.不变 B.扩大到原数的3倍 C.放大到原数的9倍 D.缩小到原数的1/3

3、求下面各圆柱的体积。

(1)底面直径是12dm,高是20dm。

(2)底面周长是9.42cm,高是10cm。

4、一段圆柱形木头的体积是157dm3,底面半径是5dm,它的高是多少?

5、大亲公园新建一个圆柱形水池,它的容积是84.78m3,底面积是28.26m2。现在水池里装水量为水池容积的5/6,水深是多少米?

6、一个圆柱形粮囤,量得底面周长9.42m,高是4m,每立方米小麦约重650kg。这个粮囤大约能装上麦多少千克?

篇5:圆柱体体积练习题

一、填空。

1、一个圆柱体,底面积是12平方分米,高6分米,它的体积是( )立方分米。

2、一个圆柱体积是84立方厘米,底面积21平方厘米,高是( )。

3、已知圆柱谷桶里底面半径是 3米,高4米,它的底面积是( ),容积是( )立方米。

二、求下面圆柱的体积

1)底面积0.6平方米,高0.5米 2)底面半径4厘米,高12厘米

3)底面直径5分米,高6分米 4)底面周长12.56厘米,高12厘米

三、应用题。

1、一个圆柱木桶,底面直径16厘米,高2分米,体积是多少立方厘米?

2、一段圆柱形的钢材。长60厘米。横截面直径10厘米。每立方厘米钢重7.8克,这段钢材重多少千克?(得数保留一位小数)

3、一个圆柱水桶,从里面量高是3分米,底面半径1.5分米,它大约可装水多少千克?(1升水重1千克)

4、有一个棱长为10厘米的正方形木块,把它削成一个最大的圆柱体,应削多少体积的木头?

5、一只圆柱形水桶,底面半径是0.2米,高0.5米,装了 桶水,问桶中有水多少升?

6、一只圆柱形的玻璃杯,测得内直径是8厘米,内装药水的深度是16厘米,正好占杯内容积的80%,这个杯的容积是多少毫升?

篇6:《圆柱体体积》教学反思

《圆柱体体积》教学反思

今天教学“圆柱体的体积”,接受昨天学生提出的只学不会的学习方式,在黑板上分了两个区域,一个复习区域:长方体的体积怎样计算?圆的面积计算公式是怎样推导出来的呢?重点研究区域:圆柱体的体积怎样计算?

面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,一只手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的风头都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是压一压他的积极性。给大家留一点思考的时间,等一会再说你的方法,谁知道这个积极分子不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?):我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片,分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的个数。这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:你给大家解释一下,圆片是什么?圆片的个数又是什么?圆片就是圆柱的底面积,圆片的个数就是圆柱的高。

这种推导圆柱体体积的'计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为把圆柱体进行等分转化成长方体体积来推导做铺垫的。谁曾向,这种用堆的过程来说明“底面积×高”计算圆柱体体积的道理,实际是积分思想,这是要到中学才学习的,学生不好理解的,竟然跑到预想方法之前了。真是计划不如变化快啊。课堂上的精彩总是不期而至啊。试想,如果,刚开始他举手,我就像以往一样”压一压他,让他和其他学生同步思考,说不定,这个想法在他脑海里转瞬即逝,那么这个精彩的火花就不会在课堂上呈现。

由此感悟到,课堂上,要给学生即兴发言的机会,及时的捕捉学生的思维灵感,精彩就会不期而至。《圆柱体的体积》这一课我学到了很多东西。

篇7:圆柱体和圆锥体体积的复习

教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;

教学准备:幻灯片、电脑制图

教学过程:

一. 出示课题,引人复习内容;

1.同学们,今天这节课,我们要进行“圆柱体和圆锥体体积的复习”;

板书课题

2.圆柱体的体积怎么求?

板书:V圆柱=Sh

3.圆锥体的体积怎么求?

板书:V圆锥=1/3 Sh

4.公式中的 s、h分别表示什么?1/3表示什么?

小结:求圆柱体和圆锥体的.体积,首先要正确应用公式。

板书:1.正确应用公式

当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?

二. 基础练习

根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)

计算这些形体的体积:

(1)S底=1.5平方米 h=5 米 求V圆柱

(2)S底=1.5平方米 h=5 米 求V圆锥

(3)r=10分米 h=2 米 求V圆柱

(4)C=6.28米 h=6 米 求V圆锥

(1)、(2)两题条件相同,所求不同;

板书:2. 圆锥体积一定要乘 1/3

(3)、(4)两题都要先求出底面积;

板书:3. 单位名称要统一

三. 实际应用练习:

我们还可应用到生活中去解决一些实际问题:(幻灯出示)

1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?

默读后问同学:做这道题前有没有准备工作要做?(单位要统一)

2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?

默读后问同学:要注意麦堆是什么形状?

请两位同学板演,其余在本子上自练;

3.小结:在解这两题时都用到了什么计算?

四. 提高练习:

(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?

(电脑出示图案)观察水面变化情况,求什么?

1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?

2. S可以通过哪个条件求?( r=10厘米)

3.体积是什么呢?(电脑屏幕逐步演示)

(1)当钢材放入时水面上升,取出时水面下降,和什么有关?

(2)放入时水面为什么会上升?

(3)圆锥体占据了水桶里哪一部分水的体积?

(4)上升的水的体积等于什么?

(5)求圆锥形钢材的体积就是求什么?

(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)

(7)板演,同学自练;

五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)

1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)

2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;

3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。

六、总结:

这节课我们复习了什么?

篇8:圆柱体的体积评课稿

圆柱体的体积评课稿

圆柱体的体积评课稿

翟老师的这节课是青岛版小学教材五年级下册的内容, 本节课给我的总体印象是:

一. 老师的基本素质很高。

语速的控制得当、教态从容大方,板书整齐认真、练习题设计极具梯度性,并且有新意,这一点体现在练习题的设计思路和题目的取名上。

二. 教学设计充分体现新课标对小学课堂的要求。

首先:引导学生从生活事件出发,感受生活中的数学现象。

新课标指出在教学空间与图形时应注重所学知识与日常生活的密切关系,应注重使学生在观察、操作获得对简单几何和平面图形的直观经验。老师注重创设情景、设计疑问,让学生在与同伴合作中探索问题;与同伴交流中得出结论,尝试获取成功的喜悦。 其次:充分体现了学生的主体作用,老师的.组织、引导和合作作用。

合作探索阶段,老师给出明确的要求之后,便大胆的把时间交给了学生,让他们经历冲突、探索、结论得出的整个过程;还有一个亮点就是在练习环节,老师设置了一个量一量、算一算的环节,很多老师都会给学生点出来应该先求出半径,但翟老师没有,而是设计了两种情况,一种是底面没有圆心的情况,另一种是底面有圆心的情况。她让学生自己去摸索,收到了很好的效果,也让学生体验到了通过努力获取成功的喜悦。

三. 整节课体现了从问题-猜想-验证-解决实际问题的整个新课标的课程理念,符合学生

的认知规律。

四.给学生充分的独立思考和合作探索的时间。

不但让学生体验到了数学学习的乐趣,而且在阐述结论的同时锻炼了孩子的语言表达能力,使孩子得到多方面的发展。

几点建议:

一:语言再丰富一些,语调再抑扬顿挫一点。

二:在恰当的时候给孩子独立总结的机会,比如在复习完圆面积推导过程之后,可以让学生自己总结所用的数学思想。

三.给孩子独立思考的时间,不要急着替孩子解释问题,这样容易掩盖问题。

篇9:圆柱体的体积教学课件

教材分析

《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

学情分析

六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

教学目标

知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

教学重点

掌握圆柱体积的计算公式。

教学难点

圆柱体积计算公式的推导。

教学方法

实践探索

●课时安排

1课时

●教学准备

多媒体课件等

●教学过程

一、引入

圆柱体转化成近似长方体。

(课件点击后出现:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。) 通过学生观察,发现这两个物体的体积是一样的,还有什么是相同的?

[设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。]

(揭示课题:圆柱的体积。)

二、推导圆柱体积计算公式

怎样用我们已有的知识来计算圆柱的体积?

(学生可能回答:长方体的体积可以通过底面积×高得到,我想圆柱的体积是不是也可以通过底面积×高得到呢?)

(媒体操作:点击后出现:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。)

我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就??

(学生回答:就越接近于长方体了。)

(媒体操作:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。) 通过观察,你知道了什么?

(学生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。)

(媒体操作:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×高,V=Sh。)

练一练:

1.一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

2.判断:

一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(出示下面几种解答方案,让学生判断哪些是正确的。)

① 50×2.1=105(立方厘米)

② 2.1米=210厘米,50×210=10500(立方厘米)

③ 50平方厘米=0.5平方米,0.5×2.1=1.05(立方米)

篇10:圆柱体的体积教学课件

教学目标

1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

2.探索并掌握圆柱体积公式,能计算圆柱的体积。

3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。

教学重点

圆柱体积计算公式的推导过程。

教学难点

圆柱体积计算公式的灵活运用。

教具准备

圆柱体转化成长方体的模型。

教学过程

一、复习铺垫

1.请同学们回忆一下什么是物体的体积。

2.(出示幻灯片长方体)这是什么体?怎样计算它的体积?

同样的方法复习正方体。

3.长方体和正方体的体积可以用一个统一的公式来表示是怎样的?

[复习旧知,为后面推导圆柱体积计算公式做铺垫]

二、情境导入

师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?

生:喜欢。

师:为什么?

生:有礼物,还有生日蛋糕。

师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?

生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。

生:亮亮和爷爷的生日蛋糕都是圆柱形的。

师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的.知识来说。

生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。

师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。

三、推导、论证

1.拿出两个不易分辨体积大小的茶叶筒。

师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?

让学生思考和交流。

2.大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)

3.引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

4.师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:

生:相同点:都可以拼成一个近似的长方体。

不同点:等分的份数越多,就起接近一个长方体。

5.同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?

6.学生汇报讨论结果,同时板书。

生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。

7.根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示V=Sh。

四、实际应用

1.要求圆柱体积,必须知道哪些条件?(生:底面积和高)

2.如果已知底面积和高,你们会求圆柱的体积吗?

出示书中的例题:一根圆柱形的钢材,底面积是50平方厘米,高是1.5米。它的体积是多少立方厘米?

3.学生读题,特别提示统一单位。学生自主计算后全班交流。

4.反馈练习。P31页练一练1。

练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。

五、家庭作业

测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?

篇11:圆柱体体积的优秀教学反思

圆柱体体积的优秀教学反思

一、我在导入时,突破教材,有所创新 圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

二、我教学新课时,实现人人参与,主动学习学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的`长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

三、我在 练习时,形式多样,层层递进 ,例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思

篇12:圆柱的体积教学反思 圆柱体体积的教学反思

《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:(1)圆柱的体积等于长方体和正方体的体积。(2)圆柱的体积也等于底面积乘高。猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。

为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。

在本节课的教学过程中还存在诸多的问题。

1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。

2、在圆柱体经过切割、拼接之后转化为近似长方体的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。

3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。

篇13:幼儿园圆柱体的说课稿

幼儿园关于圆柱体的说课稿模板

活动目标:

1、初步认识圆柱体的基本特征,探索生活中与圆柱体相似的物体。

2、激发幼儿探索圆柱体秘密的兴趣。

活动准备:

1、知识经验准备:

(1)请家长引导幼儿观察生活中与圆柱体相似的物体。

(2)已认识过球体。

2、材料准备:

(1)提供圆柱体实物若干,如易拉罐、茶罐、积木、固体胶等,准备印泥、纸张。

(2)一样大小的.硬币若干、透明胶、长方形纸张、固体胶、橡皮泥。

活动过程:

一、幼儿在活动室寻找各种圆柱体实物并自由探索。

1、它们与球有什么不同?

2、把圆柱体立在桌上和侧放在桌上会出现什么不同的现象?

3、把圆柱体上、下两面印下来,发现了什么?

4、小结:上下两面都是圆形,这两个圆形是一样大的,侧面没有棱角,而且从上

到下都是一样粗细,叫做圆柱体。

二、组织幼儿讨论:你在社会中还见过哪些像圆柱体的物品。

三、玩一玩、变一变。

1、怎样把许多枚硬币变成圆柱体?

2、怎样把长方形纸张变成圆柱体?

3、怎样把橡皮泥变成圆柱体?

四、活动延伸:让幼儿自由选择区域进行活动。

计算角:提供各种圆柱体实物,供幼儿继续探索发现圆柱体的秘密。

操作角:提供多种材料供幼儿继续变成圆柱体。

热门教案

学诗词

学名句