相似三角形的判定方法说课稿(相似三角形的判定与性质)

以下是小编为大家准备了12篇相似三角形的判定方法说课稿,欢迎参阅。

篇1:相似三角形判定定理

(1)相似三角形的对应角相等.

(2)相似三角形的对应边成比例.

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比.

(4)相似三角形的周长比等于相似比.

(5)相似三角形的面积比等于相似比的平方.

相似三角形的传递性

如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

篇2:相似三角形判定定理

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似.

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.

篇3:相似三角形判定定理

(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,(简叙为两角对应相等两三角形相似). 角角角

(2)如果一个三角形的'两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.)

(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.)

篇4:《相似三角形》说课稿

一、教材分析

(一)教材的地位和作用相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。

本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要。

(二)教学的目标和要求

1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。

2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。

3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。

(三)教学的重点和难点

1.重点:相似三角形和相似比约概念及判定三角形相似的预备定理。

2.难点:相似三角形约定义和判定三角形相似的预备定理。

二、教法与学法

采用直观、类比的方法,以多媒体手段辅助教学,引导学生预习教材内容,养成良好约自学才惯,启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。

三、教学过程的分析

看我国国旗,国旗上约大五角星和小五角星是相似图形。本节课要学习的新知识是相似三角形,准备分四个步骤进行。

1.关于相似三角形定义的学习,是从实践中总结得出定义的两个条件,培养学生观察归纳的思维方法,从感性认识转化为理性认识。我准备用三角形的中位线定理引入,让学生动手画一个具有三角形中位线的三角形,然后问:三角形的中位线所截得的三角形与原三角形的各角有什么关系?各边有什么关系?再格中位线所在约直线上下平移进行观察,想一想怎么回答。学生容易由学过的知识得出:所截得的三角形与原三角形的“对应角相等,对应边成比例”,最后指明具有这两个特性的两个三角形就叫做相似三角形。这一段教学方法的设计是要培养学生的动手能力和观察能力。并逐步培养从具体到抽象的归纳思维能力。将所截得的三角形移出记为△ABC,原三角形记为△A’B’C’。因此,如果有:

∠A=∠A’,∠B=∠B’,∠C=∠C’,

那么△ABC与△A’B’C’是相似的.。以此来加强两个三角形相似定义的认识。

2.关于用相似符号“∽”来表示两个三角形相似时,考虑与全等三角形的全等符号“≌”表示相类比引入。全等符号“≌”可看成由形状相同的符号“∽”和大小相等的符号“=”所合成,而相似形只是形状相同,所以只用符号“∽”表示,这样的讲法是格数学符号形象化了。学生会比较容易记住,是否可以,请同行们提意见。必须注意:用相似符号“∽”表示两个三角形相似,书写时应把对应顶点写在对应位置上。例如,在两个相似三角形中,其顶点D与A对应,E与B对应,F和C对应,就应写成△ABC∽△DEF,而不能任意写成△ABC∽△FDE。把对应顶点写在对应位置上的问题,在以后的解题中常常显示出它的重要性。根据相似三角形约定义可知:

如果两个三角形相似,那么它们的对应角相等,对应达成比例。在由相似来判断它们的对应角及对应边时,如果其对应项点是按对应位置书写的,那么这个判断就准确而且迅速。如△ABC∽△DEF,则AB、BC、AC就分别与DE、EF、DF相对应,∠A、∠B、∠C就分别与∠D、∠E、∠F相对应。这样就可避免产生混乱和错误。对学生也是一种思维方法的训练,引导学生考虑问题时要有条理和方法。在判断相似三角形的对应边及对应角时,还常用另外一种方法,即:对应角的夹边是对应边。对应边的夹角是对应角。

3.关于相似比的概念的教学,应向学生讲清:如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比(或相似系数),这里,必须注意的是顺序问题和对应问题。例如:△ABC∽△DEF,那么是△ABC与△DEF的相似比,而是指△DEF与△ABC的相似比,而这两相似比互为倒数。由此可说明全等三角形是相似三角形当相似比等于l时约特殊情况。

4.在教学预备定理前,可先复习上节课学习的P215页例6的结论[平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例。]对命题的引出,可以先画出一个三角形,然后作出平行于其中一边,并且和其他两边相交的直线,使学生直观地得到:所截得的三角形与原三角形相似,从而引出命题“平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似”。即如图,若DE∥BC,则△ADE∽△ABC,然后分析命脉题的结论是要证明两个三角形相似。可以问学生:

当没有判定两个三角形相似约定理的情况下,应考虑利用什么方法来证明相似?如获至宝果用定义来证,应从哪几个方面来证?然后按教材内容给出证明。强调指出每个比的前项是同一个三角形的三边,而比的后项为另一个三角形的三边,位置不能写错。

因此我们可得(预备)定理:

定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

以教材的内容为出发点,启动学生自发学习,引导学生探究思维,以达知识目标。为了巩固本节保所学的知识,安排课本P224页练习1、2做为课堂练习,之后进行提问与调板,了解学生掌握知识的情况。

最后小结本节课的知识要点及注意点。小结之后布置作业和预习。

篇5:《相似三角形》说课稿

各位领导老师大家好:

今天我说课的课题是华师版初中三年级数学“相似三角形的性质”。

下面,我分以下几个部分来汇报我对这节课的教学设计,“教材分析”、“学生的认知起点分析”“教学目标、教学重点和难点”“学法指导”、“教学过程的设计”和“评价分析”加以说明。

一、教材分析。

教材的地位及作用:对于相似三角形的研究,实际上是对平面几何中两个封闭图形关系研究的进一步,相似三角形的性质”是初中数学“相似形”中的重点内容之一,是在学完相似三角形的定义及判定的基础上,进一步研究相似三角形的特性,以完成对相似三角形的全面研究。它是全等三角形性质的拓展,这些性质是解决有关实际问题的重要依据,因此必须熟练掌握三角形相似的性质,学会灵活运用相似三角形的性质,在学习数学中起着承上启下的作用。

二、学生的认知起点分析:

学生通过前面的学习已了解了三角形相似的概念,掌握了相似三角形判定的这为探究三角形相似的性质,做好了知识上的准备。另外,学生也具备了识别三角形全等的知识,通过类比,使学生能主动参与本节课的操作、探究。

三、教学目标:

根据学生已有的认知基础及本课教材的地位、作用,确定本课的教学目标为:

(1)知识目标:使学生掌握相似三角形的性质定理及其证明方法,能运用相似三角形性质定理解决问题。

(2)能力目标:通过性质定理的推导,培养学生的逻辑推理能力和动手实践能力。

(3)德育目标:通过全等三角形和相似三角形的类比学习,树立学生从特殊到一般的认识规律,通过先实验后归纳再推理强化学生“实践出真知”的求知意识。

四、教学重、难点:

因为相似三角形的性质是解决与相似三角形有关问题的重要依据,也是研究相似多边形性质的基础,根据教学目标我设置了本节的

1、重点:相似三角形的性质及其应用。

2、难点:相似三角形性质的探索过程。

五、教学方法与教学手段的选择。

为了充分调动学生学习的积极性,使学生变被动学习为主动愉快的学习,使课堂教学生动、有趣、高效,本节课我将采用自主探索、启发引导、。合作交流、反馈测试展开教学,并采用计算机辅助课堂教学,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维,这样一方面可以激发学生学习的兴趣,提高学生学习的效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学习体会。

六、学法指导。

在学法指导上,充分引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,体会数学内容之间的联系,在解决问题的过程中,深化对其本质属性的理解,培养学生学习的主动性和积极性,让学生在愉悦的气氛中感受到数学学习的无穷乐趣。

七、设计思想。

在本节课设计中,从分发挥了教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性,主动参与到合作探究讨论中来,使学生在与他人的合作交流中,获取新知,并是个性思维得到发展。

在本节的学习中,采用探究的形式,引导学生通过操作、观察、探索、交流、发现,得出相似三角形对应角相等,对应边成比例外,对应边上的高线、对应边上的中线、对应边上的角平分线也是成比例的,都等于相似比,通过进一步探讨还得出相似三角形周长的比等于相似比,面积的比等于相似比的平方,同时对得到的.知识加以运用,配备了巩固练习,让学生做到活学活用,并适时与学生沟通,营造亲切、和谐、活跃的课堂气氛,以激发学生积极思维,促进认知发展。

八、教学程序。

1、明确目标,重点、难点,为学生指明方向避免盲目性。

2、知识链接目的在于引导学生用类比思想学习新知。

3、启发诱导探索新知培养学生自主学习与合作学习。

4、巩固练习检验学生对所学知知识掌握情况。

5、归纳小结知识的再现梳理知识。

6、作业布置:进一步巩固所学知识。

九、课后评价分析。

今天这节课主要是对数学学科“学案导学”这种新知教学模式进行一次尝试,也是对从细节入手,打造优质高效数学课堂的主题进行了一次探索,通过这节课的教学,我的收获也很多,这为我们以后的课堂教学积累经验。我认为这节课比较理想的方面有:

1、教学方法和教学手段的选择比较恰当合理。

选择恰当的教学手法和教学手段是高效课堂的重要保障,在探究上主要是采用合作交流的形式,因为学生提前有预习,也是检验学生预习的情况,把预习情况在小组汇报,充分调动学生的积极性,使学生变被动为主动学习,使课堂教学生动、有趣、高效。在交流中达成共识。然后以小组汇报形式展示,检验学生对一个探究问题的掌握情况,收到良好效果。探究二以个人展示为主。

分别找不同层次的学生叙述证明过程,探究一作为基础,所以探究二的推理过程就很容易;探究三采用的方法是先自主思考,然后再小组中研讨,学生板演的形式来完成。因为探究三学生在自主思考中,我通过学生的反应和表情发现一部分学生有障碍,所以我及时安排了这次探究。三个探究题采用了不同的方法和形式,体现了探究方法的多元化,同时采用计算机辅助教学,激励学生积极参与、观察。发现只是的内在联系,使每个学生都能积极思维,激发学生学习兴趣,提高学生的学习效率,拓展学生思维空间,培养学生用创造性思维去学习。

2、教学目标基本得到落实。

一节课的中心工作就是要落实好教学目标,课前的准备和课堂的各个环节都是为落实目标来服务的,通过本节的教学可以看出学生对相似三角形对应高的比,对应中线的比,对应角平分线的比。周长的比等于相似比,面积的比等于相似比平方,这几条性质掌握比较好,在探索这几条性质的过程中,学生经历观察、猜想、验证的过程,感到了新知的产生过程,这为掌握新知奠定了基础,通过巩固训练,也可以反应学生对本节课所学知识基本掌握。

3、抓住重点,突破难点。

本节课的重点是相似三角形的性质及其应用,在课堂上紧紧抓住重点层层展开教学,通过观察猜想,测量验证和推理论证得出相似三角形的性质,符合学生的认知规律让所有学生都动起来,参与进来。差生不再是旁观者。使学生能积极主动去探索新知和获取新知。通过复习中的第一个和第四个,学生就有了思想准备。本节课研究的问题与全等三角形的性质类似。全等与相似明显区别就是全等对应边相等,相似对应成比例,学生在探究的几个问题上就类比全等的性质去研究,降低了问题的难度,进而突破难点。

4、分层教学,体现比较明显。

分层教学时我校的一个教学特色,学生两极分化严重,既得让尖子生吃得饱,又得让差生吃得好,所以我把班级学生分成6个小组,每个小组由一名组长,组长为1号,其他成员是按数学成绩的高低编号2——7号,本节课的复习几个问题是各组的5,6,7号同学展示,这是以前所学的基础知识,是他们应该掌握的内容,通过展示,基本掌握探究1是各组代表展示,探究2是各组3、4号同学展示,探究3是各组的2号同学展示。习题最后一题是1号同学展示,在研究过程中,组长组织一一汇报自己的想法,小组中评价达成共识。作业设置有必做题、选做题、备选题也是针对不同层次的学生来设置的,也充分体现了新的课程标准人人获得不同的提高。

5、合作学习效果明显。

学生在合作学习中表现非常优秀,讨论气氛浓厚,每个个体都积极主动参与进来,在小组中展示自己想法,个别小组的研究还有一定的深度和广度,通过展示可以发现研讨具有实效性。

6、学生活动比较好。

我觉得在这节课当中,学生参与活动的人数比较多,活动的次数比较多,比如举手回答问题比较积极,本节课安排了3次典型的学生活动,小组活动参与意识比较强烈。

在整个教学过程中,教师主要是发挥了主导作用,适时点拨、引导,把时间交给了学生,大胆放手让学生去做,尽可能调动学生的积极性,让学生主动参与到合作探究中来,使学生在与他人合作交流中获得新知,个性思维得到发展。时时与学生沟通,营造亲切、和谐、活跃的课堂气氛,激发学生积极思维,促进认知发展。

我认为本节课的不足之处:

1、在每个探究结束后,只是口头总结,应该做几张幻灯片,显示在大屏幕上,这样效果会更好。

2、通过课堂实践,我认为学生小组人员过多,不宜全面交流,会影响学习效果。

3、课堂上有几个生成问题。第一个是在证明相似三角形比等于相似比平方时,我随机留了一名同学讲解,讲得很好,第二个是没想到在练习3题中,学生能提出各种解法。第5题上没想到有同学提出了另一种解法,这样就冲击了我后面的小结中预设时间,本来想找几个同学说,我还有个总结,后面时间有点紧。

4、由于紧张原因,在放映幻灯片中有几处错误,如讲完性质时总结,本来应由学生总结,但我一放时都放了出来。

篇6:相似三角形的判定定理是什么

相似三角形的性质

1、相似三角形的'对应角相等

2、相似三角形对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;

3、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方;

4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。

5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。

6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。

篇7:相似三角形的判定教案

掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.

阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正

①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.

甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,

ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.

活动1 小组讨论 例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3

解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A, ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,

342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE相似,则BF长为多少?

在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形(

)

A.1对

B.2对

C.3对

D.4对

按照一定的顺序去寻找相似三角形. 活动3 课堂小结

学生试述:这节课你学到了些什么?

篇8:相似三角形的判定教案

相似三角形的判定

1.两个三角形的两个角对应相等

2.两边对应成比例,且夹角相等

3.三边对应成比例

4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

相似三角形的判定方法

根据相似图形的特征来判断。(对应边成比例,对应边的夹角相等)

1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;

(这是相似三角形判定的引理,是以下判定方法证明的基础。这个引理的证明方法需要平行线分线段成比例的证明)

2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;

3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;

4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;

5.对应角相等,对应边成比例的两个三角形叫做相似三角形(用定义证明)

绝对相似三角形

1.两个全等的三角形一定相似。

2.两个等腰直角三角形一定相似。(两个等腰三角形,如果顶角或底角相等,那么这两个等腰三角形相似。)

3.两个等边三角形一定相似。

直角三角形相似判定定理

1.斜边与一条直角边对应成比例的两直角三角形相似。

2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

射影定理

三角形相似的判定定理推论

推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

篇9:相似三角形的判定教案

本节课的教学设计主要从以下三个方面来考虑的:

一、尊重学生主体地位

本课以学生的自主探究为主线:课前学生自己对比例线段的运用进行整理。这样不仅复习了所学知识,而且可以使学生逐渐学会反思、总结,提高自主学习的能力;课堂上学生亲身体验“实验操作—探索发现—科学论证”获得知识(结论)的过程,体验科学发现的一般规律;解决问题时学生自己提出探索方案,学生的主体地位得到了尊重;课后学有余力的学生继续挖掘题目资源,发展的眼光看问题,观察运动中的“形异实同”,提高学习效率,培养学生思维的深刻性。

2 教师发挥主导作用

在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新,哪怕是微小的进步或幼稚的想法都给予热情的赞扬。备课时思考得更多的是学生学法的突破,上课时教师只在关键处点拨,在不足时补充。教师与学生平等地交流,创设民主、和谐的学习氛围,促进教学相长。

3 提升学生课堂关注点

学生在体验了“实验操作——探索发现——科学论证”的学习过程后,从单纯地重视知识点的记忆、复习变为有意识关注学习方法的掌握,数学思想的领悟。如在原问题的取点中教师小结了从特殊到一般的归纳,学生在探究矩形的比值时就能意识地把解决特殊问题的策略、方法迁移到解决一般问题中去。在课堂小结中,学生也谈到了这点体会,而且还感悟了一题多解、一题多变等数学学习方法。

相似三角形的判定主要介绍了三种方法以及相似三角形的预备定理 ,从上下来的结果来看,不是很 理想,绝大部分学生对定理的应用不是很熟练,特别对于“两边对应成比例且夹角相等”不能灵活运用,夹角也不能准确找到.我想问题的主要原因在于学生对图形的认知不深,对定理的理解不透,一味死记结论.不能理解每个量所表示的含义.我想在下一阶段中应培养他们认识图形的能力,合情推理的能力,争取这方面有所提高。

篇10:相似三角形的判定教案

最近,我们九年级学完了《相似三角形的判定》的内容,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理”又是相似三角形这章内容的重点与难点所在。在本章教学中,主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的判定方法;培养学生提出问题、解决问题的能力。

12月10日,我在九年级二班刚好就上了《相似三角形的判定》第一课时的内容。在本节课的教学中,我是通过平行线分线段成比例定理引入教学的,先让学生画三条平行线,再画两条相交直线与其相交,从而得出得出了一些线段,并再让学生自己操作:量一量、算一算、比一比,从图形中判断,得出那些结论。整个教学过程进展较为顺利,基本完成了教学任务。

在本节课的教学中,我认为以下这几个方面做得较好:

1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。

2、对教学内容进行了合理整合。把相似三角形的判定方法放到下一节课学习,使学生对相似三角形的识别方法有个整体的认识,然后再利用第

二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“A字型”图和“X型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。

3、注意到了推理的逻辑性和严密性。教学中在结论的推导得出过程中,注意了数学符号语言的应用和书写,保证了证明的规范性和作图的合理性。这一点主要表现在“A字型”图的证明上,学生通过几分钟的短暂讨论,书写得出这个定理。在学生亲自操作、探究的过程中,获得三角形相似的第一个简单的识别方法;培养学生提出问题、解决问题的能力;从整堂课学生的表现看到,这节课基本上实现了以上目标。

本节课尽管在以上几个方面做得较为成功,但仍然有些地方值得商榷。课后,经过教研组同志的集体评课以及自我反思,认为需要从以下几个方面改进:

1、在平行线分线段成比例定理的得出过程中,更应当注意图形的一般情况,不应当以点带面。表现在如果两线相交构成的是直角梯形这种情况,而在课堂教学中,由于时间关系、学生关系,在上课作图未涉及到这种情况,这一点需要改进。

2、在证明“A字型”图的结论过程中,没有必要证明DE是三角形中位线这种情况,因为它的证明方法和后面的都相同。如果这样做的话,会浪费大量的时间,导致课堂教学前松后紧。

3、有些学生操作计算的速度太慢了,没有时间等他们探索得出结论,而大多数的同学已经得出了结论。这样可能使他们不能充分理解这节课的内容。

4、教学的方式过于单一,学生的参与面较低。主要是我没有调动好他们的情绪,说明我对课堂的驾驭能力还需要提高。

总之,本节课的教学任务已基本完成,但站在更高的角度来思考,反映出我还有些急燥,在课后及联系中,应该把这种题型至少要细分为基本图形的形成、基本图形的巩固、基本图形的拓展应用三个层次,逐步推进教学,效果可能会更好。

篇11:相似三角形的判定教案

一、说教材

《相似三角形的判定》是华东师大版九年级上册中继学生学习了相似图形相似图形的性质判定、相似三角形之后的一个学习内容。它为后面测量和研究三角函数做了铺垫,在学习-平面几何中起着承上启下的作用。因此必须熟练掌握三角形相似的判定,并能灵活运用。教材从三对角、两对角、一对角对应相等的顺序展开探究,符合学生认知规律。

二、说学情:

学生通过前面的学习已认识了相似图形的性质和判定,认识了相似三角形,这为探究三角形相似的判定做好了知识上的准备。九年级学生动手操作能力逐渐成熟,能主动参与本节课的操作、探究,充分体验获得知识的快乐。

三、说教法与学法指导:

本节课我将采用三学两测的模式进行教学,即学案引领自主探索、同伴合作,交流归纳、教师点拨,启发引导在生生互动,师生互动中借助多媒体开展教学。并进行基础知识测试综合能力测试来反馈课堂效果。

在学法指导上,激励学生积极参与、观察、发现,充分引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,体会数学内容之间的联系,在解决问题的过程中,培养学生学习的主动性和积极性,让学生在愉悦的气氛中感受到数学学习的无穷乐趣。

四、说教学目标:

知识目标:

(1)探索判定两个三角形相似的条件,经历利用操作、归纳获得数学结论的过程。

(2) 掌握如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似,并应用其解决相关问题。

能力目标:通过观察、归纳、测量、实验、推理等手段,让学生充分体验得出结论的过程,感受发现的乐趣。让学生在观察中学会分析,在操作中学会感知,培养学生的合情推理能力、有条理的表达能力。

情感目标:培养学生的合作交流意识,培养学生主动探索,敢于实践,勇于发现的科学精神。

五、说重点与难点:

重点:探究两个三角形相似的判定方法

难点:想方设法验证猜想

六、说教学过程的设计

新课程的理想课堂应该蕴含以下理论:生活性,发展性,主体性。应遵循以下原则:与学生生活实际联系紧,直观性强,动手要多,使学生兴趣要高,自信心要强,即用经验动手操作,观察,思考,释疑,归纳。所以本节课,我从学生的实际经验出发,引导学生观察,猜测,想像,验证,在动手实践中让学生自主地获取知识,理解知识,应用知识。利用多媒体展示学生的思维过程。利用实物投影展示学生动手过程,从而突破难点。并用课件设置了大量的不同梯度,不同类型的习题,扩大了课堂容量。

具体程序如下:

(一)复习旧知,导入新课

1、我们在判定两个三角形全等时,需要几个条件?

2、我们现在判定两个三角形是否相似需要哪些条件?是否存在判定两个三角形相似的简便方法呢?你认为判定两个三角形相似至少需要几个条件?

(设计意图:在学生原有的知识基础上探究,让学生有信心。采用类比的方法思考,降低知识难度。鼓励学生大胆猜想,为后续学习铺垫)

(二)小组合作,探究新知

1、观察猜想:

学生观察自己与老师的30与60直角三角尺 问

1、学生与老师的三角尺看起来是否相似?

(设计意图:用同学们身边熟悉的两块同样角度的三角板的相似让同学们观察,对一个三角形分别与另一个三角形的三个角对应相等时,这两个三角形相似有一个具体的感知,为后面解决一般情况下的两个任意三角形的相似奠定了直观认识,体现数学中的从特殊到一般的思想渗透。)

2、从直观来看,这两个三角形的相似是因为哪些元素的关系而相似的?(三个角对应相等)

3、任意两个三角形的三个角对应相等,它们相似吗?

(设计意图:一个问题串引导学生思考,猜想,给出探究问题,指明研究方向)

2、合作探究:

在课前准备的方格纸上任意画两个三角形,使其三对角分别对应相等。用刻度尺量一量两个三角形的对应边,看看两个三角形的对应边是否成比例,你能得出什么结论? (设计意图:在学生提出猜想后,通过用学生的实际操作来验证猜想,获取直观结论后,再用三组边对应成比例,三组角对应相等的两个三角形相似判定所画的三角形相似)

3、交流发现:

它们的对应边成比例,这两个三角形相似。即:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么这两个三角形相似。

4、小组讨论,形成结论:

根据三角形的内角和等于180,我们能不能得到判定两个三角形相似的简便方法?

我们知道如果两个三角形有两对角分别对应相等,那么第三对角也一定对应相等。所以如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似。

(设计意图:学生以前有过这样的经历,放手让学生尝试寻找简便方法,给学生思考的空间。)

5、深入思考,强化理解

思考问题:(投影)

1、如果两个三角形仅有一对角对应相等的,那么它们是否一定相似?

2、有一个锐角对应相等的两个直角三角形是否一定相似?

3、顶角相等的两个等腰三角形是否一定相似?

4、有一个角相等的两个等腰三角形相似。

(设计意图:思考题的目的是为了让学生深入地理解相似三角形的判定方法中两个三角形必须满足两个角对应相等的条件,为更好地应用做准备,同时发展学生的说理能力。)

(三)例题精讲,规范解答:

例1 已知如图在△ABC中,已知ACB=90,CDAB于D,请找出图中的相似三角形,并说明理由。 解:△CBD ∽△ABC ∽△ACD

∵ B CDB=ACB=90

△CBD ∽△ABC

同理△ABC ∽△ACD

△CBD ∽△ABC ∽△ACD

例2已知如图在△ABC中,DE∥BC,EF∥AB,证明:△ADE∽△EFC。

证明:∵DE∥BC,EF∥AB

ADE=EFC,

AED=C,

△ADE∽△EFC(如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似) (设计意图:在分析两个例题的过程中教会学生审题的方法,一方面从条件出发,通过思维的发散,得出一些结论;另一方面根据解决问题的需要明确要寻找的条件,做的有的放矢,提高学生合情推理的能力。两道例题的解题过程的书写是为了加强对推理过程的理解,并能运用自己的方式有条理的表达推理过程。)

(四)基础知识检测:

如图,□ABCD,过点A的直线交BD、BC、DC的延长线于点E、F、G.

(1)与△ABD相似的三角形有____________________;

(2)与△AED相似的三角形有____________________;

(3)与△AEB相似的三角形有____________________;

(4)与△GFC相似的三角形有____________________;

(5)图中共有__________对相似三角形。 (设计意图:为了进一步巩固相似三角形的判定方法,并熟悉由平行线构造的另一类相似的基本图形X型。)

(五)综合能力检测:

1、在△ABC与△DEF中, A=70B=42D=70E=68,这两个三角形相似吗?为什么?

2、已知:Rt△ABC中,ACB=90,点E是AC边所在直线上一点,且EDAB交AB(或AB延长线)于点D。思考:当点E在直线AC上运动时观察图中出现的相似三角形。

(设计意图:习题是让学生在探究过程中体验到在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等,培养学生养成认真观察,注意寻找图形中的隐含信息的意识,设置开放性练习,拓展学生思维空间)

(六)课堂总结: 本节课你有什么收获?

(让学生从各个角度谈自己的收获)

1.、相似三角形的判定方法:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.

2、在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等。

3、掌握由平行线构造的两类相似图形:一类是A字型,另一类是X型。

4、常用的找对应角的方法:①已知角相等;②已知角度计算得出相等的对应角;③公共角;④对顶角;⑤同角的余(补)角相等。

(七)布置作业,巩固知识:课后习题。

篇12:相似三角形的判定定理

(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 (简叙为两角对应相等两三角形相似).

(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似 (简叙为:两边对应成比例且夹角相等,两个三角形相似.) (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似 (简叙为:三边对应成比例,两个三角形相似.)

(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似

热门教案

学诗词

学名句