写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助!
一、说教材
用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。
二、说学情
任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。
三、说教学目标
【知识与技能】
掌握应用因式分解的方法,会正确求一元二次方程的解。
【过程与方法】
通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。
【情感态度与价值观】
通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。
四、说教学重难点
【重点】
运用因式分解法求解一元二次方程。
【难点】
发现与理解分解因式的方法。
五、说教法、学法
本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。
同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。
六、说教学过程
(一)导入新课
因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。
(二)探索新知
问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?
学生小组讨论,探究后,展示三种做法。
问题:小颖用的什么法?——公式法
小明的解法对吗?为什么?——违背了等式的性质,x可能是零。
小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。
问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]
师引导学生得出结论:
如果a·b=0,那么a=0或b=0
(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)
“或”有下列三层含义
①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0
问题3:
(1)什么样的一元二次方程可以用因式分解法来解?
(2)用因式分解法解一元二次方程,其关键是什么?
(3)用因式分解法解一元二次方程的理论依据是什么?
(4)用因式分解法解一元二方程,必须要先化成一般形式吗?
因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。
这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”
(三)巩固提高
在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:
用分解因式法解下列方程吗?
在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。
(四)小结作业
最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。
七、说板书设计
我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:
初中数学圆说课稿
一、说教材:
“圆的认识”是“人教版”六年级上册第四单元的内容,它是几何初步知识内容,既是一节起始课,也是后继学习“圆的周长”、“圆的面积”、“圆柱”、“圆锥”的基础。
《圆的认识》是在学生学习了直线图形的认识和面积计算,以及对圆有了初步的感性认识的基础上进行教学的。学生从学习直线图形的知识,到学习曲线图形的知识,不论是内容本身,还是研究问题的方法,都有所变化。教材通过对圆的研究,使学生初步认识到研究曲线图形的基本方法。同时,也渗透了曲线图形和直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念方面来说,进入了一个新的领域。因此,通过对圆的认识,不仅能加深学生对周围事物的理解,提高解决简单实际问题的能力,也为今后学习圆的周长、圆的面积、圆柱、圆锥等知识打好基础。
二、说教学目标:
结合本节课的内容特点,本人确定了以下的教学目标:
1、知识与技能:通过画一画、折一折、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。了解、掌握多种画圆的方法,并初步学会用圆规画圆
2、过程与方法:通过想象与验证、观察与分析、动手操作、合作交流等活动,使学生体会到圆的各点分布均匀性和广泛的对称性,同时获得思维的进一步发展与提升。
3、情感态度价值观:结合具体的情境,体验数学与日常生活的紧密联系,并能用圆的知识来解释生活中的简单现象。
三、说重点、难点:
教学重点:理解和掌握圆的特征,学会用圆规画圆的方法。
教学难点:理解“圆上”的概念,归纳圆的特征。
教学准备:
学生:剪刀、白纸若干张、彩笔、圆规、直尺、圆形物体一个
教师:课件、圆规、直尺、圆形纸片
四、说教法、学法:
教法:在本节课中要注重学生的学习行为方式的改变、课程资源的开发利用。从欣赏圆、发现圆开始,深深吸引学生,课堂教学中,要注意调动学生的多种感官参与学习,通过学生的自主探索、合作交流、共同分享等,引领学生经历了一次“研究与发现”的完整过程。教给学生学法:情境中欣赏圆的魅力——合作中探究圆的特征——介绍中体验圆的数学文化——实践中感受圆的数学价值,大胆放手,把一切探究的机会交给学生。学生不仅学得轻松活泼,而且较好地体现了新课程的教学理念。
五、说教学过程
对本节课的教学,我精心设计了二个主要环节。
(一)、创设情境、导入新课
我们以前都和哪些平面图形做了朋友?这些图形都是用什么线围成的?简单说出这些图形的特征。
(二)、突出主体、探究新知
1、初步感知圆
首先我会让学生举举生活中的例子。“日常生活中哪些物体的形状是圆的?”学生可能会说出:硬币、光碟、路标、钟面、车轮等,这些物体的形状都是圆的。让学生初步感知圆,培养学生的空间想象力。同时,我会出示一些生活中的圆形图片,让学生感受到圆就在我们身边。
接着,我会出示的两组图形,第一组是长方形、正方形、三角形、平行四边形、梯形,第二组就是圆形,通过对比,可以清楚地看到,第一组图形是由线段首尾连接所围成的,而圆是由曲线所围成的,形成正确表象——圆是一种平面上的曲线图形。
通过课件展示圆的画面及各部分的名称,同时根据课件图片让学生分析圆上,圆内,圆外和圆心各指什么?我在适时讲解加深学生的理解
2、认识圆的各部分名称和特征
活动一:小组合作探究
(1)以四人为一小组,一起动手折一折、量一量、比一比、画一画,你发现了什么?并在小组内交流。
(2)把你们的发现,准备与大家一起交流分享。
(1)找圆心
首先让学生把事先准备好的圆形纸对折后打开,用笔和直尺把折痕画出来,并在圆形纸的其他位置上重复上面的折纸活动二、三次。操作后,问:“你发现了什么?”学生亲手操作后,发现所有的折痕都会相交于一点。这些折痕的交点,正好在圆的正中心,我们数学上把这一点叫作圆心,用字母“O”来表示。(设计意图:通过学生的直观操作,使学生的学习过程“动作化”,调动学生多种感官参与学习,并有意设置一些认知冲突,让学生积极主动地参与知识的形成过程。)
(2) 认识半径、直径
连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。
通过圆心并且两端都在圆上的线段叫直径,直径一般用字母d表示。在这里因为有半径的知识做基础,我会尝试放手,让学生小组合作探讨直径的知识,
活动二:一起动手
1.请同学们在圆纸片上画出半径,10秒钟,看能画出多少条?直径呢?
2.请同学们用直尺量一量画出的半径有多少厘米?你发现了什么?直径呢?
3.请分四人小组讨论在同一个圆里,半径有什么特征?直径有什么特征?它们之间有什么关系? 通过测量和比较,让学生理解和掌握在同一个圆里半径和直径之间的关系,让学生用含有字母的式子表示半径是直径的一半、直径是半径的2倍关系。得出d = 2r与r = d/2的字母公式,并在练习中通过填表强调了圆内半径与直径的对应关系,还要求学生在圆内一些线段中,找出半径和直径。(设计意图:合理发挥学生的主体作用,让学生动脑、动手、动口、动眼,自主探索知识的形成与发展,并及时巩固学习成果。)
口答:
3、掌握画圆方法
在教学画圆的过程中,我同样会放手让同学们大胆的动脑,动手探索不同的画圆方法。我会在课本知识的基础上在向外延伸.我会向学生提问:刚才同学们画圆都用到了什么方法和工具啊?和大家交流借鉴一下经验好吗?学生会说出不同的方法和工具.如硬币.线 ,笔,圆规等.此时我会装做很着急的样子向学生问:老师想画一个8厘米的圆可不可以用一元钱的硬币呢?为什么啊?生:学生会从大小不符合等方面来说明不行.此时我又会说那我要是想画一个6厘米的圆又该怎么办呢?为什么啊?生:可能会比较困难.(我在适时从大小符合以及方便等方面慢慢导出学生说出用圆规画圆).接下来我在小结得出画大小不同的圆,我们通常用圆规来画。并播放课件圆规确定半径的方法以及圆规画圆的方法的过程.(并得出结论用圆规画圆可以画出大小不同的圆,也可以得到我们想要的圆.再次论证得出半径越大,圆就越大,半径越小,圆就越小.
最后,我根据以上所学的内容,为学生准备了两道习题.来加深所学的知识,一是让同学们1、用圆规画出半径是2厘米的一个圆,并用字母O、r、d分别标出它的圆心、半径、和直径。2、画出直径是4厘米的一个圆。
实际应用:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为10米的圆吗? 我会适时加以巩固,在所学知识基础上史料连接,有关圆的知识,名言等,通过课件展示使学生体会圆所蕴涵的历史和文化积淀,激发学生学数学,用数学的激情以及在以后的数学学习中,更加用心.圆与生活又有很大的联系.通过解决生活中的实际问题,使学生感到成功的快乐。学数学,用数学,数学无处不在.
巩固练习
1、填空。
(通过这道题让学生回顾了本节课所学内容,检验了学生对所学内容的掌握情况)
2、判断,并说为什么。
(这些题进一步加深对圆的认识,并培养学生分析、推理和判断能力。)
板书设计:
圆的认识
图略
圆心O 半径r 直径d
d=2r或r=d/2
圆规画圆:定半径、定圆心、旋转一周
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导同学们动手实验突出重点,合作交流突破难点。
二、学情分析
初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
三、教学与学法分析
教学方法:
叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。
学法指导:
为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。
四、教学过程
首先,情境导入 激问设疑
给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。
其次,自主探究,获取新知
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
1、追溯历史 解密真相
让同学们欣赏传说故事:相传25前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。
2、动手操作,探求新知
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。
从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
3、自己动手,拼出弦图
让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。在求正方形C的面积时,同学们将展示“割”的方法, “补”的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。
以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
合作交流,讲述论证
教材中直接给出“赵爽弦图”的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出“同学们是学习的主体,教师是组织者、引导者与合作者”这一教学理念。同学们会发现两种证明方案。
方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。
方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。
整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让同学们体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。
我按照“理解—掌握—运用”的梯度设计了如下四组习题:
(1) 体会新知,初步运用;
(2)对应难点,巩固所学;
(3)考查重点,深化新知;
(4)解决问题,感受应用。
温故反思 任务后延
在课堂接近尾声时,我鼓励同学们从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体同学们的理念。
五、板书设计
板书勾股定理,进而给出字母表示,培养同学们的符号意识。
六、学习评价
本课意在创设和谐的乐学气氛,始终面向全体同学们,“以同学们的发展为本”的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。
今天我说课的课题是八年级下册第五章第4节《数据的波动》(第一课时)。现我就教材、教法、学法、教学流序、板书五个方面进行说明。(恳请在座的各位专家、同仁批评指正。)
一、说教材:
1、本节课的主要内容:
其中探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差和标准差。
2、地位作用:
我们纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的和落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。
3、教学目标:
根据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差和方差,并会用它们表示数据的离散程度”要求,确定以下目标:
(1)知识目标:
a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。
b、会动手和利用计算器计算“方差”“标准差”。
(2)过程与方法目标:
a、经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。
b、通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)
c、突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。
d、在具体实例中体会样本估计总体的思想。
(3)情感目标:
通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。
4、重点与难点:重点:
学习理解刻画数据离散程度的三个量度——极差、标准差和方差,会计算方差的数值,并在具体问题情境中加以应用。
这一节的难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则和本节教学目标,我采用如下的教学方法:
1、引导发现法。
数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性和积极性。
2、比较法。
在极差和方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。
3、练习巩固法。
通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题和解决问题的能力得到进一步的提高。
4、选用一个贴近学生生活实际的背景。
通过一个实际问题情境的导入和比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差和方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。
三、说学法:
教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我主要设计的学法指导是:
(1)引导观察分析法:
链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题和解决问题。
(2)引导比较鉴别法:
在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。
(3)引导练习巩固:
注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解和应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容和知识。
(4)引导自学法:
学生自学掌握计数器计算方差和标准差的操作功能。
四、说教学程序:
1、创设情境,导入新课:
(1)展示情景(链接奥运会中韩运动员设计的情景)。
(2)学生观察阅读分析(描述运动员射箭的平均水平)。
(3)分析思考寻求解决方案(观察表格数据求平均数)。
(4)通过对以上问题的分析发现在实际生活中除了关注数据的“平均水平”以外,还要关注数据的离散程度。(引出本课课题——数据的波动)
2、新课:
(由学生已经掌握的知识来引出课题,吸引学生的注意力和提高学习本节知识的兴趣)
(1)概念介绍:
a、数据的离散程度(是相对于平均水平的偏离情况);
b、极差(极差是刻画数据的离散程度的一个统计量,是一组数据中最大数据与最小数据的差);
c、练习巩固计算极差;
(2)展示丙运动员加入的情景,让学生在乙丙两人中挑选,计算中发现平均数极差相同,让学生产生新的困惑。引入本节的第二个知识点——方差和标准差。
(3)引进概念
a、概念“方差”(各个数据与平均数之差的平方的平均数),给出计算公式:
b、给出“标准差”的概念(方差的算术平方根)。
c、学生相互交流学习操作计算器计算方差和标准差。
(4)引导学生理解一组数据的极差、方差、标准差越小,这组数据就越稳定的内涵(通过数据与图比较说明,使抽象概念具体化)。
(5)计算引例中的方差和标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。
3、巩固练习:
(1)样本4、7、5、2、3、8、5、6的平均数是______,众数是_____,极差是____,方差是________,标准差是______。(通过这组练习强化概念和计算方法的运用)
(2)P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)
4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。
5、布置作业:P—199(1)(2)(3—选作题):
五、说板书设计
板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,同时便于比较和记忆,有利于提高教学效果。
一、教材分析
(一)教材的地位及作用
梯形是人们最为熟悉的几何图形之一,在生活中有着极为广泛的应用。在小学阶段学生对梯形已经有了初步的认识。本节课再次将学生带入梯形的殿堂,进一步探究梯形的相关概念、等腰梯形的性质以及解决梯形问题的策略,是四边形知识螺旋发展的一个重要环节。
(二)教学目标
根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为:
1.知识与技能目标
(1)掌握梯形的相关概念,了解等腰梯形同一底上的两个内角相等,两条对角线相等的性质。
(2)培养学生初步应用等腰梯形的性质解决问题的能力。
2.过程与方法目标
(1)使学生经历探究梯形相关的概念,等腰梯形性质的过程。
(2)在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略。
3.情感、态度与价值观目标
(1)在简单的操作活动中,发展学生的说理意识和主动探究的习惯,同时培养学生的合作意识和交流能力。
(2)体会探索发现的乐趣,增强学习数学的自信心。
(三)教学重点、难点
本着课程标准,在钻研教材的基础上,本节课的教学重点是:探索等腰梯形的性质并能运用它解决一些简单的问题。
教学难点:梯形有关计算和推理中的常用策略。
二、教法分析
针对本节课的特点,采用“创设情境—动手操作—合作交流—知识运用”为主线的教学方法。
三、学法指导
《数学课程标准纲要》指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式。为了充分体现《新课标》的要求,本节课采用“动手实践,合作探究”的学习方法。使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,体验探索的快乐,使学生的主体地位得到充分的发挥。
四、教学过程
(一)创设情境,导入课题
让学生拿出准备好的平行四边形纸片和剪刀,只剪一刀,保证留下的纸片是是四边形,那么留下的四边形是什么图形? 学生动手操作,我参与到学生活动中,及时搜集学生可能出现的情况。 学生容易发现,当所剪的边与相对的边平行时,得到的是平行四边形,那么不平行时,得到的是什么图形呢?由此导入课题。
设计意图:从学生刚刚研究过的的平行四边形入手,让学生既复习运用了平行四边形的相关知识,又有利于加强对比,顺利过渡到梯形的研究。
(二)动手操作,合作探究
探究一:梯形的相关概念
由剪纸的体验,学生很容易概括出梯形的定义,进一步引导学生认识梯形的相关概念。强调:上下底的区分是根据长度,而不是根据其位置。
紧接着让学生举出生活中梯形的实例,学生的举例可能会拘泥于校园,教室,家里的物品,这时我利用课件向学生展示墨西哥的金字塔,上海世博会中国会馆的的图片,让学生发现图片中的梯形,感受梯形的美。接着,利用多媒体展示一组图片,让学生进一步感受生活中的梯形。
设计意图:让学生学会用数学的眼光看世界,体会数学与现实生活的联系。为了加深学生学生对梯形高的意义的理解,我设计了“画一画”:在一张有平行线条的纸上作一个梯形ABCD,使AD∥BC,并作出它的一条高。待学生画好后,分别指出梯形的上底、下底和高。设计意图:让学生体会梯形高的'作法,理解梯形高的意义以及梯形的高有无数条。学生知道了什么是梯形,那么梯形与平行四边形有什么异同?学生小组讨论交流后汇报,借助课件的动画效果加以强调。并进一步提出以下问题:
1.梯形是平行四边形吗?
2.一组对边平行,一组对边不相等的四边形是梯形吗?
设计意图:通过讨论使学生认识到,平行四边形和梯形属于四边形的两个不同分支。
探究二:特殊梯形
为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?
让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的是什么图形?剪下的是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形, 什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义。
(三)总结反思,纳入系统
1.通过本节课的学习你得到了哪些新知识?
2.解答关于等腰梯形的问题后,你获得了哪些方法?
设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识。
(四)布置作业
五、教学评价
本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”。学生在实际操作中,经历了自主探究、合作交流的学习方式,既发展了学生的个性潜能,又培养了他们的合作精神,教师始终是活动的组织者、引导者、合作者,学生是以研究者、探索者的角色出现在教学过程中,主体地位得到了充分体现,使教学过程成为一个再发现、再创造的认识过程,培养学生用转化的思想来探索新问题。
六、板书
略。
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
四、过程分析:
教学环节
教 学 活 动 设 计
设 计 说 明
创设情境
自然引入
1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。
今天我说课的题目是,这节课所选用的教材为北师大版义务教育课程标准八年级教科书。
一、教材分析
1、教材的地位和作用
本节教材是初中数学____年级册的内容,是初中数学的重要内容之一。一方面,这是在学习了____的基础上,对____的进一步深入和拓展;另一方面,又为学习-__X等
知识奠定了基础,是进一步研究____的工具性内容。因此本节课在教材中具有承上启下的作用。
2、学情分析
学生在此之前已经学习了____,对____已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于____的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:
难点确定为:
二、教学目标分析
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
1.知识与技能目标:
2.过程与方法目标:
3.情感态度与价值目标:
三、教学方法分析
本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习就知,温故知新
设计意图:建构主义主张教学应从学生已有的知识体系出发,____是本节课深入研究____的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。
通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———
(3)发现问题,探求新知
设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
设计意图:数学教学论指出,数学概念(定理等)要明确其内涵和外延(条件、结论、应用范围等),通过对定义的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第____环节。
(5)强化训练,巩固双基
设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。
(6)小结归纳,拓展深化
小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.
(7)当堂检测对比反馈
(8)布置作业,提高升华
以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。
以上是我对本节课的见解,不足之处敬请各位评委谅解!
一、说课本:
1、课本内容:我以为可以明白为探索规则——明白规则——应用规则,进一步表现了新课标中“情境引入——数学建模——表明、拓展与应用的模式”。分式的乘除法与分数的乘除法雷同,以是可通过类比,探索分式的乘除运算规则的历程,会举行简朴的分式的乘除法运算,分式运算的效果要化成最简分式和整式,也便是分式的约分,要修业生能办理一些与分式有关的简朴的现实题目。
2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。
3、教学目标
知识目标:
(1)、理解分式的乘除运算法则
(2)、会进行简单的分式的乘除法运算
能力目标:
(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。
(2)能解决一些与分式有关的简单的实际问题。
情感目标:
(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。
(2)、培养学生的创新意识和应用意识。
(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。
4、教学重点:分式乘除法的法则及应用.
5、教学难点:分子、分母是多项式的分式的乘除法的运算。
二、说教法:
教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。
1、启发式教学。启发性原则是永恒的,在教师的启发下,让学生成为课堂上行为的主体。
2、合作式教学,在师生平等的交流中评价学习。
三、说学法:
学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。
1、类比学习的方法。通过与分数的乘除法运算类比。
2、合作学习。
四、说教学程序
1、类比学习,探索法则。(约3分钟)
让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)
复习:分数的乘除法法则(抽一学生口答)
猜一猜:;(a、b、c、d表示整数且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零)
类比:得出分式的乘除法法则(a、b、c、d表示整式且在第一个式子中a、c不等于零,在第二个式子中a、c、d不等于零,a、c中含有字母)
活动目的:让学生观察、计算、小组讨论交流,并与分数的乘除法的法则类比,让学生自己总结出分式的乘除法的法则。
教学效果:通过类比分数的乘除法的法则,学生明白字母代表数、代表式,这样很顺利的得出分式的乘除法的法则。
2、理解法则:(约2分钟)(1)文字叙述:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
(2)符号表述:×=;÷=×=.
活动目的:两种形式巩固对法则的理解。
教学效果:理解法则,进一步发展学生的符号感。
3、应用:(约20分钟)(1)牛刀小试
教材74页到76页的例1、做一做、例2.我准备把例1和例2先学习了。再学习做一做。
例1计算(1);(2)
活动目的:抓住学生刚学习了法则,跃跃欲试的学习激情,抽2名同学上黑板演算,其他学生在课堂作业本上演算。老师巡查,予以辅导,反复提醒学生像分数乘法一样来学习分式乘法(即类比)。
教学效果:有的学生可能没有注意把结果化为最简分式,要提醒注意,有的学生可能一边计算一边就分解因式进行约分(化简)了的,说明已经很好地与分数的乘法进行类比学习了(分数是分解因数),应该予以表扬,让全班学生认真学习、领会。讲评时还应该让学生理解一步的算理。
例2.计算:(1)3xy2÷;(2)÷
活动目的:让学生进一步理解类比的学习方法,分式的除法先转化为乘法。
教学效果:因式分解在分式约分中起到重要作用,对于分子、分母是多项式的分式的乘除法的运算时,一般先分解因式,并在运算过程中约分,可以使运算简化。
(2)“西瓜问题”
活动目的:能解决一些与分式有关的简单的实际问题。能有条理的进行表达。
教学效果:通过以上例题帮助学生总结出分式乘除法的运算步骤(当分式的分子与分母都是单项式时和当分式的分子、分母中有多项式两种情况)
4、随堂练习。(约5分钟)76页第一题,共3个小题。
教学效果:在总结出分式乘除法的运算步骤后,大部分学生能很好的掌握,但是还有些学生忘记运算结果要化成最简形式,老师要及时提醒学生。分解因式的知识没掌握好,将会影响到分式的运算,所以有的学生有必要复习和巩固一下分解因式的知识。
5、数学理解(约5分钟)教材77页的数学理解,学生很容易出现像小明那样的错误。但是也很容易找出错误的原因。
补充例3计算(xy-x2)÷
教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。
6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。
7、作业布置,凝固新知。(约2分钟)教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)
五.说板书设计:
主板书采用纲要式,一目了然。
(一)、分式的基本性质1、文字叙述2、符号表述
(二)、应用
末了,谈谈我的领会。讲堂上同等对话,让门生自主掌握数学,发明题目,实时纠正。讲授是让门生富厚了解。