作为一位优秀的人民教师,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们应该怎么写教案呢?为同学们整理了平行四边形的面积教学教案【优秀7篇】,希望能够在作文写作上帮助到同学们。
一、说教材
1、地位:
学生要想很好地理解与掌握平行四边形面积公式,就必须以长方形的面积计算和平行四边形的特征为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。从而完成新知的建构过程。同时,也为学生自主学习三角形面积和梯形面积的计算夯实基石。
2、教学目标
认知目标:使学生理解并掌握平行四边形面积计算公式(方法),会运用平行四边形的面积公式求平行四边形的面积。
能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。
3、教学重点与难点
教学重点:掌握平行四边形的面积计算公式,并能正确运用。
教学难点:把平行四边形转化学过的图形,通过找关系推导出平行四边形的面积公式。
二、说教法设计
本课采用建构主义理论指导下的主体式、抛锚式教学方式。以网络、“几何画板”为载体,为学生提供了一个活生生的学习环境,把静止的、封闭的、模式化的教学内容,转变为“开放、动态的、多元化”的学习内容,创设自主探索空间,激发自主学习兴趣,增强积极参与意识,充分培养学生的创新精神与实践能力。
三、说学法指导
建构主义学习理论强调以学生为中心,要求学生由知识的灌输对象转变为信息加工的主体。故此,本课教学过程中,巧妙设计,让学生通过课堂讨论、相互合作、实际操作等方式,自我探索,自主学习,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。
四、说教学程序
学生是数学学习的主人,教师则成了学生数学学习的组织者、引导者与合作者。根据本课教学内容结合四年级学生的实际认知水平和生活情感,坚持“以人为本”“发展至上”的思想,特设计教学流程如下:
(一)利用“几何画板”创设情境,激情导入
首先用鲜为人知的“孙悟空变戏法”的故事激发学生学习情感,调动学生参与的积极性,接着让学生点击老师推荐的学习专题网上的“试一试”链接到“几何画板”进行剪拼操作。
此环节设计目的是利用“几何画板”创设美好的学习情境,调动学生的积极性,激发学生的学习兴趣,使学生在情景中主动、积极地接受任务,从而乐学。
(二)利用“几何画板”大胆放手、导学达标
1、数格子算面积。
2、猜想平行四边形的面积可能和什么有关?
3、证明猜想
在证明猜想是否正确时,大胆放手,指导学生在“几何画板”上操作,并小组合作完成填空:长方形的面积与原平行四边形的面积_________,长方形的长相当于平行四边形的________, 因为长方形的面积=_________,所以平行四边形的面积=_________。
经师生互动、交流,得出了平行四边形的面积计算公式:平行四边形的面积=底*高。
(三)利用网络,精心设计形式多样的练习。
在本设计中,我则根据学生的年龄特点与认知规律,教材体系与网络优势,设计了一个专题学习网站,通过设置多点链接,整合信息技术与数学学科,整合网络技术与几何画板工具,利用强大的交互功能,让学生进行个性化的自主性学习活动。使学生在教师的指导下,自主选择学习的策略和方法,自己控制和调节学习的进程,在师生、生生、人机、个体与集体之间多纬度的交流,凭借网络资源的优势,在开放的环境中完成知识的意义建构过程。
在本课中,我把练习设计设计成“试试你的本领”。让学生自由上网自由选题进行训练。同学可以调阅学习伙伴的学习情况。也可以利用网络进行讨论。能力差点的学生可以得到更多的关心,真正体现生生互动。
(四)归纳总结,拓展延伸
教师引导学生自己先进行课堂小结,有助于知识的巩固和自主学习能力的提高,通过学生归纳本课内容,使学生更清楚地认识到今天到底学什么。通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,体验到学习成功的快乐。教师顺势揭示了课题,突出重点。
课末提出了“你还能用折纸或其他方法证明平行四边形的面积计算公式吗?”。鼓励学生想出多种方法来证明平行四边形面积的计算公式,体现了方法多样化,使学生体验了解决问题策略的多样性,提高了学生的学习能力,更培养了学生的创新精神。
在课的组织形式上,我将通过 “师生互动”、“生生互动”和“人机对话”等多种形式,使学生在积极的互动中相互协作、相互学习,最终达到“信息互补”、共同提高的目的。
纵观本课设计,我坚持以“学生为本”“以学定教”的思想,凭借网络强大的功能,给学生以积极参与的机会,鼓励学生自己动手操作,自我探索,自我发现,自我发展,成为一个真正的研究者与探索者、建构者。在课堂教学中,学生是学习的主人,是信息加工的主体,是意义主动建构者,而教师则是“意义建构”的帮助者、促进者。本方案设想,使学生在开放的网络环境中凭借几何画板工具,自主探索,自主探索、完成知识的意义建构过程。
五、说板书设计:
平行四边形的面积
平行四边形的面积 = 底 × 高
教学内容
义务教* *育课程标准实验教科书数学五年级上册第79~81页,平行四边形的面积。
教材分析
平行四边形面积计算是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,它是进一步学习三角形、梯形、圆和立体图形表面积的基础。在本节课的教学中,引导学生动手操作,合作探究,运用转化的方法推导出平行四边形面积的计算方法,并运用所学的知识解决生活中的实际问题。
教学目标
1、通过探索,理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。
2、通过操作、观察、比较,培养学生运用转化的方法解决实际问题,发展学生的空间观念。
3、学生在自主探究中体验成功的喜悦,获得积极的情感体验,激发学习的兴趣。
教学重点
理解并掌握平行四边行的面积计算公式。
教学难点
理解平行四边形面积计算公式的推导过程。
教具、学具准备
课件,平行四边形学具纸片,剪刀,尺子等。
教学过程
一、创设情境,引出课题
1、课件出示情境图。
师:同学们,很高兴能跟大家一起来学习,我发现我们学校环境特别优美,我拍了几幅照片,看一看,你能找出哪些图形?
生看图回答。
2、师:在过6天,我们学校就要举行庆典活动了,为了把我们的学校打扮得更漂亮,学校准备在操场的西边空地上新建两个花坛。(课件出示规划图)
3、师:说一说,这两个花坛分别是什么形状的?。
生:一个长方形,一个正方形。(课件相机抽出平面图形)
师:你认为哪个花坛大呢?
生1:长方形的大。
生2:平行四边形的大。
师:怎样来比较两个花坛的大小呢?
生:算出它们的面积,再比较。
师:你会计算它们的面积吗?
生:我会计算长方形的面积,将长方形的长乘宽就能算出它的面积。
4、平行四边形的面积怎样计算呢?今天我们一起来研究平行四边形面积计算。
板书课题:平行四边形的面积。
[设计意图:通过观察情境图,发现图形,巩固和加深了对已学过的图形特征的认识,加强学习内容与生活实际的联系,计算长方形的面积为学习新知作好了知识上的铺垫。]
二、探究新知,发现新知
1、猜一猜。
师:同学们大胆猜一猜,平行四边形的面积可能怎样计算?
平行四边形面积的计算,是在学生已掌握了长方形面积的计算、面积概念和面积单位,以及认识了平行四边形的基础上进行教学的。教材运用转化思想,在数方格法的基础叟,用割补法,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。
2、教学目标:
(1)引导学生自己推导出平行四边形的面积公式,沟通长方形和平行四边形之间的内在联系。
(2)通过操作,让学生尝试用转化的思想方法解决新的问题。
(3)理解平行四边形的面积与底和高有关,并会运用面积公式求平行四边形的面积。
3、教学重点:平行四边形的面积计算。
4、教学难点:理解平行四边形面积计算公式的推导过程。
二、教法学法
平行四边形面积的计算是一堂几何初步知识课,为以后学习三角形面积和梯形面积的计算,提供了知识准备。本课的教学设计由直观到抽象,层层深入。从动手操作 观察思考 归纳概括 初步反馈,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。这正体现了概念教学的顺序:动作感知 形成表象 抽象概念。
教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。引导学生自己去操作,自己去观察、比较,自己去探求,重视让学生自己去操作,自己去获取知识,以思维训练为主线,提高学生的思维水平。互助合作,以全体学生为教育对象,整体提高,营造良好的学习氛围。
三、教学过程
(一)复习铺垫
教具逐个出示:
1、图(1)是什么图形? 它的面积怎样算?现在量得长是7厘米,宽是4厘米,你知道这个长方形的面积是多少?
2、长方形的面积可以直接用公式计算,那么图(2)我们能直接用公式计算它的面积吗?用什么办法求它的面积?
学生独立思考,讨论后反馈。(教具演示把多的一块剪下来,拼过去正好是一个长方形,再用长乘以宽就是它的面积)
3、刚才我们用割下来补过去的方法将图(2)转化成和原来图形面积相等的长方形,再用长方形面积公式求出它的面积。现在谁能计算图(3)的面积?
学生独立计算后,反馈。你是怎么算的?为什么?(教具演示:把图(3)右边的三角形割下来补到左边,转化成一个长方形。)
(二)导入新课
图(2)、图(3)我们用割补的方法把它们转化成学过的长方形就能算出它们的面积。(教具出示下图)
你能想办法求出这个平行四边形的面积吗?下面我们一起来研究平行四边形的面积计算。出示课题。
(三)引导探究
1、学生独立思考,动手操作,尝试计算平行四边形的面积。
(教师巡视,学生计算1号学具纸片平行四边形的面积)
谁能说一说,这个平行四边形的面积是多少?你是怎样计算的?学生可能出现不同的答案。
到底怎样思考才是正确的呢?充分运用你手头的学具和有关工具(尺、剪刀等)来尝试操作,然后列式计算(四人小组进行合作、交流)
反馈交流:根据学生的回答教具演示“转化过程”。
本节课的教学模式大部分是在新授时采用先复习长方形的面积计算公式,接着出示一平行四边形,让学生求其面积,学生很茫然而导致不知其面积,老师就教会学生用数方格的方法让学生数出面积,紧接再比较平行四边形和长方形,它们的什么变了,什么没变,长方形长、宽和平行四边形的底、高有什么关系,既而猜测出平行四边形的面积计算公式,最后进行验证。
结合我班的实际情况,我改变了这种教学模式,先出示一已经画过方格的不规则图形,采用数方格的方法知道其面积,紧接我把这一图形反过来,问:“如果没有这些方格,你有办法知道它的面积吗?略停了一会,其中一生说把凸出的部分剪下来补到凹的地方,这样割补的前后图形的面积没有发生变化,同时也把一个不规则的图形转化成已学的图形,学生顿时恍然大悟,明白了“割补”把问题转化的简单一些,学生在不知不觉中感受了“转化”思想在数学学习中的价值,并且轻松快乐地学着。
第二步:我出示一个长方形框架,告诉长和宽,让学生求面积,学生很快完成,我拉动两角,它变成一个平行四边形,它的面积会发生怎样的变化呢?学生兴致很浓地说出它的变化,为什么会变小呢?平行四边形的面积与什么有关呢?带着这些问题,学习今天的内容。
第三步:学生拿出准备好的平行四边形,让他们测量出需要的数据,求其面积,学生充分调动自己的脑、手、口,参与到探究的过程中。
第四步:想办法验证自己求的面积是否正确?有的学生剪、拼,有的学生看书帮忙,有的小组商议,学习气氛热烈,很快验证完毕,并总结出计算公式。
通过本节课的教学,我认为老师应给学生“做数学”的机会,并提供“做数学”的活动,让学生不仅知其然,而且知其所以然,这样的学习才是有效的,也是学生自己需要的。再一方面,在这种总结公式类型的课,我们不妨多给学生充足的时间和空间,把学生放在主体地位上,多让学生自己去探索、去建构数学模型,这样,学生经历了自我探索,自我发现的过程,学生学习的积极性和主动性也充分发挥出来,同时也树立学习的自信心,学习效率也自然高起来。
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
一、导入新课
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
您现在正在阅读的五年级上册《平行四边形的面积》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!五年级上册《平行四边形的面积》教学设计①这个由平行四边形转化成的。长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的平行四边形的底、高相等。
5、引导学生总结平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=ah
说明在含有字母的式子里,字母和字母中间的乘号可以记作,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的填空。
7、验证公式
学生利用所学的公式计算出方格图中平行四边形的面积和用数方格的方法求出的面积相比较相等 ,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
三、检测导结
1、学生自学例1后,教师根据学生提出的问题讲解。
2、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
3、做书上82页2题。
4、小结
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
5、作业
练习十五第1题。
附:板书设计
平行四边形面积的计算
长方形的面积=长宽 平行四边形的面积=底高
S=ah S=ah或S=ah
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。
2.养成良好的审题习惯。
3.培养同学们分析问题、解决问题的能力。
教学重点:
运用所学知识解答有关平行四边形面积的应用题。
教具准备:
卡片
教学过程:
一、基本练习
1.口算。
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
(1)底12米,高7米;
(2)高13分米,底6分米;
(3)底2.5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
(1)生独立列式解答,集体订正。
(2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?
①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1.95公顷,
再求共收小麦多少千克:70001.95=13650千克
(3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与(2)比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
(4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
(1)你能找出图中的两个平行四边形吗?
(2)他们的面积相等吗?为什么?
(3)生计算每个平行四边形的面积。
(4)你可以得出什么结论呢?(等底等高的。平行四边形的面积相等。)
3.练习第10题:已知一个平行四边形的面积和底,求高。
分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
第7题。
四、小结
本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?
预设目标:
使学生认识弧、圆心角和扇形。
教学重难点:
使学生认识弧、圆心角和扇形。
教学过程:
一 、复习:
1、一个圆的周长是18.84厘米,这个圆的面积是多少厘米?
2、一个环形花坛的外圆半径是5米,内圆半径是2米,它的面积是多少平方米?
二、新课
1、认识弧。
教师拿出圆规和直尺,先画一个虚线圆,在圆上取A、B两点,再用实线画A、B两点间的部分。(出示小黑板)
教师:请同学观察一下,这两点间的实线部分是在什么上画出来的?接着指出:圆上A、B两点之间的部分叫做弧,读做“弧AB”。然后让学生在练习本上先画一个虚线圆,再画一段弧,并让学生说一说什么是弧。
2、认识扇形
教师可在上面作图的基础上,用彩色粉笔画出半径0A、0B和弧AB(如书上右图)。指出:一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。并用彩色粉笔把扇形部分涂上色。强调涂色部分就是扇形,让学生也在练习本上画出扇形。
教师:我们看到扇形是由两条半径和一条弧围成的,谁能说一说扇形中三角形有什么不同?使学生认识到:三角形是由三条线段围成的,而扇形中有一条不是线段是弧,这条弧是圆的一部分。
3、认识圆心角。
教师在上面右图的基础上标出∠1,指出:像∠1这样,顶点在圆心上的角叫做圆心角。使学生认识到:圆心角是由两条半径和圆心组成的,所以圆心角的。顶点在圆心上。教师可以在黑板上画出几个角,让学生判断哪些是圆心角。
教师接着在黑板上画一个圆,在圆上分别画出圆心角150度、30度、45度的扇形,使学生明确:在同一个圆上,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形就越小。
4、课堂练习:
做练习四的第1——3题
创意作业:自己画一个扇形,标出圆心角的度数,半径。