分数的基本性质教案(分数的基本数学教学反思)

教学内容:分数的基本性质(P106-107)教学目的:⒈掌握理解分数的基本性质,能运用这个性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数。⒉培养学生的观察比较、分析综合、抽象概括的能力。教学重难点:重点:分数的基本性质的掌握和理解。难点:利用分数的基本性质把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数。教具准备:投影机,幻灯片、小黑板等。的小编精心为您带来了分数的基本性质教案【优秀6篇】,希望大家可以喜欢并分享出去。

分数的基本性质的教案 篇一

教学目的:

理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。

2.理解和掌握分数的基本性质。

3.较好实现知识教育与思想教育的有效结合。

教学难点:

理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的关系。

教学准备:

板书有关习题的幻灯片。

教学过程:

一、复习

1.出示

在括号里填上适当的数:

指名说一说结果,并说一说你是根据什么填的?

二、课堂练习:

1.自主练习第4题。

学生先独立做,教师巡视,并个别指导,集体订正。

教师板书题目中的线段,指名让学生板演。

在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)

怎样找出相等的分数?

让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?

然后要求学生在书上把这几个相应的。点找出来。指名板演。

2.自主练习第5题。

先让学生独立做,教师巡视。个别指导。

指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。

教师根据学生的回答选择几个题目进行板书。

3.自主练习第6题。

先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。

集体订正。指名说一说自己的计算过程和结果。

教师根据学生的回答选择几个题目进行板书。

4.自主练习第7题。

学生独立做。教师要求有困难的学生分组讨论,教师个别指导。

集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。

5.自主练习第8题。

学生先独立做。

集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?

《分数的基本性质》教学反思 篇二

分数的基本性质教学反思学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中务必把教师的教变成学生的学,务必深入研究学法,建立探究式的学习模式。教师应调动学生的学习用心性,向学生带给充分从事数学学习的机会,帮忙他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表此刻:1、学生在故事情境中大胆猜想。透过创设“老爷爷分地”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。2、学生在自主探索中科学验证。在学生大胆猜想的基础上,教师适时揭示猜想资料,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,透过创设自主探索、合作互助的学习方式,由学生自行选取用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论

的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,透过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。3、反思教学的主要过程,觉得我在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师带给的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。

分数的基本性质教学设计 篇三

教学目的:

1、理解和掌握分数的基本性质。

2、理解分数的基本性质与商不变规律的关系。

3、培养教学内容:小学数学第十册,分数的基本性质教材第107~108页。

学生观察、比较,抽象、概括的能力及初步的逻辑推理能力。

4、应用分数的基本性质解决简单实际问题。

5、正确认识、处理变与不变的的辨证关系。

教学重点:掌握分数的基本性质。

教学难点:抽象概括分数的基本性质。

教具学具准备:多媒体及课件一套、学生每人三张同样大小的纸条、彩笔。

教学步骤:

一、1、复习旧知

除法与分数之间有什么联系?

被除数÷除数=被除数

除数

1)、你能用分数表示下面各题的商吗?

1÷2=()3÷6=()5÷10=()4÷8=()

2)、根据400÷25=16在□里填数:

(400×4)÷(25×4)=□

根据360÷90=4在□里填数:

(360÷□)÷(90÷10)=4

(2)你是怎样想的?(回忆除法中商不变性质)

商不变的性质内容是什么?

3)、引入:刚才我们复习了除法中商不变的性质,在分数中有没有类似的性质呢?

2、激趣引入:和尚分饼

从前有座山,山上有座庙,庙里有个老和尚和一个小和尚,哦,不,是三个小和尚。小和尚们很喜欢吃老和尚做的饼,有一天,老和尚做了三个同样大小的饼,还没给,小和尚们就叫开了,小和尚说:“我要一块。”老和尚二话没说,就把一块饼平均分成二块,取其中的一块给了小和尚。高和尚说:“我要二块。”老和尚又把第二块饼平均分成四块,取其中的两块给了高和尚,胖和尚抢着说:“我不要多了,我只要三块。”老和尚又把第三块饼平均分成六块,取其中的三块给了胖和尚。老和尚一一满满足了小和尚们的要求,同学们,谁会用一个数来表示三个和尚分得的饼数?板书:1/22/43/6

你们猜猜哪个和尚分的饼多?板书:1/4=2/8=4/16

这几个分数真的相等吗?让我们做个实验来证明。

3、操作感知:

(1)请同学们拿出三张大小相同的长方形纸条。

通过实验、观察、分析、讨论

①把第一张纸条平均分成2份,其中1份涂上颜色并用分数表示出来;

②把第二张纸条平均分成4份,其中2份涂上颜色并用分数表示出来;

③把第三张纸条平均分成6份,其中3份涂上颜色并用分数表示出来

然后看涂上颜色的部分是不是一样大。这说明了什么?

引导:聪明的老和尚是用什么办法来既满足小和尚们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)

这三个分数它们之间有什么变化规律吗?下面我们就来研究这个变化规律。

二、比较归纳揭示规律

比较这三个分数分子和分母,它们各是按照什么规律变化的?:

1、说说这三个分数的意义。

2、总结规律:

(1)从左往右观察:

a、观察手中第一、第二张纸条。

发现:1/2是把单位“1”平均分成2份,表示其中的1份。如果把分的份数和表示的份数都乘2,就得到2/4。就是1/2=1×2/2×2=2/4

b、再让学生说说从1/2到3/6,分数的分子和分母又是按什么规律变化的?

板书:1/2=1×3/2×3=3/6

c、根据上面的分析,你能得出什么结论?引导学生说出:分数的分子和分母同时乘相同的数,分数的大小不变。

(2)引导学生观察、讨论:

从右往左看,3/6到1/2,2/4到1/2,分数的分子和分母是按什么规律变化的?从中你能得出什么结论?

学生边回答边板书:3/6=3÷3/6÷3=1/2

2/4=2÷2/4÷2=1/2

并得出结论:分数的分子和分母同时除以相同的数,分数的大小不变。

3、抽象概括归纳性质

(1)引导学生把刚才出示的两条规律合并成一条规律。指出这就是“分数的基本性质”。

(2)齐读书上的结论,比一比少了些什么?讨论:为什么性质中要规定“零除外”齐读。

分母不能是0,所以分数的分子、分母不能同时乘以0;又因为除法里,零不能作除数,所以分数的分子、分母也不能同时除以0。

三、出示例2

1、把2/3和10/24化成分母是12而大小不变的分数。

引导学生思考:把3/4和15/24化成分母是12而大小不变的分数,分子要不要发生变化,变化的依据是什么?

学生独立完成。

四、多层练习巩固深化

1、巩固练习:

口答

1/5=()/159/18=()/6

2/3=()/1210/24=()/12

6/10=()/20=3/()=18/()

2、深化练习:

下面每组中的两个分数相等吗?为什么?

3/5和6/101/15和1/5

3、应用练习:

判断:

(1)分数的分子和分母都同时乘以或者除以相同的数,分数的大小不变。()

(2)一个分数的分子扩大10倍,要使分数的大小不变,分母也要扩大10倍。( )

(3)一个分数的分母除以5,分子也除以5,分数的大小不变。()

4、发散练习:你能写出和4/6相等的分数吗?

在一分钟内比一比谁写得多,让写的最多的同学报出来,给予表扬。

5、游戏:请找找我的好朋友

五、全课总结

提问:我们这节课学习了什么内容?分数的基本性质是什么?

通过今天的学习,你认为学习分数的基本性质有什么作用?

《分数的基本性质》教学反思 篇四

《分数的基本性质》它是在学生已掌握了商不变的性质之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用猜想和验证方法,留给学生足够的探索时间… .cn…和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:

一、迁移引入,沟通新旧知识的联系。

学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在复习环节时出示:124=3 12040=3 1200400=3,问:观察这三道算式,你回忆起以前学过的什么规律?根据除法和分数的关系,猜猜看分数也有这样的规律吗?帮助学生意识到商不变规律与新知识的学习具有定的联系,为新知识的学习奠定基础。

二、用故事情景引入,增强解决问题的现实性。

教学一开始,就以一段故事《三个和尚分饼》引入课题,这样不仅激发了学生的学习兴趣,更调动了学生的求知欲望,充分运用了猜测和情景引入等方式,吸引学生主动参与到对新知识的探究过程中,把抽象的分数基本性质具体化了。然后,我抓住分数基本性质的本质属性,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后再提出为什么这里的相同数不能为零,并通过商不变性质的性质、分数与除法的关系,使学生全面理解掌握分数的基本性质。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。

三、运用知识,解决实际问题。

先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,如游戏:老师写一个分数,你能写出和老师相等的分数?你能写几个?写的完吗?在写的时候,你是怎么想的?1/a=7/b(a和b是不为0的自然数),当a=1、2、3、4的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?并培养学生运用所学的知识解决实际问题的能力。本节课出现的问题也很多,如在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子,如果能有把这两个规律之间的转化采用举例、填空的形式,能给学生以直观的体验,胜过用语言的描述。

分数的基本性质的教案 篇五

教材简析:

分数的基本性质是以分数大小相等这一概念为基础的。因为分数与整数不同,两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。教学时,可引导学生观察一组相等分数的分子、分母是按什么规律变化的,再结合分数的意义归纳出分数的基本性质。由于分数和整数除法存在着内在联系,所以分数的基本性质也可以利用整数除法中商不变的性质来说明。

设计理念:

分数的基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数的基本性质显得尤为重要。因此我把学生的学习定位在自主建构知识的基础上,建立了猜想试验分析合情推理探究创造的教学模式。

在课堂上,我先通过故事让学生进入情境,然后让学生去猜想、观察、试验、感悟,进而得出结论。当学生得出分数的分子、分母都乘或除以同一个数,分数的'大小不变之后,再结合商不变的性质深入理解,把知识融会贯通。整个教学过程注重让学生经历了探索知识的过程,使学生知道这些知识是如何被发现的,结论是如何获得的,体现了方法比知识更重要这一新的教学价值观,构建了新的教学模式。

《数学课程标准》指出:学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者。这就要求我们在教学活动中应该为学生提供大量数学活动的机会,让学生去探索、交流、发现,从而真正落实学生的主体地位。

教学目标:

1、使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题.

2、培养学生观察、分析、思考和抽象、概括的能力.

3、渗透形式与实质的辩证唯物主义观点,使学生受到思想教育.

教学重点:

使学生理解和掌握分数的基本性质,培养学生的抽象、概括的能力。

教学难点:

让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。

教具准备:

每生三张正方形纸

教学方法:

演示法、观察法、讨论法、交流法。

分数的基本性质教学设计 篇六

教学内容:人教版小学数学第十册第75页至78页。

教学目标:

1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

教学准备:

课件、长方形纸片、彩笔。

教学过程:

一、创设情境,忆旧引新

孙悟空师徒四人来到一个小国家----数学王国,猪八戒肚子很饿, 悟空就对八戒说:“我给你10块饼,平均分2天吃完,怎么样?”八戒一听嚷道:“太少了,猴哥欺负我。”悟空眼睛一动说道:“那我就给你100块饼,平均分20天吃完,可以了吧。”八戒一听就乐了:“太好了!太好了!这回每天我可以多吃些了!”

同学们,你们认为八戒说得有道理吗?(没道理)

【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】

为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

先算出商,再观察,你发现了什么?

被除数和除数同时扩大(或缩小)相同的倍数,商不变。

同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

8÷15=  3÷20=   14÷27=

二、动手操作 、导入新课

同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)

我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想与你每人一块,而且大小要是一样,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?

我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

我如果想我想与你每人四块,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。

【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

三、探索分数的基本性质

你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?(  )

1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?

2、学生交流、讨论并汇报,得出初步分数的基本性质。

分数的分子、分母同时乘以或除以相同的数,分数的大小不变。

3、将结论应用到

(1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

(2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

(3)是怎样变化成与之相等的 的?

(4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

4、综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗? (不能同时乘或除以0)为什么?

5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

有位老爷爷把一块地分给三个儿子。老大分到了这块地的 ,老二分到了这块地的 。老三分到了这块的 。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(  )

分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。(  )

分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。(  )

⒍小结。

从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】

五、巩固练习

⒈卡片练习:

⒉做P96“练一练”1、2。

⒊趣味游戏:

数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。

要求:第一排是分数值等于 的,第二排是分数值等于 的,还有一位同学是指挥,他是谁?你是怎样想的?

【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】

六、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

七、布置作业

做P97练习十八2。

热门教案

学诗词

学名句